конденсаторы для запуска электродвигателя 3 квт какие
Конденсаторы для запуска электродвигателя: какие нужны, как подключить
В быту часто возникает такая ситуация, когда необходимо подключить электродвигатель, но нет нужного источника питания. Тогда требуется использование другого типа напряжения. Обычно это происходит, если двигатель нужно подсоединить к стороннему оборудованию (токарному станку, самодельному устройству). Для этой цели применяют конденсаторы. Они бывают нескольких видов, поэтому необходимо иметь хотя бы базовое понятие о том, какие конденсаторы для запуска электродвигателя использовать в каждом конкретном случае.
Что собой представляет конденсатор
Каждый тип двигателей имеет свои особенности подбора конденсатора. Это определяет и какой емкости нужен конденсатор для запуска двигателя, какого номинального напряжения и какого типа.
Подключение однофазного двигателя
Для подключения асинхронного двигателя в однофазную цепь обычно используется напряжение 220 В. Но для запуска необходимо создать вращательный момент смещения ротора. С этой целью применяется пусковая обмотка, которая является дополнительной и функционирует только при запуске. На ней при помощи конденсатора задается смещение фазы.
Емкость выбирается по следующему принципу. Общая емкость (рабочая и пусковая) на 100 Вт мощности составляет приблизительно 1 мкФ. Если необходимо подобрать конденсаторы для запуска электродвигателя мощностью 1,5 кВт, то ее достаточно легко рассчитать: 1,5 х 1000 : 100 х 1 = 15 мкФ. Таким образом, чтобы подключить однофазный асинхронный двигатель мощностью 1,5 кВт, необходимо использовать рабочий и пусковой конденсатор общей емкостью 15 мкФ.
Подобные двигатели имеют несколько режимов работы:
Трехфазный двигатель
При подключении трехфазного двигателя используется рабочий конденсатор.
Чтобы правильно подобрать конденсатор для трехфазного электродвигателя, в первую очередь следует рассчитать его минимальную емкость.
Методы расчета емкости
Для расчета того, какие конденсаторы для запуска электродвигателя лучше использовать, применяется следующая формула:
На выходе получается емкость, измеряемая в мкФ (одна миллионная часть Фарада). Рассчитать ее можно и другим способом, используя в качестве основного параметра мощность.
Каждые 100 Вт мощности двигателя соответствуют 7 мкФ. Следует не забывать о том, что на обмотку стартера должен поступать ток не выше, чем номинальный.
Пример расчета емкости
Таким образом, чтобы понять, какие конденсаторы для запуска электродвигателя 2,2 кВт оптимальны, нужно произвести расчет: 2,2 х 1000 : 100 х 7 = 154 мкФ. Можно подобрать похожий по емкости (150 мкФ) или использовать несколько.
Если мощность двигателя будет, скажем, 1 кВт, то расчет будет выглядеть следующим образом: 1 х 1000 : 100 х 7 = 70 мкФ.
Подключение двух конденсаторов для трехфазного двигателя
Допускается подключение более одного конденсатора. Если подключать их параллельно, то емкость будет увеличиваться, что удобно для расчетов.
Отличия пускового и рабочего конденсатора
Пусковой конденсатор нужен для запуска двигателя, поэтому работает короткое время в начале, после чего отключается, тогда как мотор продолжает работать (в обмотке создается сдвиг фаз). Следовательно, время, когда пусковой конденсатор задействован, составляет около 3 секунд, так как за более продолжительный период он может сильно нагреться и привести к замыканию в цепи двигателя, за чем непременно последует выход из строя элементов схемы.
Такой вид конденсатора используется на электродвигателях, схема подключения которых предусматривает этот режим запуска. Для остальных двигателей он тоже может использоваться, если в момент запуска на валу создается повышенная нагрузка, которая не дает ротору свободно вращаться.
Рабочий конденсатор задает сдвиг фаз для постоянной работы двигателя, поэтому рассчитывается с учетом более продолжительной работы. Во время смены фаз цикла на конденсаторе появляется напряжение, превышающее напряжение питания. Это происходит из-за того, что им совместно с обмоткой создается колебательный контур. Последнее также важно учитывать.
Сравнение конденсаторов обоих типов
Рабочий и пусковой конденсаторы имеют такие отличия:
Эти правила помогают хотя бы приблизительно понять, какой конденсатор нужен для запуска электродвигателя.
Принципы подключения
С точки зрения безопасности рекомендуется соблюдать такие правила:
Если есть сомнения в способности подобрать правильно конденсаторы для запуска электродвигателя и самостоятельно подключить устройство, то рекомендуется обращаться за помощью к специалисту.
Иногда может возникнуть вопрос, какой конденсатор нужен для двигателя постоянного тока. Дело в том, что подобные двигатели не нуждаются в емкостных элементах в цепи. Но конденсаторы там также могут использоваться, их ставят на щеточный механизм для устранения помех. Они имеют совершенно другой принцип работы.
Проверка работоспособности конденсаторов
Для проверки конденсаторов применяют измеритель емкости. Он может быть выполнен как в виде отдельного прибора, так и быть в составе мультиметра (тестера). Проще рассмотреть вариант проверки с мультиметром:
Режим измерения емкости на мультиметре может изображаться по-разному. В большинстве имеются специальные гнезда Fcx.
Перед началом проверки конденсатора рекомендуется вручную (или автоматически, в зависимости от модели) переключить предел измеряемой емкости. Как правило, максимальное значение составляет 100 мкФ, чего в большинстве случаев достаточно. Существуют и другие приборы, позволяющие измерять емкость. Они выполняются в виде щупов, пинцетов или оснащаются специальными разъемами.
Важно понимать, что номинал, указанный на корпусе конденсатора, должен соответствовать измеряемому значению. Если это не так, то его следует заменить.
Замена и подбор конденсатора
Если есть конденсатор, аналогичный сгоревшему, то его достаточно просто установить на место старого. Полярность здесь роли не играет.
Многие не знают, какие конденсаторы для запуска электродвигателя использовать нельзя. Конденсаторы с указанием полярности (электролитические) использовать запрещается. Они термически разрушаются при применении в таких схемах. Как правило, для этой цели существуют специальные, которые предназначены для работы с переменным током и не имеют полярности, а также обладают специальным креплением и клеммами для быстрого монтажа.
Если нужного номинала нет, то проще всего подключить несколько конденсаторов. Делать это необходимо параллельно, так как при таком типе соединения емкость будет суммарной. При этом максимальное напряжение, на работу с которым они рассчитаны, не увеличивается. Такая схема подключения полностью соответствует монтажу конденсатора большей емкости.
Расчет емкости конденсатора для трехфазного двигателя
Как подключить асинхронный двигатель?
Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).
На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.
Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.
Пусковой конденсатор
При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.
Как подобрать конденсатор для трехфазного двигателя?
Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).
Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.
Как подобрать конденсаторы для запуска электродвигателя
Функция стабилизаторов сводится к тому, что они выполняют роль емкостных наполнителей энергии для выпрямителей фильтров стабилизаторов. Также они могут производить передачу сигнала между усилителями. Для запуска и работы в течение продолжительного количества времени, в системе переменного тока для асинхронных двигателей тоже используют конденсаторы. Время работы такой системы можно варьировать с помощью емкости выбранного конденсатора.
Первым и единственно главным параметром вышеупомянутого инструмента является емкость. Она зависит от площади активного подключения, который изолирован слоем диэлектрика. Этот слой практически невиден человеческому глазу, небольшое количество атомных слоев формируют ширину пленки.
То есть конденсатор создан для того, чтоб накапливать, хранить и передавать определенное количество энергии. Так зачем они нужны, если можно подключить источник питания напрямую к двигателю. Все тут не так просто. Если подключить двигатель непосредственно к источнику питания, то в лучшем случае он не будет работать, в худшем сгорит.
Для того чтоб трехфазный мотор работал в однофазной цепи нужен аппарат, который сможет сдвинуть фазу на 90° на рабочем (третьем) выводе. Также конденсатор играет роль, такой себе катушки индуктивности, за счет того что через него проходит переменный ток – его скачки нивелируются за чет того что, перед работой, в конденсаторе отрицательные и положительные заряды равномерно накапливаются на пластинах, а потом передаются принимающему устройству.
Всего существует 3 основных вида конденсаторов:
Описание разновидностей конденсаторов и расчет удельной емкости
Схема подключения пусковых конденсаторов
Подбирая лучший вариант нужно учитывать несколько факторов. Если подключение происходит через однофазную сеть с напряжением в 220 В, то для пуска нужно использовать фазосдвигающий механизм. Притом их должно быть два, не только для самого конденсатора, но и для двигателя. Формулы, по которым вычисляется удельная емкость конденсатора, зависит от типа подключения к системе, их всего два: треугольник и звезда.
I1 – номинальный ток фазы двигателя, А (Амперы, чаще всего указывается на упаковке двигателя);
Uсети – напряжение в сети (самые стандартные варианты 220 и 380 В). Есть и большее напряжение, но для них нужны совершенно другие типы соединения и более мощные двигатели.
где Сп – Пусковая емкость, Ср – рабочая емкость, Со – отключаемая емкость.
Чтоб не напрягаться с расчетами умные люди вывели средние, оптимальные значения, зная оптимальную мощность электродвигателей, которая обозначается – М. Важным правилом является то, что пусковая емкость должна быть больше рабочей.
При мощности От 0,4 до 0,8 кВт: рабочая емкость – 40 мкФ, пусковая мощность – 80 мкФ, От 0,8 до 1,1 кВт: 80 мкФ и 160, мкФ, соответственно. От 1,1 до 1,5 кВт: Ср – 100 мкФ, Сп – 200 мкФ. От 1,5- 2,2 кВт: Ср – 150 мкФ, Сп 250 мкФ; При 2,2 кВт рабочая мощность должна быть не меньше 230 мкФ, а пусковая – 300 мкФ.
При подключении двигателя, рассчитанного на работу при 380 В, в сеть переменного тока с напряжением 220 В, происходит потеря половины номинальной мощности, хотя это никак не влияет, но скорость вращения ротора. При расчете мощности это является важным фактором, уменьшить эти потери можно при схеме подключения «треугольник», КПД двигателя в этом случае будет равно 70%.
Полярные конденсаторы лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко
Схема подключения «Треугольник»
Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 – рабочая, 3 –фаза.
Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.
Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.
Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.
Схема подключения “Треугольник” и “Звезда”
Схема подключения «Звезда»
А вот если двигатель имеет 6 выходов – клемм для подключения, то его нужно раскрутить и посмотреть какие клеммы между собой взаимосвязаны. После этого она пере подключается все в тот же треугольник.
Для этого меняются перемычки, допустим на двигателе имеется 2 ряда клемм по 3 штуки, их номеруют слева направо (123,456), с помощью проводов последовательно соединяются 1 с 4, 2 с 5, 3 с 6, нужно в первую очередь найти нормативные документы и посмотреть на каком именно реле происходит пуск и окончание обмотки.
В этом случае условные 456 станут: нулем, рабочей и фазой – соответственно. К ним подключается конденсатор, как и в предыдущей схеме.
Когда конденсаторы подключены остается только опробовать собранную схему, главное не запутаться в последовательности соединения проводов.
Блиц-советы
При подключении к сети в 660 В некоторые используют метод комбинированного запуска
Как подобрать конденсатор
Итак, как подобрать конденсатор для однофазного электродвигателя?
Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.
Есть несколько режимов работы двигателей подобного типа:
Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.
Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.
❶ Как подобрать конденсатор
В настоящее время конденсаторы находят широкое применение при производстве высокотехнологичного электрооборудования современных автомобилей. Они включены в конструкции блоков электронного управления работой силовой установки, в транзисторный коммутатор зажигания, в цепь питания аудиоаппаратуры, а также применяются в качестве стартерных батарей (суперконденсаторы).
В первую очередь потребителю необходимо определиться с типом выбираемого конденсатора. Это может быть как электролитический. керамический, слюдяной или иной тип конденсатора. На следующем этапе определяется напряжение пробития изоляции конденсатора и его емкость.
Популярность компании – производителя указанных радиодеталей определяется на момент покупки. Но лучше всех по качеству выпускаемой продукции зарекомендовали себя японские и немецкие производители конденсаторов.
Как подобрать конденсатор
Что такое трехфазный двигатель?
Большинство силовых агрегатов, преобразующих электрическую энергию с тепловую, представляют собой асинхронные машины. Если разобрать любой такой двигатель, то станет понятно, что он имеет два ключевых компонента, на взаимодействии которых строится вся его работа.
Ротор
Это подвижная (вращающаяся) часть, конструктивно объединенная с приводным валом. Он также имеет наборный пластинчатый сердечник (магнитопровод), но в отличии от статора, пазы для обмоток располагаются на внешнем диаметре. Более того, называть их обмотками можно только с функциональной точки зрения, поскольку реально они представляют собой медные прутки определенного диаметра, а не пучки (катушки) проволоки.
С обоих сторон прутки соединяются на кольцевые ограничивающие пластины, образуя некоторое подобие беличьей клетки. Такая компоновка наиболее распространена и называется «коротко замкнутый ротор». При подаче напряжения здесь также магнитное поле, но оно имеет несколько меньшую частоту вращения (асинхронную), нежели у статора. Эта разница называется скольжением и составляет порядка 2…10%. Благодаря ей, между полями наводится ЭДС (электродвижущая сила), которая и заставляет вал вращаться с рабочей частотой.
Как подобрать пусковой конденсатор для однофазного электромотора
До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.
При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.
Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.
Конструкция асинхронного однофазного электродвигателя
Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.
Выбор емкости
С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.
Для рабочего конденсатора
Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.
На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.
Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.
Для пускового конденсатора
Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.
Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.
Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.
ÐÑÑковой конденÑаÑоÑ
Ð Ñом ÑлÑÑае, еÑли на моÑÐ¾Ñ Ð²Ð¾Ð·Ð´ÐµÐ¹ÑÑвÑÑÑ Ð±Ð¾Ð»ÑÑие нагÑÑзки либо его моÑноÑÑÑ ÑвÑÑе 1500 ÐÑ, одним ÑолÑко Ñдвигом ÑÐ°Ð·Ñ Ð½Ðµ обойÑиÑÑ. ÐоÑÑебÑеÑÑÑ Ð·Ð½Ð°ÑÑ, какие необÑÐ¾Ð´Ð¸Ð¼Ñ ÐµÑе конденÑаÑоÑÑ Ð´Ð»Ñ Ð·Ð°Ð¿ÑÑка ÑлекÑÑодвигаÑÐµÐ»Ñ 2,2 кÐÑ Ð¸ вÑÑе. ÐÑÑковой подклÑÑаеÑÑÑ Ð² паÑÐ°Ð»Ð»ÐµÐ»Ñ Ñ ÑабоÑим, но Ð²Ð¾Ñ ÑолÑко он иÑклÑÑаеÑÑÑ Ð¸Ð· Ñепи пÑи доÑÑижении обоÑоÑов ÑолоÑÑого Ñода.
ÐбÑзаÑелÑно пÑÑковÑе конденÑаÑоÑÑ Ð´Ð¾Ð»Ð¶Ð½Ñ Ð¾ÑклÑÑаÑÑÑÑ â в пÑоÑивном ÑлÑÑае пÑоиÑÑÐ¾Ð´Ð¸Ñ Ð¿ÐµÑÐµÐºÐ¾Ñ Ñаз и пеÑегÑев ÑлекÑÑодвигаÑелÑ. ÐÑÑковой конденÑаÑÐ¾Ñ Ð´Ð¾Ð»Ð¶ÐµÐ½ бÑÑÑ Ð¿Ð¾ емкоÑÑи болÑÑе ÑабоÑего в 2,5-3 Ñаза. ÐÑли Ð²Ñ Ð¿Ð¾ÑÑиÑали, ÑÑо Ð´Ð»Ñ Ð½Ð¾ÑмалÑной ÑабоÑÑ Ð¼Ð¾ÑоÑа ÑÑебÑеÑÑÑ ÐµÐ¼ÐºÐ¾ÑÑÑ 80 мкФ, Ñо Ð´Ð»Ñ Ð·Ð°Ð¿ÑÑка нÑжно подклÑÑаÑÑ ÐµÑе один блок конденÑаÑоÑов на 240 мкФ. РпÑодаже вÑÑд ли можно вÑÑÑеÑиÑÑ ÐºÐ¾Ð½Ð´ÐµÐ½ÑаÑоÑÑ Ñ Ñакой емкоÑÑÑÑ, поÑÑÐ¾Ð¼Ñ Ð½Ñжно пÑоизводиÑÑ Ñоединение:
ÐелаÑелÑно ÑÑÑанавливаÑÑ Ð¿ÑÑковÑе конденÑаÑоÑÑ Ð½Ð° ÑлекÑÑомоÑоÑÑ, моÑноÑÑÑ ÐºÐ¾ÑоÑÑÑ — ÑвÑÑе 1 кÐÑ. ÐÑÑÑе немного ÑнизиÑÑ Ð¿Ð¾ÐºÐ°Ð·Ð°ÑÐµÐ»Ñ Ð¼Ð¾ÑноÑÑи, ÑÑÐ¾Ð±Ñ ÑвелиÑиÑÑ ÑÑÐµÐ¿ÐµÐ½Ñ Ð½Ð°Ð´ÐµÐ¶Ð½Ð¾ÑÑи.
Характеристики
Напряжение, создаваемое на обкладках двухполюсника, равно разности потенциалов:
Зная напряжение и заряд, можно вычислить ёмкость (С). Это одна из основных характеристик двухполюсника:
Электроёмкость является физической величиной, которую определяют, разделив заряд пластины на разность потенциалов между пластинами. Единица измерений C – фарада (Ф).
К сведению. Ёмкость, равная 1 Ф, – большая величина, поэтому на практике её измеряют: в микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ).
Таблица измерения ёмкости
К остальным параметрам двухполюсника относятся:
Когда масса корпуса детали значительно меньше, чем общая масса электролита и пластин, тогда достигается максимально высокая плотность энергии.
Номинальным называется такое напряжение, при котором элемент может работать длительное время, без нарушения (отклонения) рабочих характеристик.
Емкостные двухполюсники бывают:
Неполярные детали при подключении не ориентированы на полярность выводов заряда источника питания. Особенность электролитических элементов связана с химической реакцией между диэлектриком и электролитом. У таких моделей есть анод (положительный вывод) и катод (отрицательный вывод).
Выбор конденсатора для трехфазного двигателя
Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.
Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.
Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.
Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.
Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.
Виды конденсаторов
Основные технические параметры этих изделий во многом зависят от проницаемости и других свойств промежутка между обкладками. В частности, проходящий через этот слой ток определяет длительность сохранения запаса энергии. По материалу диэлектрика различают следующие виды конденсаторов:
Для улучшения потребительских параметров используют различные комбинации представленных материалов.
Серийные модели постоянной емкости рассчитаны на сохранение исходных характеристик на протяжении всего срока службы. Также выпускают переменные модели. Для увеличения (уменьшения) емкости применяют:
Миниатюрные подстроечные конденсаторы нужны для точной настройки электрической схемы
Также применяют классификацию по форме и взаимному расположению обкладок. Специальные конденсаторы (пусковые, высоковольтные и др.) создают для решения отдельных задач.
Простые способы присоединения электромотора
Простейшее включение моторов – присоединение к трёхфазной сети. Электрообмотки мотора соединяются двумя способами:
Порядок соединения указаны на крышке клеммника с обратной стороны.
Схема включения
Внимание! Соединение обмоток «треугольником» быстро выводит двигатель на максимальную мощность, но тогда величина пускового тока возрастает семикратно. Плавный пуск, при отсутствии пускового реостата, затруднён
Соединение обмоток «звездой» позволяет устойчиво и длительно работать мотору при плавном запуске. Машина выдерживает кратковременные перегрузки и не перегревается. Мощность её несколько ниже, чем при альтернативном подключении.
Соединить в одну точку начала обмоток могут уже при изготовлении. На клеммник выводят только три их конца. Поэтому выводы просто подключают к фазам сети. Направление вращения выбирают, изменяя местами подключение выводов к двум соседним фазам.
Мотор, у которого выведены только три провода
Расчет понижающего конденсатора
Ёмкость понижающего конденсатора,C
Ток, протекающий через нагрузку,I
Полученные параметры понижающего конденсатора |
Если у Вас когда нибудь возникала задача понизить напряжение до какого либо уровня, например с 220 Вольт то 12В, то это статья для Вас.
Есть масса способов это сделать подручными материалами. В нашем случае мы будем использовать одну деталь — ёмкость.
В принципе мы можем использовать и обычное сопротивление, но в этом случае, у нас возникнет проблема перегрева данной детали, а там и до пожара недалеко.
В случае, когда в виде понижающего элемента используется ёмкость, ситуация другая.
Ёмкость, включенная в цепь переменного тока обладает (в идеале) только реактивным сопротивлением, значение котрого находится по общеизвестной формуле.
Кроме этого в нашу цепь мы включаем какую то нагрузку ( лампочку, дрель, стиральную машину), которая обладает тоже каким то сопротивлением R
Таким образом общее сопротивление цепи будет находиться как
Наша цепь последовательна, а следовательно общее напряжение цепи есть сумма напряжений на конденсаторе и на нагрузке
По закону ома, вычислим ток, протекающий в этой цепи.
Как видите легко зная параметры цепи, вычислить недостающие значения.
А вспомнив как вычисляется мощность легко рассчитывать параметры конденсатора основываясь на потребляемую мощность нагрузки.
Учитывайте что в такой схеме нельзя использовать полярные конденсаторы то есть такие что включаются в электронную схему в строгом соответствии с указанной полярностью.
Кроме этого необходимо учитывать и частоту сети f. И если у нас в России частота 50Гц, то например в Америке частота 60Гц. Это тоже влияет на окончательне расчеты.
Где и для чего используются
Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:
Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.
Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.
Как подобрать конденсатор для трехфазного электродвигателя
Для вычисления емкости основного конденсатора применяют формулу:
Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.
Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.
Емкость пускового накопителя принимают в 2-3 раза больше основного.
Подключение трехфазного электродвигателя к сети
После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.
Какой тип конденсаторов использовать
Теперь вы знаете, как подобрать конденсаторы для запуска электродвигателя при работе в сети переменного тока 220 В. После подсчета емкости можно приступить к выбору конкретного типа элементов. Рекомендуется применять однотипные элементы в качестве рабочих и пусковых. Неплохо показывают себя бумажные конденсаторы, обозначения у них такие: МБГП, МПГО, МБГО, КБП. Можно также использовать и зарубежные элементы, которые устанавливаются в блоках питания компьютеров.
На корпусе любого конденсатора обязательно указывается рабочее напряжение и емкость. Один недостаток у бумажных элементов – они имеют большие габариты, поэтому для работы мощного двигателя потребуется немаленькая батарея элементов. Применять зарубежные конденсаторы намного лучше, так как они имеют меньшие размеры и большую емкость.
ÐÑполÑзование ÑлекÑÑолиÑиÑеÑÐºÐ¸Ñ ÐºÐ¾Ð½Ð´ÐµÐ½ÑаÑоÑов
Ðожно пÑименÑÑÑ Ð´Ð°Ð¶Ðµ ÑлекÑÑолиÑиÑеÑкие конденÑаÑоÑÑ, но Ñ Ð½Ð¸Ñ ÐµÑÑÑ Ð¾ÑобенноÑÑÑ â они Ð´Ð¾Ð»Ð¶Ð½Ñ ÑабоÑаÑÑ Ð½Ð° поÑÑоÑнном Ñоке. ÐоÑÑомÑ, ÑÑÐ¾Ð±Ñ ÑÑÑановиÑÑ Ð¸Ñ Ð² конÑÑÑÑкÑиÑ, поÑÑебÑеÑÑÑ Ð¸ÑполÑзоваÑÑ Ð¿Ð¾Ð»ÑпÑоводниковÑе диодÑ. Ðез Ð½Ð¸Ñ Ð¸ÑполÑзоваÑÑ ÑлекÑÑолиÑиÑеÑкие конденÑаÑоÑÑ Ð½ÐµÐ¶ÐµÐ»Ð°ÑелÑно â они имеÑÑ ÑвойÑÑво взÑÑваÑÑÑÑ.
Ðо даже еÑли Ð²Ñ ÑÑÑановиÑе Ð´Ð¸Ð¾Ð´Ñ Ð¸ ÑопÑоÑивлениÑ, ÑÑо не ÑÐ¼Ð¾Ð¶ÐµÑ Ð³Ð°ÑанÑиÑоваÑÑ Ð¿Ð¾Ð»Ð½ÑÑ Ð±ÐµÐ·Ð¾Ð¿Ð°ÑноÑÑÑ. ÐÑли полÑпÑоводник пÑобиваеÑÑÑ, Ñо на конденÑаÑоÑÑ Ð¿Ð¾ÑÑÑÐ¿Ð¸Ñ Ð¿ÐµÑеменнÑй Ñок, в ÑезÑлÑÑаÑе Ñего пÑÐ¾Ð¸Ð·Ð¾Ð¹Ð´ÐµÑ Ð²Ð·ÑÑв. СовÑÐµÐ¼ÐµÐ½Ð½Ð°Ñ ÑлеменÑÐ½Ð°Ñ Ð±Ð°Ð·Ð° позволÑÐµÑ Ð¸ÑполÑзоваÑÑ ÐºÐ°ÑеÑÑвеннÑе изделиÑ, напÑÐ¸Ð¼ÐµÑ ÐºÐ¾Ð½Ð´ÐµÐ½ÑаÑоÑÑ Ð¿Ð¾Ð»Ð¸Ð¿ÑопиленовÑе Ð´Ð»Ñ ÑабоÑÑ Ð½Ð° пеÑеменном Ñоке Ñ Ð¾Ð±Ð¾Ð·Ð½Ð°Ñением СÐÐ.
ÐапÑимеÑ, обознаÑение ÑлеменÑов СÐÐ60 говоÑÐ¸Ñ Ð¾ Ñом, ÑÑо конденÑаÑÐ¾Ñ Ð¸Ð¼ÐµÐµÑ Ð¸Ñполнение в ÑилиндÑиÑеÑком коÑпÑÑе. Ð Ð²Ð¾Ñ Ð¡ÐÐ61 Ð¸Ð¼ÐµÐµÑ Ð¿ÑÑмоÑголÑной ÑоÑÐ¼Ñ ÐºÐ¾ÑпÑÑ. ÐÑи ÑлеменÑÑ ÑабоÑаÑÑ Ð¿Ð¾Ð´ напÑÑжением 400… 450 Ð. ÐоÑÑÐ¾Ð¼Ñ Ð¾Ð½Ð¸ могÑÑ Ð±ÐµÐ· пÑоблем иÑполÑзоваÑÑÑÑ Ð² конÑÑÑÑкÑии лÑбого аппаÑаÑа, где ÑÑебÑеÑÑÑ Ð¿Ð¾Ð´ÐºÐ»ÑÑение аÑинÑÑонного ÑÑеÑÑазного ÑлекÑÑодвигаÑÐµÐ»Ñ Ð² бÑÑовÑÑ ÑеÑÑ.
Меры предосторожности при использовании ЭК
При работе с конденсаторами нельзя дотрагиваться до горячих корпусов. При вздутии корпуса элемента необходимо обесточить цепь, дождаться, пока он остынет, и демонтировать. Перед демонтажем двухполюсники большой ёмкости необходимо разрядить.
Электролитические конденсаторы любых типов требуют внимательного подхода. Соблюдение правил установки и эксплуатации продляет срок их службы и сохраняет величину основного параметра – ёмкость. При отсутствии необходимых номиналов параллельное и последовательное включение элементов позволяет добиваться необходимых рабочих характеристик. Параллельное соединение увеличивает ёмкость, последовательное – допустимое напряжение.
Простые способы подключения электродвигателя
Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.
При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем
Подключение двигателя по схемам «звезда» и «треугольник»
При реализации подключения этими способами важно свести к минимуму потери по мощности
Основные причины «вздутия» конденсатора
Можно правильно выбрать конденсатор, впаять его, и через пару дней обнаружить, что он вновь вышел из строя. Основной причиной быстрой поломки этих элементов является перегрев при:
Выход из строя конденсатора возможен также при:
несоблюдении полярности электролитических элементов при припайке;
механических повреждениях устройства.
Отличия суперконденсаторов от аккумуляторов
Суперконденсаторы часто применяются вместо батарей. Стандартные конденсаторы способны хранить небольшое количество электроэнергии. Суперконденсаторы могут накапливать заряды в тысячи, миллионы и миллиарды раз больше.
Подобные приборы работают быстрее батарей. Это обусловлено тем, что суперконденсатор создает статистические заряды на твердых телах, а батареи зависят от медленно протекающих химических реакций.
Батареи характеризуются более высокой плотностью энергии, а ионисторы более высокой плотностью мощности. Суперконденсаторы способны функционировать при низких показателях напряжения, а для получения большего напряжения, их нужно последовательно соединить. Такой вариант необходим для более мощного оборудования.
Технология ионисторов может найти применение в энергетике и приборостроении. Одно из применений – использование в ветряных турбинах. Подобные приборы помогают сгладить прерывистое питание от ветра.
В портативных электронных приборах используются источники питания разнообразных типов
В таких устройствах, как планшеты, смартфоны и ноутбуки важное значение имеет удельная энергоемкость. Чем больше данный показатель, тем выше будет емкость устройства при тех же физических параметрах
Преимущества
Недостатки
Параллельное соединение
Существует два типа подключения приборов в цепь: последовательное и параллельное. Каждый из них обладает своими свойствами, но, как правило, используется параллельное соединение конденсаторов.
Параллельное соединение обладает такими свойствами:
Соединить конденсаторы для увеличения емкости, как показывают свойства, лучше этим способом. Для этого нужно соединить выводы с каждого двухполюсника по группам: у каждого из них два вывода. Нужно создать две группы: в одну соединить все конденсаторы с одного вывода, а во вторую с оставшегося.
При таком соединении приборы для конденсации образуют одну емкость, поэтому верна такая формула: С=С1+С2+…СN, где N — количество конденсаторов в цепи.
Например, если имеются номинальные значения 50мкф, 100мкф и 150мкф, то при последовательном подключении общее значение в цепи будет 300мкф.
Электролитические емкости
Схема электролитического катализатора
Электролитические конденсаторы – приборы постоянного напряжения. Для использования их в качестве фазосдвигающих элементов необходимо выполнить подключение по специальной схеме.
При параллельном соединении емкость суммируется, при последовательном – вычитается. Однако для кратковременного включения на 220в такие элементы использовать допускается.
Конденсаторы, несмотря на кажущуюся простоту, требуют тщательного подбора. При включении двигателя к 220 вольтам нужно все внимательно посчитать, выбрать нужные элементы и тогда проблем не возникнет.
Смешанный способ
Сочетает в себе параллельное и последовательное подключения.
При этом для участков с последовательным соединением характерны свойства последовательного соединения, а для участков с параллельным — свойства параллельного.
Оно используется, когда ни электроемкость, ни номинальное напряжение приборов, имеющихся в продаже, не подходят для задачи. Обычно такая проблема возникает в радиотехнике.
Чтобы определить общее значение электроемкости, нужно будет сначала определить это же значение для параллельно соединенных двухполюсников, а потом для их последовательного соединения.
Простые способы подключения электродвигателя
Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.
При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем
Подключение двигателя по схемам «звезда» и «треугольник»
При реализации подключения этими способами важно свести к минимуму потери по мощности