какую форму имеет переменный ток
Основные параметры переменного тока: период, частота, фаза, амплитуда, гармонические колебания
Переменный ток — электрический ток, направление и сила которого изменяются периодически. Так как обычно сила переменного тока изменяется по синусоидальному закону, то переменный ток представляет собой синусоидальные колебания напряжения и силы тока.
Поэтому к переменному току применимо все то, что относится к синусоидальным электрическим колебаниям. Синусоидальные колебания — колебания, при которых колеблющаяся величина изменяется по закону синуса. В данной статье поговорим о параметрах переменного тока.
Изменение ЭДС и изменение тока линейной нагрузки, подключенной к такому источнику, будет происходить по синусоидальному закону. При этом переменные ЭДС, переменные напряжения и токи, можно характеризовать основными четырьмя их параметрами:
Есть и вспомогательные параметры:
Далее рассмотрим все эти параметры по отдельности и во взаимосвязи.
Период — время, в течение которого система, совершающая колебания, проходит через все промежуточные состояния и нале снова возвращается к исходному.
Периодом Т переменного тока называется промежуток времени, за который ток или напряжение совершает один полный цикл изменений.
Поскольку источником переменного тока является генератор, то период связан со скоростью вращения его ротора, и чем выше скорость вращения витка или ротора генератора, тем меньшим оказывается период генерируемой переменной ЭДС, и, соответственно, переменного тока нагрузки.
Период измеряется в секундах, миллисекундах, микросекундах, наносекундах, в зависимости от конкретной ситуации, в которой данный ток рассматривается. На вышеприведенном рисунке видно, как напряжение U с течением времени изменяется, имея при этом постоянный характерный период Т.
Частота f является величиной обратной периоду, и численно равна количеству периодов изменения тока или ЭДС за 1 секунду. То есть f = 1/Т. Единица измерения частоты — герц (Гц), названная в честь немецкого физика Генриха Герца, внесшего в 19 веке немалый вклад в развитие электродинамики. Чем меньше период, тем выше частота изменения ЭДС или тока.
Сегодня в России стандартной частотой переменного тока в электрических сетях является 50 Гц, то есть за 1 секунду происходит 50 колебаний сетевого напряжения.
В других областях электродинамики используются и более высокие частоты, например 20 кГц и более — в современных инверторах, и до единиц МГц в более узких сферах электродинамики. На приведенном выше рисунке видно, что за одну секунду происходит 50 полных колебаний, каждое из которых длится 0,02 секунды, и 1/0,02 = 50.
По графикам изменения синусоидального переменного тока с течением времени видно, что токи различной частоты содержат разное количество периодов на одном и том же отрезке времени.
Угловая частота — число колебаний, совершаемых за 2пи сек.
За один период фаза синусоидальной ЭДС или синусоидального тока изменяется на 2пи радиан или на 360°, поэтому угловая частота переменного синусоидального тока равна:
Пользоваться числом колебаний на 2пи сек. (а не за 1 сек.) удобно потому, что в формулах, выражающих закон изменения напряжений и токов при гармонических колебаниях, выражающих индуктивное или емкостное сопротивление переменному току, и во многих других случаях частота колебаний n фигурируют вместе с множителем 2пи.
Фаза — состояние, стадия периодическою процесса. Более определенный смысл имеет понятие фаза в случае синусоидальных колебаний. На практике обычно играет роль не фаза сама по себе, а сдвиг фаз между какими-либо двумя периодическими процессами.
В данном случае под термином «фаза» понимают стадию развития процесса, и в данном случае, применительно к переменным токам и напряжениям синусоидальной формы, фазой называют состояние переменного тока в определенный момент времени.
На рисунках можно видеть: совпадение напряжения U1 и тока I1 по фазе, напряжения U1 и U2 в противофазе, а также сдвиг по фазе между током I1 и напряжением U2. Сдвиг по фазе измеряется в радианах, долях периода, в градусах.
Говоря о величине синусоидального переменного тока или синусоидальной переменной ЭДС, наибольшее значение ЭДС или тока называют амплитудой или амплитудным (максимальным) значением.
Амплитуда — наибольшее значение величины, совершающей гармонические колебания (например, максимальное значение силы тока в переменном токе, отклонение колеблющегося маятника от положения равновесия), наибольшее отклонение колеблющейся величины от некоторого значения, условно принятого за начальное нулевое.
Строго говоря, термин амплитуда относится только к синусоидальным колебаниям, но его обычно (не вполне правильно) применяют в указанном выше смысле ко всяким колебаниям.
Гармонические колебания — колебания, в которых колеблющаяся величина, например напряжение в электрической цепи, меняется во времени по гармоническому синусоидальному или косинусоидальному закону. Графически представляются кривой — синусоидой.
Реальные процессы могут лишь приближенно быть гармоническими колебаниями. Однако если колебания отражают наиболее характерные черты процесса, то такой процесс считают гармоническими, что существенно облегчает решение многих физических и технических задач.
Движения, близкие к гармоническим колебаниям, совершаются в различных системах: механических (колебания маятника), акустических (колебания столба воздуха в органной трубе), электромагнитных (колебания в LC-контуре) и др. Теория колебаний рассматривает эти различные по физической природе явления с единой точки зрения и определяет их общие свойства.
Графически гармонические колебания удобно представить с помощью вектора, вращающегося с постоянной угловой скоростью вокруг оси, перпендикулярной к этому вектору и проходящей через его начало. Угловая скорость вращения вектора соответствует круговой частоте гармонического колебания.
Векторная диаграмма одного гармонического колебания
Периодический процесс любой формы может быть разложен в бесконечный ряд простых гармонических колебаний с различными частотами, амплитудами и фазами.
Гармоника — гармоническое колебание, частота которого в целое число раз больше частоты некоторого другого колебания, называемого основным тоном. Номер гармоники указывает, во сколько именно раз частота ее больше частоты основного тона (например, третья гармоника — гармоническое колебание с частотой, втрое большей, чем частота основного тона).
Всякое периодическое, но не гармоническое (т. е. отличающееся по форме от синусоидального) колебание может быть представлено в виде суммы гармонических колебаний — основного тона и ряда гармоник. Чем больше рассматриваемое колебание отличается по форме от синусоидального, тем большее число гармоник оно содержит.
Мгновенное значение u и i
Значение ЭДС или тока в конкретный текущий момент времени называется мгновенным значением, они обозначаются маленькими буквами u и i. Но поскольку эти значения все время меняются, то судить о переменных токах и ЭДС по ним неудобно.
Действующие значения I, E и U
Способность переменного тока к совершению какой-нибудь полезной работы, например механически вращать ротор двигателя или производить тепло на нагревательном приборе, удобно оценивать по действующим значениям ЭДС и токов.
Так, действующим значением тока называется значение такого постоянного тока, который при прохождении по проводнику в течение одного периода рассматриваемого переменного тока, производит такую же механическую работу или такое же количество теплоты, что и данный переменный ток.
Действующие значения напряжений, ЭДС и токов обозначают заглавными буквами I, E и U. Для синусоидального переменного тока и для синусоидального переменного напряжения действующие значения равны:
Действующее значение тока и напряжения удобно практически использовать для описания электрических сетей. Например значение в 220-240 вольт — это действующее значение напряжения в современных бытовых розетках, а амплитуда гораздо выше — от 311 до 339 вольт.
Так же и с током, например когда говорят, что по бытовому нагревательному прибору протекает ток в 8 ампер, это значит действующее значение, в то время как амплитуда составляет 11,3 ампер.
Так или иначе, механическая работа и электрическая энергия в электроустановках пропорциональны действующим значениям напряжений и токов. Значительная часть измерительных приборов показывает именно действующие значения напряжений и токов.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое переменный ток
Что такое переменный ток. Определение переменного тока
Переменный ток — это направленное движение заряженных частиц, направление движения которых меняется на противоположное через равные промежутки времени. Если постоянный ток течет в одном направлении и не меняется по величине, то переменный ток может быть в данный момент положительным, а через определенный промежуток времени отрицательным.
Получение переменного тока
Вырабатывают переменный ток генераторы переменного напряжения, которые преобразуют механическую энергию в электрическую. Форма переменного тока может быть различной и зависит от его назначения. Форма переменного тока промышленного назначения и для бытовых нужд населения носит синусоидальный характер.
Он имеет такие характеристики как амплитуда, частота и период. Периодом синусоидального тока является его полный цикл колебания и измеряется временем совершения одного цикла колебания. Такие циклы повторяются и поэтому переменный ток еще называют циклическим.
Период обозначается буквой Т и выражается в секундах. Другим параметром синусоидального тока является частота, которая обратно пропорциональна периоду т. е. F = 1/Т. Если период переменного тока равен 1 секунде, то частота его будет равна 1 Гц.
Период, частота и амплитуда переменного тока
Существует два стандарта переменного тока — это 50 Гц и 60 Гц. В России используется частота сети 50 Гц, а в Канаде и США 60 Гц. Такой параметр как амплитуда, определяется его наибольшей величиной в определенный промежуток времени, она может иметь отрицательное или положительное значение.
Что такое трехфазный переменный ток
Если два синусоидальных сигнала одновременно достигают наибольшей амплитуды и нуля, то можно говорить что эти сигналы имеют одинаковую фазу, т. е. совпадают по фазе. Если эти сигналы имеют разные значения максимума и нуля, то они сдвинуты по фазе.
Электрическая схема соединений треугольник
В трехфазном переменном токе имеется три сигнала однофазного синусоидального тока сдвинутых относительно друг друга на 120°. Из многофазных электрических сетей в основном выбрана трехфазная сеть, как наиболее оптимальная. Трехфазная сеть состоит из 3-х однофазных сетей.
Такую однофазную сеть в трехфазной сети называют фазой. Возможны два вида соединения фаз в трехфазной сети — это соединение «треугольником» и «звездой». При соединении «звездой» одни концы генератора соединяются вместе и образуют нулевую точку, а другие провода обмоток идущие к нагрузкам называются линейными.
Напряжение между линейными проводами и нулевыми проводами называются фазным напряжением. А напряжение между линейными проводами называют линейным напряжением. Нулевой провод используется в случаях неравномерной нагрузки, позволяя выравнивать напряжение фаз.
Нейтральный провод применяется в схеме освещения, где создать равномерную нагрузку нелегко, так как не все лампы включаются одновременно и равномерно по фазам. Между фазными и линейными напряжениями имеется зависимость: Uл = √3*Uф ≈ 1,73*Uф. В трехфазных сетях по схеме «звезда» Uл — 380 В, а Uф = 220 В.
Фазное и линейное напряжение в трехфазных цепях схемы звезда
Если нагрузка в электрической цепи по схеме «звезда» в трех фазах одинакова, т. е. симметрична, то в нейтральном проводе тока нет, или он минимальной величины. А если ток нейтрали незначителен, то и сечение нулевого провода значительно меньше, чем сечение линейного провода. Когда нагрузка одинакова, ток в нейтрали будет равен нулю.
Нейтраль в этом случае не нужна. Тогда используют схему соединения трехфазной сети «треугольник», где все концы соединяются с началами обмоток генератора и образуют схему «треугольник» без нейтрали. В схеме «треугольник» фазные и линейные напряжения равны Uл = Uф, а токи определяются по формуле — IЛ = √3*IФ, где линейный ток в 1,73 раза больше фазного.
Соединение по схеме «треугольник» иногда используется в освещении, но в основном такую схему применяют в трехфазных сетях с небольшим перекосом фаз. Также тяжёлый запуск асинхронных электродвигателей осуществляется по схеме «звезда», чтобы снизить большой пусковой ток электродвигателя, а достигнув рабочего режима, переходят на схему «треугольник».
Чем отличаются и где используются постоянный и переменный ток
В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.
Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.
Что такое электрический ток и напряжение
Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:
Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.
Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.
Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).
Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.
Что такое переменный ток
Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.
Что такое постоянный ток
Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.
Источники электрического тока
Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.
Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.
Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.
Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.
Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.
Преобразование переменного тока в постоянный
Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.
Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.
В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.
Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.
Где используется и в чём преимущества переменного и постоянного тока
Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.
Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.
Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.
Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).
Обозначения на электроприборах и схемах
Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.
Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.
На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.
Почему переменный ток используется чаще
Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.
Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.
Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.
В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.
При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.
Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.
Что такое короткое замыкание по-простому?
Какие существуют виды источников электрического тока?
Способы вычисления потребления электроэнергии бытовыми приборами
Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления
Что такое фазное и линейное напряжение?
Сравнение основных параметров светодиодных ламп и ламп накаливания, таблица соответствия мощности и светового потока