красный цвет какая длина волны

Длины световых волн

Свет играет важную роль в фотографии. Привычный всем солнечный свет имеет достаточно сложный спектральный состав.

Спектральный состав видимой части солнечного света характеризуется наличием монохроматических излучений, длина волны которых находится в пределах 400-720 нм, по другим данным 380-780 нм.

Иными словами солнечный свет может быть разложен на монохроматические составляющие. В тоже время монохроматические (или одноцветные) составляющие дневного света не могут быть выделены однозначно, а, ввиду непрерывности спектра, плавно переходят от одного цвета в другой.

Считается, что определённые цвета находятся в определённых пределах длин волн. Это иллюстрирует Таблица 1.

Длины световых волн

Название цвета

Длина волны, нм

Для фотографов представляет определённый интерес распределение длин волн по зонам спектра.

Всего выделяют три зоны спектра: Синюю (Blue), Зелёную (Green) и Красную (Red).

По первым буквам английских слов Red (красный), Green (зелёный), Blue (синий) получила название система представления цвета – RGB.

В RGB-системе работает множество устройств, связанных графической информацией, например, цифровые фотокамеры, дисплеи и т.п.

Длины волн монохроматических излучений, распределённых по зонам спектра, представлены в Таблице 2.

При работе с таблицами важно учесть непрерывный характер спектра. Именно непрерывный характер спектра приводит к расхождению, как ширины спектра видимого излучения, так и положение границ спектральных цветов.

Длины волн монохроматических излучений, распределённых по зонам спектра

Обозначение

Зона видимого спектра

Спектральные цвета

Длина волны, нм

Длина волны, нм

Сине-фиолетовый
Синий
Сине-зелёный

400-430
430-480
480-500

380-440
440-485
485-500

Зелёный
Жёлто-зелёный
Жёлтый

500-540
540-560
560-580

500-540
540-565
565-590

Что касается монохроматических цветов, то разные исследователи выделяют разное их количество! Принято считать от шести до восьми различных цветов спектра.

Шесть цветов спектра

Монохроматические цвета спектра

Длина волны, нм

При выделении семи цветов спектра предлагается из диапазона синего 436-495 нм см.Таблицу 3 выделить две составляющие, одна из которых имеет синий (440-485 нм), другая – голубой (485-500 нм) цвет.

Семь цветов спектра

Монохроматические цвета спектра

Источник

Свет и цвет: основы основ

Мы окружены

Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение — это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр. Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет — всего лишь звено одной очень длинной электромагнитной волны.

От света к цвету и обратно

Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет — луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) — это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

Рисунок 2 – Прохождение луча солнечного света через призму.

Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.

Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).

Проверим как это работает на практике. Возьмем 3 источника света (прожектора) — красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

Рисунок 3 — Результат наложения красного, зеленого и синего цветов.

Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный — пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света — там мрак, там всё становится черным. Пример тому — иллюстрация 4.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

Рисунок 4 – Отсутствие светового излучения

Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

Рисунки 5 и 6– Зависимость параметров цвета от источника излучения

Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии — нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный — алый — бордовый — бурый — черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный — малиновый — розовый — бледно-розовый — белый.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).

Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

Рисунок 7 – Палитра цветов Adobe Photoshop

Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% — это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) — это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 — это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах, в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

Цвет объектов

Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет. А когда объект отражает почти весь падающий свет, он принимает белый цвет. Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света, которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря — физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.

Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

Рисунок 8 – Отражение зеленой волны спектра

Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

Рисунок 9 – Отражение желтой волны спектра

Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.

красный цвет какая длина волны. картинка красный цвет какая длина волны. красный цвет какая длина волны фото. красный цвет какая длина волны видео. красный цвет какая длина волны смотреть картинку онлайн. смотреть картинку красный цвет какая длина волны.

Рисунок 10 – Отражение всех волн спектра

Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

В следующей статье речь пойдет о новой характеристике цвета — цветовой температуре.

Источник

Что такое свет?

Как всякая волна, свет излучается и поглощается физическими телами. Свет излучается нагретыми или иначе находящимися в возбужденном состоянии телами и веществами.

Как физическое явление, Свет изучается в физике, в разделе оптика. Причем Свет это не одиночная волна с определенными характеристиками, а поток волн, разной длины и частоты.

Из школьного курса физики мы знаем, что как всякие другие волны, свет может быть разложен на составляющие его волны при помощи дифракционной решетки (дифракция) или при помощи призмы (дисперсия). После такого разложения мы получаем спектр волн разной длины, при этом большой участок этого спектра будет невидим человеческим глазом.

Дифракционный и дисперсионный спектры имеют некоторые различия.

Дифракция, это явление отклонения от прямолинейного направления движения волны при прохождении ее через препятствия (щель, отверстие, стержень), размер которого соизмеримы с длиной волны. В случае дифракции, мы получаем картинку, имеющую несколько максимумов, не растянутую ни в какой из областей спектра (нормальный дифракционный спектр).

Нормальный дифракционный спектр равномерный во всех областях и располагается в порядке возрастания длин волн.

Дисперсия это физическое явление, связанное с распространением волн разной длины с разной скоростью в данном веществе. Коэффициент, полученный в результате таких опытов, называют коэффициентом преломления среды.

Дисперсионный спектр сильно сжат в области волн имеющих большую длину, и сильно растянут в области волн имеющих меньшую длину волны. Дисперсионный спектр располагается в порядке убывания длин волн.

Видимая часть спектра называется оптическим диапазоном спектра.

Цвет и спектральные цвета

Что такое цвет? Физика дает следующий ответ на этот вопрос: Цвет, это качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего физиологического зрительного ощущения, и зависящая от ряда физических, физиологических и психологических факторов. [1.1]

Индивидуальное восприятие цвета определяется его спектральным составом, а также цветовым и яркостным контрастом с окружающими источниками света и не светящимися объектами. [1.1]

В непрерывном световом спектре, в котором одни цвета плавно переходят в другие так, что определить точно границы каждого цвета и связь его с определенной длиной волны сложно принято различать следующие цвета в зависимости от длины волны [3.1]:

№ п/пНазвание цветаДлина волны (нм)
ОтДо
1Фиолетовый380440
2Синий440480
3Голубой480510
4Зеленый510550
5Желто-зеленый550575
6Желтый575585
7Оранжевый585620
8Красный620780

Диапазон волн от 0 нм до 380 нм, принято считать невидимым и называть ультрафиолетовой областью оптического излучения.

Диапазон волн от 780 нм до 1 мм, принято считать невидимым и называть инфракрасной областью оптического излучения.

Непрерывный оптический спектр

На рисунке 1 приведен главный максимум дифракционного цветового спектра.

Органы зрения живых существ воспринимают свет, отраженный от физических объектов и предметов. Цвет предмета, воспринимаемый органами зрения будет соответствовать длинам волн, отражаемых данными объектами. На пример, листва нам кажется зеленой по тому, что зеленую составляющую спектра лист отражает, а все другие составляющие, наоборот, поглощает. Или другой пример: апельсин оранжевый, по тому, что именно оранжевая составляющая светового спектра отражается апельсином.

Чувствительность органов зрения живых существ не постоянна в зоне видимого светового спектра. Для человека, на пример, на основании данных [3.2] чувствительность органов зрения приведена на Рисунке 2.

Спектральная чувствительность палочкового зрения (рисунок 2, кривая 2 — глаз адаптирован к ночным яркостям) характеризует работу глаза при столь малом количестве света, что его не хватает даже для частичного возбуждения колбочек. Кривая относительной спектральной чувствительности глаза имеет максимум на длине волны в 507 нм.

Для глаза, адаптированного к дневным яркостям V(λ) (рисунок 2, кривая 1), на длинах волн 510 нм и 610 нм характерно двукратное снижение чувствительности. Если же глаз адаптирован к ночным яркостям V’(λ) (рисунок 2, кривая 2), то снижение чувствительности в два раза наблюдается на длинах волн 455 нм. и 550 нм.

Рисунок 2. Относительная спектральная чувствительность глаза человека

Максимумы на кривых 1 и 2 на рисунке 2, равные единице, относительны. Дело в том, что палочковый аппарат ночного зрения человека намного чувствительнее, и для восприятия предельно малого светового сигнала (например, едва видимой точки на темном фоне) палочкам необходима примерно в пятьсот раз меньшая мощность, чем колбочкам. При этом палочки, действующие при периферическом (боковом) зрении, не позволяют определить цвета точки, в то время как колбочки, фиксирующие точку при прямом зрении, дают возможность увидеть и ее цвет [3.3].

Кроме этого, чувствительность человеческого глаза неодинакова к разным цветовым компонентам света. Чувствительность максимальна при 555 нм (желто-зеленый свет) и сводится к минимуму при более длинных (красный свет) и коротких (синий свет) длинах волн. Чувствительность человеческого глаза к воздействию красного излучения (650 нм) составляет всего 10% от максимальной чувствительности. Иными словами, чтобы добиться ощущения той же яркости, что и у желто-зеленого света, интенсивность красного света должна быть в десять раз больше [4.1].

Если соединить видимые красный и синий диапазон спектра, то мы получим цветовой круг Рисунок 3. Цветовой круг это способ представления непрерывности цветовых переходов в видимой части спектра. Сектора круга окрашены в различные цветовые тона, размещенные в порядке расположения спектральных цветов, причем пурпурный цвет связывает крайние красный и фиолетовый цвета.

Рисунок 3. Цветовой круг и триады цветов, дающие при смешивании белый цвет.

Цветовой круг впервые был предложен Исааком Ньютоном в 1704 году. Цветовой круг имеет большое значение для понимания законов смешивания спектральных цветов. Так на пример, вершины треугольника, вписанного в цветовой круг, однозначно указывают на триады цветов, которые при смешивании дадут белый цвет.

Рисунок 4. Цветовое поле видимого спектра.

В общем случае, оттенки цветов получаемые при смешивании простых спектральных цветов представлены на Рисунке 4.

Не спектральные цвета и смешивание цвета

Для восприятия цвета очень важно такое явление, как метамерия, особенности глаза и психики. [1.2]. Метамерия, это свойство зрения, при котором свет различного спектрального состава может вызывать ощущение одинакового цвета. Иначе метамерией можно назвать восприятие двух окрашенных образцов одинаково окрашенными под одним источником освещения, но различно окрашенными под другим источником освещения. Это можно объяснить разными спектральными характеристиками источников освещения и разными наполняющими цветами в красочных покрытиях рассматриваемых образцов.

Физиологически метамерия зрения основана на строении периферического отдела зрительного анализатора биологического объекта. В соответствии с теорией происхождения видов, предки человека получили органы зрения от рыб. Эта гипотеза получила в настоящее время, как множество подтверждений, так и не меньшее число опровержений.

У человека, как и у карпа, роль периферического отдела зрительного анализатора выполняет сетчатка, в которой за восприятие цвета отвечают особые клетки, называемые колбочками.

В общем случае, можно создать такие условия, при которых пучок оранжевого спектрального цвета, пучок оранжевого не спектрального цвета (полученный смешением желтого и красного спектральных цветов) и пучок пурпурного не спектрального цвета (полученный смешением синего и красного спектральных цветов) могут восприниматься зрительным анализатором наблюдателя, как пучки одинакового цвета.

Однако если пропустить эти три пучка через дисперсионную призму, то мы получим:

Для оранжевого спектрального цвета: одну полоску, соответствующую длине волны первичного светового пучка.

Для оранжевого не спектрального цвета (полученного смешением желтого и красного спектральных цветов): две полоски, соответствующие длинам волн составляющих желтого и красного спектральных цветов первичного светового пучка.

Для пурпурного не спектрального цвета (полученного смешением синего и красного спектральных цветов): две полоски, соответствующие длинам волн составляющих синего и красного спектральных цветов первичного светового пучка.

В общем случае, результирующие цвета получаемые при смешивании цветов иллюстрирует Рисунок 5.

Рисунок 5. Результирующие цвета, получаемые при смешивании спектральных цветов

Данное наблюдение представляется мне важным при создании цвета красителя для окрашивания насадки.

Теории восприятия цвета

На сегодняшний день, существуют несколько теорий восприятия цвета. Пожалуй, самой распространенной из них является Трехкомпонентная теория, предложенная тремя авторами: М.В. Ломоносовым, Т. Юнгом и Г. Гельмгольцем. Согласно этой теории, в органе зрения человека существуют три цветоощущающих аппарата: красный, зеленый и синий. Каждый из них возбуждается в большей или меньшей степени, в зависимости от длины волны излучения. Затем возбуждения суммируются аналогично тому, как это происходит при суммируемом смешении цветов. Суммарное возбуждение ощущается человеком как тот или иной цвет. В своей работе «Цветовое зрение» авторы Л.Н. Миронова, И.Д. Григорьевич отмечают: «. Трехкомпонентная теория хорошо объясняет важнейшие закономерности цветового зрения: адаптацию, индукцию, цветовую слепоту, спектральную чувствительность глаза, зависимость цвета от яркости и другие, Однако, следует заметить, что в наше время известны факты, свидетельствующие о более сложной картине функционирования органа зрения. » [2.1].

Другой, очень распространенной и имеющей множество подтверждений, теорией является теория оппонентных цветов Э. Геринга. Геринг выдвинул предположение, что в колбочках сетчатки могут существовать три вида гипотетических веществ: бело-черные, красно-зеленые и желто-синие. Световой поток влечет их разрушение (одни световые лучи) с образованием белого, красного или желтого цветов или синтез (другие световые лучи) чорного, зеленого или синего цвета. Геринг предполагал, что имеются четыре основных цвета красный, желтый, зеленый и синий, и что они попарно связаны с помощью двух антагонистических механизмов зелено-красного механизма и желто-синего механизма. Постулировался также третий оппонентный механизм для ахроматически дополнительных цветов белого и черного. Из-за полярного характера восприятия этих цветов Геринг назвал эти цветовые пары «оппонентными цветами». Из его теории следует, что не может быть таких цветов, как зеленовато-красный и синевато-желтый. Таким образом, теория оппонентных цветов постулирует наличие антагонистических цветоспецифических нейронных механизмов. Например, если такой нейрон возбуждается под действием зеленого светового стимула, то красный стимул должен вызывать его торможение. Предложенные Герингом оппонентные механизмы получили частичное подтверждение после того, как научились регистрировать активность нервных клеток, непосредственно связанных с рецепторами. Так, у некоторых позвоночных, обладающих цветовым зрением, были обнаружены красно-зеленые и желто-синие горизонтальные клетки. У клеток красно-зеленого канала мембранный потенциал покоя изменяется и клетка гиперполяризуется, если на ее рецептивное поле падает свет спектра и деполяризуется при подаче стимула с длиной волны больше 600 нм. Клетки желто-синего канала гиперполяризуются при действии света с длиной волны меньше 530 нм и деполяризуются в интервале

Множество проводимых исследований подтвердили предположения этих двух теорий, так например колбочки у приматов существуют всего трех типов: воспринимающие цвет в фиолетово-синей, зелено-жёлтой, в желто-красной частях спектра. Каждый вид колбочек интегрирует поступающую лучистую энергию в довольно широком диапазоне длин волн, и диапазоны чувствительности трех видов колбочек перекрываются, различаясь лишь диаграммой величины чувствительности.

Человеческое зрение, таким образом, является трёхстимульным анализатором, то есть спектральные характеристики цвета выражаются всего в трех значениях. Если сравниваемые потоки излучения с разным спектральным составом производят на колбочки одинаковое действие, цвета воспринимаются как одинаковые.

В животном мире известны четырёх- и даже пятистимульные цветовые анализаторы, так что цвета, воспринимаемые человеком одинаковыми, животным могут казаться разными так, хищные птицы видят следы грызунов на тропинках к норам исключительно благодаря ультрафиолетовой люминисценции компонентов их мочи.

Характеристика органов зрения карпа

Как уже говорилось выше, в соответствии с теорией происхождения видов, предок человека унаследовал органы зрения от низших позвоночных, или от рыб, что вызывает большое сомнение у некоторых, уважаемых в научных кругах, авторов [5]:

«. Если принять как факт, что цветовое зрение мы унаследовали от низших позвоночных (рыб), что доказывается анатомическим, физиологическим, химическим и структурным сходством строения сетчатки, то эволюцию цветового зрения следует изучать не на приматах, а начиная с рыб. Тогда рассуждения об эволюции цветового зрения от протонопии до тритонопии (С.В.Кравков) нельзя признать обоснованной. Ведь уже у карпа имеются все три типа колбочек и даже детекторов оппонентного типа, хотя и находятся эти детекторные клетки еще в самой сетчатке, а не в латеральном коленчатом теле, как у приматов и человека (Пэдхем Ч., Сондерс Ж., 1978). Хотя карп обладает повышенной чувствительностью в красно-оранжевой, а не зелено-желтой области спектра, диапазоны частот реагирования рецепторов карпа и человека почти не различаются по ширине.

Из сказанного становится ясным, что максимум цветового восприятия карпа обыкновенного лежит в красно-оранжевой области светового спектра, что находит свое подтверждение в большом количестве работ других авторов.

Автор считает, что диапазон чувствительности в области видимого спектра карпа обыкновенного и человека почти не различается по ширине, что противоречит данным некоторых других источников.

Автор подчеркивает подобность строения органов зрения карпа и человека не только качественно: «. колбочки как у карпа, так и у человека располагаются в фовеа-центральной зрительной ямке» но и количественно: «все 6,5 миллиона колбочек как у карпа, так и у человека. ».

Кроме этого, автор считает функцию распознания цвета, в частности карпом, не отделимой от функций размножения, питания и выживания, то есть от всего биологического цикла. Это пожалуй самый ценный для нас вывод, для нас — рыбаков, осуществляющих ловлю этой умной рыбы, маскируя насадку под привлекающую ее, рыбу, пищу.

Справедливости ради, нужно отметить, что в результате биофизических исследований органов зрения рыб, пресноводных, пресмыкающихся, приматов, человека, были получены другие, очень интересные факты, способные поставить под сомнение приведенные выше заключения.

Учитывая эти данные, мы можем усомниться в утверждении о равенстве ширины светового спектра воспринимаемого органами зрения карпа и человека.

Интересным представляется мнение А.М. Черноризова, высказанное им в его докторской диссертации на тему «Нейронные механизмы цветового зрения».

Имеются данные о наличии в сетчатке костистых рыб фоторецепторов с пиком чувствительности в ультрафиолетовой области спектра (Neumeyer, Arnold, 1989). Не ясна роль этих рецепторов в цветовом зрении рыб ввиду того, что оптическая система камерного глаза этих животных не пропускает ультрафиолетовые лучи. Однако, имеются данные о влиянии активности рецепторов этого типа в различение цветов в синей области спектра (Neumeyer, Arnold, 1989).

Анализируя приведенные выше исследования, с высокой степенью достоверности, можем предположить следующее:

Сетчатки глаза карпа и человека очень похожи по функционированию и строению, и «. по сложности строения и возможностям интегральной обработки параметров зрительных образов напоминают мозг. ».

Имеются данные о наличии у рыб рецепторов, помогающих им различать цвета в области синего цвета, а также в значительном диапазоне инфракрасной зоны спектра.

Особое внимание нужно обратить на то, что максимальная активность нейронов мозга карпа зарегистрирована при раздражении его фоторецепторов пурпурным цветом, который является не спектральным цветом, а результатом суммирующего действия двух спектральных цветов: синего и красного.

Выводы

1. Сетчатки глаза карпа и человека очень похожи по функционированию и строению, а по сложности строения и возможностям интегральной обработки параметров зрительных образов напоминают мозг.

2. Диапазон чувствительности в области видимого спектра органов зрения карпа и человека значительно различается по ширине, что дает карпу возможность видеть объекты в синей части спектра и в невидимой области инфракрасного цвета, предположительно до длин волн около 865 нм. Это, в свою очередь, объясняет то, как карп может найти пищу в условиях практически полной темноты, например, ночью.

3. Максимум цветового восприятия карпа лежит в красно-оранжевой области светового спектра.

4. Максимальная активность нейронов мозга карпа зарегистрирована при раздражении его фоторецепторов пурпурным цветом, который является не спектральным цветом, а результатом суммирующего действия двух спектральных цветов: синего и красного.

5. Карп способен отличать белый спектральный цвет от какого-либо другого цвета.

6. Во время распознавания объекта, карп более склонен ориентироваться на цвет объекта, чем на его форму.

7. Функцию распознания цвета у карпа не отделима от функций размножения, питания и выживания, то есть от всего биологического цикла.

Заключение

Сделанные мною и приведенные выше, выводы, не претендуют на научную ценность и вполне могут быть ошибочными. Но в своих экспериментах с окрашиванием насадок я придерживаюсь следующих, изложенных мною ниже правил.

Мои насадки имеют преимущественно оранжевый спектральный цвет, оранжевый не спектральный цвет, пурпурный не спектральный цвет и белый не спектральный цвет. Они обязательно яркие и отчетливо выделяются на фоне окружающих предметов.

Насадки дают обильное, легко различимое облако мути имеющее тот же цвет, что и насадка.

В свои насадки я пытаюсь включать энзимы, способные поднять температуру поверхности насадки, по сравнению с температурой окружающей среды, хотя бы на один градус. Это позволяет выделить насадку на фоне окружающих ее объектов (заставляет насадку светиться изнутри) и делает ее более привлекательной и легко распознаваемой рецепторами инфракрасного зрения зрительного аппарата рыбы.

1. Википедия. Свободная энциклопедия.

2. Л.Н. Миронова, И.Д. Григорьевич, «Цветовое зрение», 2004 — 2008 годы.

3.1. Цвет и длина волны.

3.2. Чувствительность органов зрения человека.

3.3. Максимумы ночного и дневного зрения.

5. П.В. Яньшин, «Семантика цветового образа. К вопросу о „биологической целесообразности“ цветового зрения», Провинциальная ментальность России в прошлом, настоящем и будущем. Материалы III международной конференции по исторической психологии российского сознания. Ежегодник Российского психологического общества. Т. 3, вып. 2. Самара, СамГПУ, 1999. С.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *