выберите правильное положение характеризующее избыточность генетического кода

Выберите правильное положение характеризующее избыточность генетического кода

Каждая аминокислота в клетке кодируется

Генетический код триплетен. Триплет — это последовательность трех нуклеотидов, кодирующая одну аминокислоту.

Генетический код однозначен. Каждому триплету соответствует только одна аминокислота.

Генетический код избыточен: аминокислота может кодироваться разными (от одного до шести) триплетами. Одним триплетом кодируются только метионин и триптофан.

Свойство генетического кода: Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов(триплетов)

не согласна! ответ 3)

Каждая АМК кодируется тремя нуклеотидами, следовательно одним триплетом. 1 АМК не может кодироваться двумя, например, триплетами.

Ни в одном школьном учебники это не написано, к сожалению.

В линии Каменский_Криксунов_Пасечник написано даже в 9 классе.

Это «базовый» вопрос. Посмотрите таблицу генетического кода.

Можно было бы написать «кодируется одним или несколькими вариантами триплетов» или «одним или несколькими разными триплетами».

И тогда очевидным становится выбор ответа №1.

Не нужно «додумывать» варианты ответов, или вопросы.

Вопрос корректный, базовый.

Вопрос действительно не корректен! еСЛИ В ЦЕПОЧКЕ ДНК, то аминокислота кодируется только одним триплетом, а если здесь имеют в виду ‘ вырожденность’, то совсем дргуое дело. Вопрос звучит неоднозначно.

Не нужно «до­ду­мы­вать» ва­ри­ан­ты от­ве­тов, или во­про­сы.

Во­прос кор­рект­ный, ба­зо­вый.

Так что не надо тут придумывать

Это разные СВОЙСТВА генетического кода.

Вы говорите об однозначности.

А вопрос про избыточность.

Ге­не­ти­че­ский код из­бы­то­чен: ами­но­кис­ло­та может ко­ди­ро­вать­ся раз­ны­ми (от од­но­го до шести) три­пле­та­ми.

каждая аминокислота кодируется исключительно несколькими триплетами, а не одним. правильный ответ 2. в этом и состоит вырожденность. разве нет?

не со­глас­на! ответ 3)

Во­прос про из­бы­точ­ность.

Ге­не­ти­че­ский код из­бы­то­чен: ами­но­кис­ло­та может ко­ди­ро­вать­ся раз­ны­ми (от од­но­го до шести) три­пле­та­ми.

Источник

Биосинтез белка. Генетический код

Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка).

Информация о строении белков закодирована в ДНК, которая у эукариот входит в состав хромосом и находится в ядре. Участок ДНК (хромосомы), в котором закодирована информация об одном белке, называется ген.

Транскрипция – это переписывание информации с ДНК на иРНК (информационную РНК). иРНК переносит информацию из ядра в цитоплазму, к месту синтеза белка (к рибосоме).

Трансляция – это процесс биосинтеза белка. Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома пептидной связью соединяет между собой аминокислоты, принесенные тРНК, получается белок.

Реакции транскрипции, трансляции, а так же репликации (удвоения ДНК) являются реакциями матричного синтеза. ДНК служит матрицей для синтеза иРНК, иРНК служит матрицей для синтеза белка.

Генетический код – это способ, с помощью которого информация о строении белка записана в ДНК.

Свойства генкода

1) Триплетность: одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК – кодон, в тРНК – антикодон (но в ЕГЭ может быть и «кодовый триплет» и т.п.)

2) Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты – 61, поэтому каждая аминокислота кодируется несколькими триплетами.

3) Однозначность: каждый триплет (кодон) кодирует только одну аминокислоту.

4) Универсальность: генетический код одинаков для всех живых организмов на Земле.

Задачи

Задачи на количество нуклеотидов/аминокислот
3 нуклеотида = 1 триплет = 1 аминокислота = 1 тРНК

Задачи на АТГЦ
ДНК иРНК тРНК
А У А
Т А У
Г Ц Г
Ц Г Ц

Еще можно почитать

Тесты и задания

Выберите один, наиболее правильный вариант. иРНК является копией
1) одного гена или группы генов
2) цепи молекулы белка
3) одной молекулы белка
4) части плазматической мембраны

Выберите один, наиболее правильный вариант. Первичная структура молекулы белка, заданная последовательностью нуклеотидов иРНК, формируется в процессе
1) трансляции
2) транскрипции
3) редупликации
4) денатурации

Выберите один, наиболее правильный вариант. Синтез гемоглобина в клетке контролирует определенный отрезок молекулы ДНК, который называют
1) кодоном
2) триплетом
3) генетическим кодом
4) геном

Выберите один, наиболее правильный вариант. Одной и той же аминокислоте соответствует антикодон ЦАА на транспортной РНК и триплет на ДНК
1) ЦАА
2) ЦУУ
3) ГТТ
4) ГАА

Выберите один, наиболее правильный вариант. Антикодону ААУ на транспортной РНК соответствует триплет на ДНК
1) ТТА
2) ААТ
3) ААА
4) ТТТ

Выберите один, наиболее правильный вариант. Каждая аминокислота в клетке кодируется
1) одной молекулой ДНК
2) несколькими триплетами
3) несколькими генами
4) одним нуклеотидом

Выберите один, наиболее правильный вариант. Функциональная единица генетического кода
1) нуклеотид
2) триплет
3) аминокислота
4) тРНК

Выберите один, наиболее правильный вариант. Какой антикодон транспортной РНК соответствует триплету ТГА в молекуле ДНК
1) АЦУ
2) ЦУГ
3) УГА
4) АГА

Выберите один, наиболее правильный вариант. Генетический код является универсальным, так как
1) каждая аминокислота кодируется тройкой нуклеотидов
2) место аминокислоты в молекуле белка определяют разные триплеты
3) он един для всех живущих на Земле существ
4) несколько триплетов кодируют одну аминокислоту

Выберите один, наиболее правильный вариант. Участок ДНК, содержащий информацию об одной полипептидной цепи, называют
1) хромосомой
2) триплетом
3) геном
4) кодом

Выберите один, наиболее правильный вариант. Матрицей для трансляции служит молекула
1) тРНК
2) ДНК
3) рРНК
4) иРНК

ТРАНСКРИПЦИЯ
Все перечисленные ниже признаки, кроме двух, можно использовать для описания транскрипции у эукариот. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.

1) образование полинуклеотидной цепи
2) удвоение молекулы ДНК
3) матрицей служит молекула ДНК
4) соединяются нуклеотиды, содержащие дезоксирибозу
5) происходит в ядре

2. Установите соответствие между характеристиками и процессами: 1) транскрипция, 2) трансляция. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтезируется три вида РНК
Б) происходит с помощью рибосом
В) образуется пептидная связь между мономерами
Г) у эукариот происходит в ядре
Д) в качестве матрицы используется ДНК
Е) осуществляется ферментом РНК-полимеразой

2. Установите соответствие между характеристиками и реакциями матричного синтеза: 1) репликация, 2) транскрипция, 3) трансляция. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) работа фермента РНК-полимераза
Б) образование полисомы
В) синтез всех видов РНК
Г) работа фермента ДНК-полимераза
Д) рост полипептидной цепи

ТРАНСЛЯЦИЯ КРОМЕ
1. Все перечисленные ниже понятия, кроме двух, используются для описания трансляции. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

1) матричный синтез
2) митотическое веретено
3) полисома
4) пептидная связь
5) высшие жирные кислоты

2. Все перечисленные ниже термины, кроме двух, используются для описания процесса трансляции. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) кодон
2) триплет
3) фотолиз
4) репликация
5) матрица

БИОСИНТЕЗ
Выберите три варианта. Биосинтез белка, в отличие от фотосинтеза, происходит

1) в хлоропластах
2) в митохондриях
3) в реакциях пластического обмена
4) в реакциях матричного типа
5) в лизосомах
6) в лейкопластах

БИОСИНТЕЗ ПОСЛЕДОВАТЕЛЬНОСТЬ
1. Определите последовательность процессов, обеспечивающих биосинтез белка. Запишите соответствующую последовательность цифр.

1) образование пептидных связей между аминокислотами
2) присоединение антикодона тРНК к комплементарному кодону иРНК
3) синтез молекул иРНК на ДНК
4) перемещение иРНК в цитоплазме и ее расположение на рибосоме
5) доставка с помощью тРНК аминокислот к рибосоме

2. Установите последовательность процессов биосинтеза белка в клетке. Запишите соответствующую последовательность цифр.
1) образование пептидной связи между аминокислотами
2) взаимодействие кодона иРНК и антикодона тРНК
3) выход тРНК из рибосомы
4) соединение иРНК с рибосомой
5) выход иРНК из ядра в цитоплазму
6) синтез иРНК

3. Установите последовательность процессов в биосинтезе белка. Запишите соответствующую последовательность цифр.
1) синтез иРНК на ДНК
2) доставка аминокислоты к рибосоме
3) образование пептидной связи между аминокислотами
4) присоединение аминокислоты к тРНК
5) соединение иРНК с двумя субъединицами рибосомы

4. Установите последовательность этапов биосинтеза белка. Запишите соответствующую последовательность цифр.
1) отделение молекулы белка от рибосомы
2) присоединение тРНК к стартовому кодону
3) транскрипция
4) удлинение полипептидной цепи
5) выход мРНК из ядра в цитоплазму

5. Установите правильную последовательность процессов биосинтеза белка. Запишите соответствующую последовательность цифр.
1) присоединение аминокислоты к пептиду
2) синтез иРНК на ДНК
3) узнавание кодоном антикодона
4) объединение иРНК с рибосомой
5) выход иРНК в цитоплазму

БИОСИНТЕЗ КРОМЕ
1. Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса биосинтеза белка в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1) Процесс происходит при наличии ферментов.
2) Центральная роль в процессе принадлежит молекулам РНК.
3) Процесс сопровождается синтезом АТФ.
4) Мономерами для образования молекул служат аминокислоты.
5) Сборка молекул белков осуществляется в лизосомах.

2. Все перечисленные ниже признаки, кроме двух, используют для описания процессов, необходимых для синтеза полипептидной цепи. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) транскрипция информационной РНК в ядре
2) транспорт аминокислот из цитоплазмы на рибосому
3) репликация ДНК
4) образование пировиноградной кислоты
5) соединение аминокислот

МАТРИЧНЫЕ
Выберите три варианта. В результате реакций матричного типа синтезируются молекулы

1) полисахаридов
2) ДНК
3) моносахаридов
4) иРНК
5) липидов
6) белка

В каких из перечисленных органоидов клетки происходят реакции матричного синтеза? Определите три верных утверждения из общего списка, и запишите цифры, под которыми они указаны.
1) центриоли
2) лизосомы
3) аппарат Гольджи
4) рибосомы
5) митохондрии
6) хлоропласты

Выберите из перечисленных ниже реакций две, относящихся к реакциям матричного синтеза. Запишите цифры, под которыми они указаны.
1) синтез целлюлозы
2) синтез АТФ
3) биосинтез белка
4) окисление глюкозы
5) репликация ДНК

ГЕНЕТИЧЕСКИЙ КОД
1. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. К каким последствиям приведёт замена одного нуклеотида на другой в последовательности иРНК, кодирующей белок?

1) В белке обязательно произойдёт замена одной аминокислоты на другую.
2) Произойдёт замена нескольких аминокислот.
3) Может произойти замена одной аминокислоты на другую.
4) Синтез белка в этой точке может прерваться.
5) Аминокислотная последовательность белка может остаться прежней.
6) Синтез белка в этой точке всегда прерывается.

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Укажите свойства генетического кода.
1) Код универсален только для эукариотических клеток.
2) Код универсален для эукариотических клеток, бактерий и вирусов.
3) Один триплет кодирует последовательность аминокислот в молекуле белка.
4) Код вырожден, так как одна аминокислота может кодироваться несколькими кодонами.
5) 20 аминокислот кодируются 61 кодоном.
6) Код прерывается, так как между кодонами есть промежутки.

2. Сколько нуклеотидов содержит м-РНК, если синтезированный по ней белок состоит из 180 аминокислотных остатков? В ответе запишите только соответствующее число.

3. Сколько нуклеотидов содержит м-РНК, если синтезированный по ней белок состоит из 250 аминокислотных остатков? В ответе запишите только соответствующее число.

4. Белок состоит из 220 аминокислотных звеньев (остатков). Установите число нуклеотидов участка молекулы иРНК, кодирующей данный белок. В ответе запишите только соответствующее число.

2. Белок состоит из 180 аминокислотных остатков. Сколько нуклеотидов в гене, в котором закодирована последовательность аминокислот в этом белке. В ответе запишите только соответствующее число.

3. Фрагмент молекулы ДНК кодирует 36 аминокислот. Сколько нуклеотидов содержит этот фрагмент молекулы ДНК? В ответе запишите соответствующее число.

4. Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.

5. Сколько нуклеотидов во фрагменте матричной цепи ДНК кодируют 55 аминокислот во фрагменте полипептида? В ответе запишите только соответствующее число.

2. Фрагмент молекулы белка состоит из 25 аминокислот. Сколько молекул тРНК участвовали в его создании? В ответе запишите только соответствующее число.

3. Какое количество молекул транспортных РНК участвовали в трансляции, если участок гена содержит 300 нуклеотидных остатков? В ответе запишите только соответствующее число.

4. Белок состоит из 220 аминокислотных звеньев (остатков). Установите число молекул тРНК, необходимых для переноса аминокислот к месту синтеза белка. В ответе запишите только соответствующее число.

5. Сколько молекул тРНК доставляют на рибосому 30 аминокислот для синтеза белка? В ответе запишите только соответствующее число.

2. Сколько триплетов кодирует 32 аминокислоты? В ответ запишите только соответствующее число.

3. Сколько триплетов участвует в синтезе белка, состоящего из 510 аминокислот? В ответе запишите только количество триплетов.

4. Сколько триплетов в молекуле иРНК кодируют белок, состоящий из 102 аминокислот? В ответе запишите только соответствующее число.

2. Ген состоит из 900 нуклеотидов. Сколько аминокислот кодирует этот ген, сколько транспортных РНК будет участвовать в синтезе белка на этом гене? Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

3. Какое число аминокислот в белке, если его кодирующий ген состоит из 600 нуклеотидов? В ответ запишите только соответствующее число.

4. Сколько аминокислот кодирует 1203 нуклеотида? В ответ запишите только количество аминокислот.

5. Сколько аминокислот необходимо для синтеза полипептида, если кодирующая его часть иРНК содержит 108 нуклеотидов? В ответе запишите только соответствующее число.

СЛОЖНО
Белок имеет относительную молекулярную массу 6000. Определите количество аминокислот в молекуле белка, если относительная молекулярная масса одного аминокислотного остатка 120. В ответе запишите только соответствующее число.

В двух цепях молекулы ДНК насчитывается 3000 нуклеотидов. Информация о структуре белка кодируется на одной из цепей. Подсчитайте сколько закодировано аминокислот на одной цепи ДНК. В ответ запишите только соответствующее количеству аминокислот число.

При транскрипции гена была синтезирована иРНК длиной 680 нуклеотидов. Затем из неё были вырезаны три интрона (некодирующих участка) по 82, 114 и 127 нуклеотидов. Сколько аминокислот будет содержать белок, полученный при трансляции этой иРНК? В ответ запишите только количество аминокислот.

АМИНОКИСЛОТ-НУКЛЕОТИДОВ-ТРИПЛЕТОВ
В процессе трансляции молекулы гормона окситоцина участвовало 9 молекул тРНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов, которые кодируют этот белок. Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

АМИНОКИСЛОТ-НУКЛЕОТИДОВ-ТРНК
Участок молекулы ДНК содержит 10 триплетов. Сколько аминокислот зашифровано в этом участке? Сколько потребуется нуклеотидов информационной РНК и сколько потребуется транспортных РНК для синтеза участка молекулы белка, состоящего из этих аминокислот? Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

НУКЛЕОТИДОВ-НУКЛЕОТИДОВ-ТРНК
Белок состоит из 240 аминокислот. Установите число нуклеотидов иРНК и число нуклеотидов ДНК, кодирующих данные аминокислоты, а также общее число молекул тРНК, которые необходимы для переноса этих аминокислот к месту синтеза белка. Запишите три числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

НУКЛЕОТИДОВ-ТРИПЛЕТОВ-ТРНК
Участок молекулы белка содержит 3 аминокислоты. Сколько потребовалось нуклеотидов иРНК, триплетов иРНК и транспортных РНК для синтеза этого участка? Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

Сколько нуклеотидов составляют один стоп-кодон иРНК, сколько стоп-кодонов в генетическом коде? Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

Сколько нуклеотидов составляют антикодон тРНК, кодон иРНК, триплет ДНК? Запишите три числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

выберите правильное положение характеризующее избыточность генетического кода. картинка выберите правильное положение характеризующее избыточность генетического кода. выберите правильное положение характеризующее избыточность генетического кода фото. выберите правильное положение характеризующее избыточность генетического кода видео. выберите правильное положение характеризующее избыточность генетического кода смотреть картинку онлайн. смотреть картинку выберите правильное положение характеризующее избыточность генетического кода.
Рассмотрите рисунок с изображением процессов, протекающих в клетке, и укажите А) название процесса, обозначенного буквой А, Б) название процесса, обозначенного буквой Б, В) название типа химических реакций. Для каждой буквы выберите соответствующий термин из предложенного списка.
1) репликация
2) транскрипция
3) трансляция
4) денатурация
5) реакции экзотермические
6) реакции замещения
7) реакции матричного синтеза
8) реакции расщепления

выберите правильное положение характеризующее избыточность генетического кода. картинка выберите правильное положение характеризующее избыточность генетического кода. выберите правильное положение характеризующее избыточность генетического кода фото. выберите правильное положение характеризующее избыточность генетического кода видео. выберите правильное положение характеризующее избыточность генетического кода смотреть картинку онлайн. смотреть картинку выберите правильное положение характеризующее избыточность генетического кода.
Рассмотрите рисунок и укажите (А) название процесса 1, (Б) название процесса 2, (в) конечный продукт процесса 2. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) тРНК
2) полипептид
3) рибосома
4) репликация
5) трансляция
6) конъюгация
7) АТФ
8) транскрипция

выберите правильное положение характеризующее избыточность генетического кода. картинка выберите правильное положение характеризующее избыточность генетического кода. выберите правильное положение характеризующее избыточность генетического кода фото. выберите правильное положение характеризующее избыточность генетического кода видео. выберите правильное положение характеризующее избыточность генетического кода смотреть картинку онлайн. смотреть картинку выберите правильное положение характеризующее избыточность генетического кода.
Все перечисленные ниже признаки, кроме двух, используются для описания изображенного на рисунке процесса. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) по принципу комплементарности последовательность нуклеотидов молекулы ДНК переводится в последовательность нуклеотидов молекул различных видов РНК
2) процесс перевода последовательности нуклеотидов в последовательность аминокислот
3) процесс переноса генетической информации из ядра к месту синтеза белка
4) процесс происходит в рибосомах
5) результат процесса – синтез РНК

Молекулярная масса полипептида составляет 30000 у.е. Определите длину кодирующего его гена, если молекулярная масса одной аминокислоты в среднем равна 100, а расстояние между нуклеотидами в ДНК составляет 0,34 нм. В ответе запишите только соответствующее число.

Установите соответствие между функциями и структурами, участвующими в биосинтезе белка: 1) ген, 2) рибосома, 3) тРНК. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) транспортирует аминокислоты
Б) кодирует наследственную информацию
В) участвует в процессе транскрипции
Г) образуют полисомы
Д) место синтеза белка

Источник

Анализ Генетического кода I

выберите правильное положение характеризующее избыточность генетического кода. картинка выберите правильное положение характеризующее избыточность генетического кода. выберите правильное положение характеризующее избыточность генетического кода фото. выберите правильное положение характеризующее избыточность генетического кода видео. выберите правильное положение характеризующее избыточность генетического кода смотреть картинку онлайн. смотреть картинку выберите правильное положение характеризующее избыточность генетического кода.
Иллюстрация melmagazine.com (Source: melmagazine.com/wp-content/uploads/2019/11/DNA-1280×533.jpg)

В настоящее время для информационного обмена широко используются сети общего доступа с каналами, не защищенными от нарушителя. Обмен сообщениями в таких связных и компьютерных сетях пользователи вынуждены защищать самостоятельно. Так как сами каналы передачи сообщений пользователь защитить не может, он защищает сообщение.

Что в сообщении защищается? Во-первых, синтаксис (целостность) с этой целью используется кодология (кодирование и анализ кодов), во-вторых, семантика (конфиденциальность) для чего используются криптология (криптография и криптографический анализ), в-третьих, косвенно нарушителю можно ограничить доступность сообщения путем скрытия факта его передачи для чего используется стеганология (стеганография и стеганоанализ).

Перечисленные возможности теоретически и практически обеспечены в разной мере, и хотя каждое направление развивается достаточно длительное время, они еще далеки от завершения. В предлагаемой работе коснемся только одного частного вопроса — анализа кодов сообщений.

Введение

В качестве объекта анализа выбран генетический код (ГК). С любопытным примером использования ГК в области информационной защиты (по-видимому непрофессиональной и потому не успешной) можно познакомиться здесь.

В теории кодирования могут быть выделены два важных направления: кодирование источника информации и канальное кодирование. Первое из них реализуется, как правило, передающей стороной и имеет целью — устранение избыточности сообщений (пример, код Морзе), целью второго является — обнаружение и устранение ошибок в сообщениях. До появления корректирующих кодов задача устранения ошибок решалась повторной передачей искаженного фрагмента сообщения по запросу приемной стороны.

Здесь отметим факт невозможности правильного расшифрования приемной стороной шифрграммы, если в ее тексте возникли ошибки. Шифры не позволяют ни обнаруживать ошибки, ни тем более их исправлять. По этой причине на передающей стороне системы связи сообщение-шифрграмма кодируется корректирующим кодом, а на приемной стороне декодер в полученном сообщении обнаруживает (если они есть) и исправляет ошибки.

После этого вступает в дело криптосистема и легитимному получателю предоставляется расшифрованное сообщение. Таковы в общих чертах положения функционирования сетей, обменивающихся защищенными сообщениями.

В этой работе займемся подробно анализом очень важного Генетического кода, который создан не разумом человека, а самой природой (редкий случай).

История одного открытия и Нобелевская премия

Зададимся вопросом, как природой на уровне генетики и метаболизма организмов (клеток) реализованы такие положения информационного обмена в жизнедеятельности видов и их отдельных представителей?

Научному миру еще до Второй мировой войны было известно, что у живых организмов передача от поколения к поколению наследственных признаков осуществляется через относительно простые химические единицы (гены), включающие огромное количество информации, необходимой для продолжения и воспроизводства жизни.

Все гены (не являются белками) связываются в цепочки (хромосомы) и материализуются в дезоксирибонуклеиновой кислоте (ДНК). У специалистов не было ясности в том, как все происходит и как устроена сама ДНК.

Молодые исследователи физик англичанин Ф. Крик и биолог американец Дж. Уотсон в 1953 году (25.4) опубликовали в журнале Nature статью «Структура дезоксирибонуклеиновой кислоты». На момент начала их работы 1949 г. Джеймсу Уотсону было 23 года, Френсису Крику и Морису Уилкинсу по 33.

В статье авторы описали модель пространственной структуры ДНК в виде двойной спирали, две нити которой закручивалась вправо. Сами нити при этом оказывались связанными поперечными «ступенями», образованными из нуклеотидов.

Определение. Нуклеотиды — соединения, состоящие из сахара, азотсодержащих оснований (пурина или пиримидина) и фосфорной кислоты. Нуклеотиды являются «строительными блоками» для ДНК и РНК.

Эта спираль ДНК – носитель генетического кода – кода наследственности признаков организмов животных и растений. Это была совершенно необычная новая работа о строении и свойствах молекулы дезоксирибонуклеиновой кислоты.

Модель ДНК молодых авторов получила подтверждение при сопоставлении ее с рентгеновской дифракционной картиной кристаллической структуры ДНК английского биофизика Мориса Уилкинса. Позднее был открыт генетический код, содержащий и передающий информацию о синтезе структуры и состава белков – основных составляющих каждой клетки живых организмов, реализующей клеточный цикл.

Определение. Клеточный цикл — правильное чередование периодов относительного покоя с периодами деления клетки.

В этом же году позднее авторы опубликовали еще одну статью, в которой описывался возможный механизм копирования ДНК путем матричного синтеза при делении живых клеток. Двойная спираль ДНК уподоблялась «замку молния».

Каждая нить спирали после «расстегивания замка» и разведения нитей становилась синтезирующей матрицей и достраивалась второй нитью материалом из цитоплазмы клетки по принципу комплементарности до полной ДНК. Там же говорилось, что определенная последовательность оснований (кодонов, триплетов) является кодом, который содержит генетическую информацию.

Идея математизации кода высказывалась впервые Г. Гамовым в статье 1954 года как проблема перевода слов из четырехбуквенного алфавита (системы) в слова двадцатибуквенного алфавита. Он представил проблему кодирования жизненных явлений не как биохимическую, а как комбинаторную математическую задачу. Предварительные длительные усилия авторов этого труда хорошо описаны в книге Д. Уотсона «Нить жизни».

В 1962 году Уотсон, Крик и Уилкинс получили Нобелевскую премию по физиологии и медицине «за открытия в области молекулярной структуры нуклеиновых кислот и за определение их роли для пере-дачи информации в живой материи».

Они располагали информацией о следующих фактах:

В гипотезах и предположениях недостатка не было, но кто-то должен проверять их истинность.
Перекрывающиеся коды (один нуклеотид-буква входит в состав более чем одного кодона): треугольный, мажорно-минорный и последовательный, предложены Гамовым с коллегами;
неперекрывающиеся коды: комбинационный Гамова и Ичаса, «код без запятых» Крика, Гриффита и Оргела. В комбинационном коде аминокислоты (20) кодируются триплетами из 4-х нуклеотидов, но важен не их порядок, а только состав: триплеты ТТА, ТАТ, АТТ кодируют в белках одну и ту же аминокислоту.

Код без запятых объяснял, как выбирается «рамка считывания». Такое «скользящее окно» вдоль нити ДНК, где буквы следуют, друг за другом без разделителей (запятых) их на слова предполагает, что слова все-таки как-то различаются. Согласно модели Ф. Крика делалось допущение: все триплеты разделяются на осмысленные, т. е. соответствующие конкретным аминокислотам, и не имеющие смысла.

Если только осмысленные триплеты формируют ДНК, то в другой «рамке считывания» такие триплеты окажутся не имеющими смысла. Авторы этого кода показали, что можно подобрать триплеты, удовлетворяющие таким требованиям и что их ровно 20. Конечно, полной уверенности в своей правоте у авторов не было.

Действительно, после 1960 года было показано, что кодоны, считавшиеся Криком бессмысленными, в пробирке реализовывали белковый синтез, а к 1965 году был установлен смысл всех 64 кодонов-триплетов. Выяснилось также, что ряд аминокислот кодируется двумя, тремя, четырьмя и даже шестью разными триплетами, т. е. имеет место определенная избыточность, назначение которой еще предстоит определить.

Генетический код жизни. Наследственная информация

Определение. Генетический код – множество слов, задающих способ кодирования цепочками нуклеотидов (букв алфавита А, G, C, T), последовательности аминокислот синтеза белков, свойственных всем живым организмам. Цепочки триплетов (кодовых слов) образуют хромосомы – носители наследственной информации. Каждому виду живых организмов соответствует свой хромосомный набор. Этот способ кодирования универсален и реализуется в каждой клетке растительного и животного организма при ее делении.

Для кодирования каждой из 20 видов канонических аминокислот, из которых строятся далее практически все белки и терминального сигнала «стоп» оказывается достаточно набора из трех нуклеотидов (букв), называемого триплетом (кодоном). Последовательность кодонов формирует в хромосомной нити ген и определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном. Существовала концепция «один ген – один фермент».

Классическое представление информации (линейность ее записи) – это тексты в широком понимании (речь, письма, книги, изображения, фильмы, музыка и т. п.) этого слова в некотором естественном языке (ЕЯ). Язык включает обширный словарь (лексику), а если ЕЯ кроме устной речи имеет письменность, то и алфавит с грамматикой.

Для сохранения информации в течение длительного времени и передачи ее копий необходимы прочная, хорошо защищенная память и письменность. Наследственная информация живых организмов записана ЕЯ природы в длинных текстах словами в некотором «молекулярном» алфавите, которые хранятся в форме хромосом в ядрах всех клеток живых организмов.

Процессы и пути переноса информации, записанной на естественных её носителях-молекулах, сформулированы Ф. Криком (1958 г.) в форме центральной догмы молекулярной биологии. Три основных процесса обеспечивают управление всеми остальными процессами функционирования клетки и жизни организмов в целом.

Эти процессы: репликация, транскрипция и трансляция. Далее о них будет сказано более подробно. Информация в организмах передается только в одном направлении от нуклеиновых кислот (ДНК → РНК →белок) к белку, обратной передачи не существует. Возможны особые случаи ДНК → белок, РНК→ РНК, РНК → ДНК.

Чтение информации вдоль молекулярных цепочек допустимо только в одном прямом направлении. Используется понятие «рамка считывания».

Определение. Рамкой считывания (открытой) называется последовательность неперекрывающихся кодонов, способная синтезировать белок, начинающаяся со старт-кодона и завершающаяся стоп-кодоном. Рамка определяется самым первым триплетом, с которого начинается трансляция.

Для начала трансляции старт-кодона недостаточно, необходим ещё инициационный кодон (их три: AUG, GUG, UUG). После его считывания трансляция идет путем последовательного считывания кодонов рибосомальной рРНК и присоединения аминокислот друг к другу рибосомой до достижения стоп-кодона.

Кодоны в ходе трансляции «читаются» всегда с некоторого стартового инициирующего символа (AUG) и не перекрываются. Чтение после старта триплет за триплетом идет до стоп-кодона завершения синтеза белковой полипептидной цепи.

Эти факты обобщаются в таблице способов передачи генетической информации.

Таблица 1 – Центральная догма молекулярной биологии
выберите правильное положение характеризующее избыточность генетического кода. картинка выберите правильное положение характеризующее избыточность генетического кода. выберите правильное положение характеризующее избыточность генетического кода фото. выберите правильное положение характеризующее избыточность генетического кода видео. выберите правильное положение характеризующее избыточность генетического кода смотреть картинку онлайн. смотреть картинку выберите правильное положение характеризующее избыточность генетического кода.

История изучения текстов наследственности организмов, их осмысления, длительная, богатая открытиями, достижениями, заблуждениями и разочарованиями. Перечень событий истории постижения (познания) текстов природы представляет несомненный интерес, как для науки, так и для каждого отдельного человека.

Слова текстов имеют очень большую длину, но алфавит письменности «ЕЯ природы» содержит всего четыре буквы – это молекулярные основания: в РНК это А (аденин), С (цитозин), G (гуанин), U (урацил) (в ДНК урацил заменяется на Т (тимин)). Язык живой природы – это язык молекул.

Биологами установлено, что каждое слово текста наследственности образовано полимерной молекулой ДНК (дезоксирибонуклеиновой кислоты, открытой в 1868 г. врачом И. Ф. Мишером), построенной из 4-х оснований (нуклеотидов – от nuclear — ядерный).

Основания скрепляются (соединяются) между собой в пары, А ←→ Т, Т←→ А, G ←→ C, С ←→ G особыми водородными связями, реализующими принцип дополнительности (комплементарности). Эти факты устанавливались в разное время, разными учеными и методами многих наук (физики, химии, биологии, цитологии, генетики и др.). Сложности на пути познания этого ЕЯ встречались постоянно.

Молекулы ДНК не кристаллизовались, но когда это удалось сделать, то задача установления структуры ДНК свелась к решению обратной задачи рентгеноструктурного анализа (преобразованием Фурье дифракционной картины кристалла, созданной на экране рентгеновскими лучами).

На рассчитанной и собранной вручную Дж. Уотсоном и Фрэнсисом Криком в 1953 году модели аналогично детской игре «LEGO», где элементами являлись молекулярные основания и очень точно выдерживались межатомные расстояния и углы разворота, была воспроизведена структура хромосомы в большом масштабе.

Эта модель практически подтвердила многообразные гипотезы теоретиков и убедительно доказала отсутствие расхождений с практическими экспериментами и результатами рентгеноструктурного анализа кристаллической ДНК.

Основные детальные данные о химическом строении ДНК и числовые характеристики модели были получены Розалиндой Франклин и М. Уилкинсом ранее 1953 г. в лаборатории рентгеноструктурного анализа. Конфликт ученых описан в романе «Одиночество в сети» Януша Леона Вишневского.

Наличие наглядной структуры ДНК и ее количественных характеристик дало толчок для развития генетики и всех бионаук, из которого возникла идея проекта «Геном человека» 2000 г. Уотсон стал первым руководителем этого проекта, в рамках проекта был полностью расшифрован хромосомный набор человека Homo sapiens. Полная генетическая карта 1-й хромосомы завершена в 2006. Карта содержит 3141 ген и 991 псевдоген.

С позиций математики четырем буквам алфавита можно приписать четыре элемента конечного расширенного поля Галуа GF(2 2 ) = (0, 1, α, β), операции с которыми выполняются по модулю неприводимого многочлена р(х) = х 2 + х + 1. Тогда α + β = 1, α∙β = 1 и сопоставление элементов поля буквам принимает вид
выберите правильное положение характеризующее избыточность генетического кода. картинка выберите правильное положение характеризующее избыточность генетического кода. выберите правильное положение характеризующее избыточность генетического кода фото. выберите правильное положение характеризующее избыточность генетического кода видео. выберите правильное положение характеризующее избыточность генетического кода смотреть картинку онлайн. смотреть картинку выберите правильное положение характеризующее избыточность генетического кода.

, а дополнительный (комплементарный) нуклеотид вычисляется по правилу ¬х → х + 1, откуда Т → А + 1, С → G + 1.

Структурно модель ДНК представляет две эквидистантные полимерные цепи попарно соединенных нуклеотидов (по принципу веревочной лестницы) и закрученных в правую двойную спираль. Ниже по тексту вертикально выписанные пары букв соответствуют ступеням «лестницы»:

Т А G G T T C G Т …
A T C C A A G C A …

Две цепи повторяют последовательность букв, но начало одной расположено напротив конца другой. Информация в молекулах ДНК записывается с большой степенью избыточности, что, конечно, обеспечивает высокий уровень надежности при считывании информации и ее копировании (репликации: ДНК → ДНК). К исходному слову приписывается еще одно, но в дополнительном коде.

Все хромосомы содержат в своем составе гены и в каждой клетке содержатся в очень малом объеме (в ядре клетки) и короткие и очень длинные. Расстояние между нитями ДНК составляет 2 нм, между «ступеньками» – 0.31 нм, один полный оборот «спирали» через каждые 10 пар. Суммарная длина всех ДНК, вытянутых в одну нить достигает 2м. Наследственная информация человека записана в 23 хромосомах. Длина хромосомы порядка 10 9 нуклеотидов, а диаметр ядра меньше микрометра. Таким образом, ДНК в клетке компактизована.

Определение. Ген (греч.γενοζ – род). Структурная и функциональная единица наследственности живых организмов. Гены (точнее аллели) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении.

В словах ДНК можно выделить и рассматривать отдельные части-подслова (гены), которые несут целостную информацию о строении одной молекулы белка или одной молекулы РНК. Кроме того, гены характеризуются регуляторными последовательностями (промоторами).

Промоторы могут быть расположены как в непосредственной близости от открытой «рамки считывания», кодирующей белок или начала последовательности РНК, так и на расстоянии многих миллионов пар оснований (нуклеотидов), например, в случаях с энхансерами, инсуляторами и супрессорами.

Каждый ген предназначен и отвечает за создание определенного белка, необходимого для жизнедеятельности организма. Понятием генотип обозначается наследственная конституция гамет (половых клеток) и зигот (соматических клеток) в отличие от фенотипа, описывающего благоприобретенные признаки, которые по наследству не передаются.

Блоковые коды

Код многозначное понятие. Кодом, прежде всего, можно назвать множество кодовых слов, образующих собственно сам код. Именно такие слова распознает декодер на приемной стороне при передаче сообщений, а на передающей — их формирует кодер.

При формировании кодовых слов используется однозначное отображение конечного упорядоченного множества символов, принадлежащих некоторому конечному алфавиту, на иное, не обязательно упорядоченное, как правило, более обширное множество символов для кодирования передачи, хранения или преобразования информации

Перечислим свойства рассматриваемого генетического кода (ГК):

Г. Гамовым было высказано предположение о триплетности кода. Поскольку речь идет о 4-х нуклеотидах, образующих алфавит, и о 20 аминокислотах, используемых при синтезе белков, каждая из них должна в качестве прообраза иметь одно (или более) синтезирующее ее слово.

Свойство связано с избыточностью. Состав каждого слова из 64 возможных был установлен лишь в 1965 году на основе многочисленных опытов. Выяснилось, что избыточность числа слов при синтезе некоторых белков используется природой для надежности правильности считывания информации. В итоге получилось, что каждая аминокислота кодируется разным числом триплетов (кодонов). Свойство кода назвали вырожденностью.

Таблица 2 — Количественные соотношения триплетов и аминокислот
выберите правильное положение характеризующее избыточность генетического кода. картинка выберите правильное положение характеризующее избыточность генетического кода. выберите правильное положение характеризующее избыточность генетического кода фото. выберите правильное положение характеризующее избыточность генетического кода видео. выберите правильное положение характеризующее избыточность генетического кода смотреть картинку онлайн. смотреть картинку выберите правильное положение характеризующее избыточность генетического кода.

Рассмотрим два дискретных множества Х и n, содержащие соответственно |X| и |n| элементов и отображение φ: n → Х. При представлении произвольных отображений множеств словами в алфавите Х получается множество Х n слов, каждое длиной n символов из имеющихся q = |X|, которые образуют алфавит текстовых сообщений. Удобно все слова Х n расположить в лексикографическом порядке в общий список.

Нашей целью в этой части работы является формирование кода, обеспечивающего кодирование (преобразование) передаваемых данных в форму удобную для передачи в пространстве и времени и трансляцию (перевод) с одного языка на другой понятный получателю сообщения.

Формирование кода предполагает выбор алфавита, определение регулярности, а при выборе регулярного кода, определение длины кодового слова, определение количества кодовых слов, определение побуквенного состава каждого слова.

Таблица 3 — Генетический код состоит из 64 кодовых слов из 3-х букв каждое
выберите правильное положение характеризующее избыточность генетического кода. картинка выберите правильное положение характеризующее избыточность генетического кода. выберите правильное положение характеризующее избыточность генетического кода фото. выберите правильное положение характеризующее избыточность генетического кода видео. выберите правильное положение характеризующее избыточность генетического кода смотреть картинку онлайн. смотреть картинку выберите правильное положение характеризующее избыточность генетического кода.

Таблица 4 — Обратные значения кодовой последовательности триплетов РНК
выберите правильное положение характеризующее избыточность генетического кода. картинка выберите правильное положение характеризующее избыточность генетического кода. выберите правильное положение характеризующее избыточность генетического кода фото. выберите правильное положение характеризующее избыточность генетического кода видео. выберите правильное положение характеризующее избыточность генетического кода смотреть картинку онлайн. смотреть картинку выберите правильное положение характеризующее избыточность генетического кода.

Дополнительные свойства кода, например, код не должен иметь запятой, определяются более жесткими требованиями к названным параметрам кода. Код без запятой должен иметь слова с максимальным периодом. Такие требования ориентированы на удобство последующего синтеза кодека. С этими положениями синтеза кода тесно связаны вопросы кодирования информации и ее декодирования.

Анализ кода

Совсем по-другому звучит задача анализа кода, когда код уже существует и используется, но о нем самом практически мало что известно. Кодированные сообщения доступны для обозрения и изучения, но они столь разнообразны и многочисленны, что принцип их создания не просматривается даже при весьма обширном их анализе.

Собственно, сама система кодирования также доступна для наблюдения и изучения, но уровень сложности ее построения и функционирования не позволяет получить полное качественное и достоверное описание.

Информация (данные) представляет собой сообщение, т.е. цепочку символов алфавита, которая с некоторой стартовой позиции может быть разбита на отрезки (блоки) длиной n символов, и каждый такой отрезок представляет собой кодовое слово. Код в этом случае блоковый.

На приемной стороне канала передачи сообщения получатель должен иметь возможность правильно разделять непрерывную цепочку символов сообщения на отдельные слова. Использование разделителей слов (запятой) нежелательно, так как требует ресурсов.

Синхронизация. Без выполнения синхронизации правильная трансляция сообщения невозможна. Отсюда вытекает одно из требований к формируемому коду – код должен быть устроен так, чтобы синхронизация обеспечивалась однозначно средствами (свойствами) самого кода и приемного устройства информации.

Определение. Процесс установления позиции, содержащей стартовый (начальный) символ кодового слова, называется синхронизацией.
Задача синхронизации просто решается, если в алфавите используется специальный символ-разделитель слов, например, запятая. Рамка считывания очередного кодового слова устанавливается непосредственно за разделителем.

Такой разделитель удобен, но нежелателен по нескольким причинам.

Для лучшей различимости слов кода они в полном списке возможных слов должны быть удалены одно от другого на некоторое расстояние, т.е. различаться составом значений символов, как векторы векторного пространства компонентами.

Следовательно, кодовыми словами могут быть не все и не любые слова множества Х n , а только лишь некоторое их подмножество D є Х n . Выбор символьного состава слов кода и представляет основную задачу его формирования, так как именно состав слов кода должен обеспечивать удовлетворение сформулированным требованиям к коду. Таким образом, будем далее рассматривать код без запятой.

Синхронизация кода без запятой. Покажем здесь, как может быть обеспечена однозначность синхронизации кода без запятой. Выберем два триплета кодовых слова вида х = (х1, х2, …, хn) и у = (у1, у2, …, уn). Образуем их конкатенацию х||у = (х1, х2, …, хn, у1, у2, …, уn). Эта конкатенация из двух слов позволяет породить еще n – 1 слово множества Х n путем многократных циклических сдвигов на одну позицию влево и выделения первых n символов сдвинутой последовательности. Введем важное понятие перекрытия пары слов.

Определение. При циклических сдвигах символов на шаг получаются слова вида (х2, …, хn, у1), (х3, …, хn, у1, у2)…( хn, у1,…, уn-2, уn-1), которые называются перекрытиями пары слов х и у.

Если все перекрытия в конкатенации для любой пары кодовых слов не являются кодовыми словами, то механизм приемной стороны (декодер) канала передачи информации имеет возможность устанавливать однозначно стартовую позицию. Это возможно при наличии у декодера списка D всех кодовых слов и возможности сопоставления их со считываемыми n символами из принятого сообщения.

Покажем, как это осуществляется. Пусть в принятой последовательности символов выбран и зафиксирован некоторый символ. Отсчитав n символов от фиксированного, декодер сопоставляет слово, которое получилось, со словами кодового списка. Если имеет место совпадение с одним из слов кодового списка, то синхронизация установлена. Фиксированный символ и его позиция стартовые.

Если совпадения нет ни с одним из слов списка кода, т. е. попали на слово-перекрытие, то это означает, что стартовая позиция расположена левее фиксированной позиции.
Сдвигаемся влево на одну позицию от фиксированной и повторяем действия предыдущего шага до тех пор, пока не получим на некотором шаге совпадения с одним из кодовых слов. Этот процесс обязательно имеет успешное завершение в правильной стартовой позиции, т. е. синхронизация в среднем устанавливается за число n/2 шагов.

Определение. Блоковым кодом без разделителя (запятой) называется подмножество D є Х n слов длины n в алфавите Х таких, что для любых двух кодовых слов х, у єD все перекрытия для них не являются кодовыми словами.

Мы уже установили, что такой код обеспечивает правильную синхронизацию в длинных цепочках кодовых слов без разделителей между ними. Какие же слова из множества Х n включаются в подмножество D є Х n ? Если мощность множества Х n делится на целые числа, то мощность D может быть одним из таких делителей (теорема Лагранжа о группах) и код при этом называется групповым блоковым кодом без запятой.

Состав символов в словах кода пока остается не установленным, так же, как и количество слов в D. Очевидно, что выбор конкретного подмножества D из Х n имеет много вариантов (сочетаний из Х n по D), из которых только немногие или возможно единственный удовлетворяет всем требованиям к коду без запятой. Нами рассмотрено одно из важных требований о перекрытиях, и это свойство слов кода может быть использовано в качестве фильтра для отсеивания непригодных вариантов при выборе D.

Перейдем к решению вопроса о числе слов в формируемом коде.

Мощность кода без запятой. Будем отыскивать наибольшее из возможных число слов в коде D, которое обозначим символом |D| = Wn(q). Точное значение получить не удается, но оценку сверху для количества слов получить возможно, используя понятие периода слова. Обозначим символом Т k х циклический сдвиг слова длиной n на k шагов, k k х = х и d ≤ n, d | n. Слова максимального периода d = n называются полноцикловыми (основными). Код без запятой включает в свой состав только полноцикловые слова.

Действительно, пусть кодовое слово х = (х1, х2, х3, х1, х2, х3 ) имеет период d

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *