какую энергетическую экспозицию выбирают при установлении пду облучения для лазеров
Санитарно-эпидемиологические требования к источникам лазерного излучения
Гениальное предвидение А. Эйнштейна, сделанное им ещё в 1917 году, о возможности индуцированного излучения света атомами, подтвердилось почти через половину столетия при создании квантовых генераторов советскими физиками Н. Г. Басовым и А. М. Прохоровым. Согласно английской аббревиатуре, это устройство ещё называют лазером, а создаваемое ими излучение — лазерным.
В наши дни лазеры получили широкое распространение — это различные области промышленности, техники и медицины, а также световые эффекты в эстрадных представлениях и шоу.
Действие лазерного излучения (ЛИ) на человека весьма сложно. Оно зависит от параметров ЛИ, прежде всего от длины волны, мощности (энергии) излучения, длительности воздействия, ча-стоты следования импульсов, размеров облучаемой области и анатомо-физиологических особен-ностей облучаемой ткани (глаз, кожа).
ЛИ представляет опасность для органа зрения. Сетчатка глаза может быть поражена лазерами видимого (0,38-0,7 мкм) и ближайшего инфракрасного (0,75-1,4 мкм) диапазонов. Лазерное ультрафиолетовое (0,18-0,38 мкм) и дальнее инфракрасное (более 1,4мкм) излучения не достигают сетчатки, но могут повредить роговицу, радужку, хрусталик.
Также ЛИ опасно для кожных покровов. Взаимодействие ЛИ с кожными покровами зависит от длины волны и пигментации кожи. Отражающая способность кожного покрова в видимой части спектра высокая. ЛИ дальней инфракрасной области сильно поглощается кожными покровами, поскольку это излучение активно поглощается водой, которая составляет 80% содержимого большинства тканей, возникает опасность возникновения ожогов кожи
В июне 2016г. руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор) являющимся Главным государственным са-нитарным врачом РФ, утверждены СанПиН 2.2.4.3359-16 «Санитарно-эпидемиологические тре-бования к физическим факторам на рабочих местах», введены в действие с 01.01.2017г. и в разделе VIII устанавливают требования к ЛИ на рабочих местах.
Основным документом в области лазерной безопасности является СанПиН 5804-91 «Санитарные нормы и правила устройства и эксплуатации лазеров», регламентирующим ПДУ ЛИ и требования к устройству и эксплуатации лазеров.
Гигиеническое нормирование основывается на критериях биологического действия, обусловленного, в первую очередь, областью электромагнитного спектра. В соответствии с этим диапазон ЛИ разделен на ряд областей:
В основу установления величины ПДУ положен принцип определения минимальных «пороговых» повреждений в облучаемых тканях (сетчатка, роговица, глаза, кожа), определяемых со-временными методами исследования во время или после воздействия ЛИ. Нормируемыми пара-метрами являются энергетическая экспозиция Н (Дж/м2) и облученность Е (Вт/м2), а так-же энергия W (Дж) и мощность Р (Вт).
Для создания безопасных условий труда и предупреждения профессиональных поражений персонала при обслуживании лазерных установок органы санитарного надзора осуществляют до-зиметрический контроль.
По степени опасности лазерного излучения для обслуживающего персонала лазеры подразделяются на четыре класса:
Классификация определяет специфику воздействия излучения на орган зрения и кожу.
Предупреждение поражений лазерным излучением включает систему мер инженерно-технического, планировочного, организационного, санитарно-гигиенического характера.
При использовании лазеров II-III классов в целях исключения облучения персонала необходимо либо ограждение лазерной зоны, либо экранирование пучка излучения. Экраны и ограждения должны изготавливаться из материалов с наименьшим коэффициентом отражения, быть огнестойкими и не выделять токсических веществ при воздействии на них лазерного излучения.
Лазеры IV класса опасности размещаются в отдельных изолированных помещениях и обес-печиваются дистанционным управлением их работой.
В качестве средств индивидуальной защиты применяются специальные защитные очки, стекла в которых подбираются в соответствии с ГОСТ 9411-81Е; технологические халаты и перчатки, изготавливаемые из хлопчатобумажной ткани светло-зеленого или голубого цвета.
Какую энергетическую экспозицию выбирают при установлении пду облучения для лазеров
САНИТАРНЫЕ НОРМЫ И ПРАВИЛА УСТРОЙСТВА И ЭКСПЛУАТАЦИИ ЛАЗЕРОВ
УТВЕРЖДАЮ Зам. Главного Государственного санитарного врача СССР А.Н.Скляров 31 июля 1991 г. N 5804-91 г.
В подготовке новой редакции «Санитарных норм и правил устройства и эксплуатации лазеров» принимали участие
от Института биофизики МЗ СССР:
В.В.Шиходыров, В.Н.Стиксова, В.П.Соловьев, А.Ф.Мигачева, Е.В.Толстикова, В.И.Kaзьмин, Б.С.Иванов, Т.С.Володько;
от Института физики АН БССР:
Г.И.Желтов, В.Н.Глазков, А.С.Подольцев;
от Московского НИИ гигиены им.Ф.Ф.Эрисмана:
А.А.Комарова, А.В.Левина, Л.И.Липкина, Т.П.Cуркова;
от НИИ гигиены труда и профзаболеваний АМН СССР:
от Ленинградского НИИ гигиены труда и профзаболеваний:
И.Н.Ушкова, И.М.Суворов, В.Б.Дульский, Н.Ю.Малькова, В.И.Попова, Т.И.Сушенцова;
от Всесоюзного центрального НИИ охраны труда ВЦСПС:
Л.В.Петрова, Б.Н.Рахманов, Г.Н.Назина;
от Ленинградского НИИ радиационной гигиены:
от Военно-медининской Академии им.С.М.Кирова:
от Государственного оптического института им С.И.Вавилова:
от Одесского НИИ глазных болезней им.В.П.Филатова:
от Одесского государственного университета:
от Белорусского политехнического института:
от Всесоюзного НИИ оптико-физических измерений:
1. Санитарные нормы и правила устройства и эксплуатации лазеров N 2392-81;
3. Изменения к стандарту МЭК, публикация 825 (1987 г.).
Ответственность за выполнение Правил возлагается на руководство предприятий.
Министерства и ведомства (ассоциации, концерны, межотраслевые государственные объединения и др.) должны осуществлять контроль за выполнением требований настоящих Правил на подведомственных предприятиях во взаимодействии с обществами, союзами, федерациями потребителей, местными организациями.
На основе настоящих Правил могут разрабатываться нормативно-технические документы для отдельных видов работ с применением лазеров.
Правила вводятся в действие с момента их утверждения, и с их изданием утрачивают силу «Санитарные нормы и правила устройства и эксплуатации лазеров» N 2392-81, а также все нормативно-методические документы, разработанные на их основе.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Настоящие Правила устанавливают:
— предельно допустимые уровни (ПДУ) лазерного излучения в диапазоне длин волн 180-10 нм при различных условиях воздействия на человека;
— классификацию лазеров по степени опасности генерируемого ими излучения;
— требования к устройству и эксплуатации лазеров;
— требования к производственным помещениям, размещению оборудования и организации рабочих мест;
— требования к персоналу;
— контроль за состоянием производственной среды;
— требования к применению средств защиты;
— требования к медицинскому контролю.
— лазерное излучение (прямое, отраженное и рассеянное);
— сопутствующие ультрафиолетовое, видимое и инфракрасное излучения от источников накачки, плазменного факела и материалов мишени;
— высокое напряжение в цепях управления и источниках электропитания;
— электромагнитное излучение промышленной частоты и радиочастотного диапазона;
— рентгеновское излучение от газоразрядных трубок и других элементов, работающих при анодном напряжении более 5 кВ;
— токсические газы и пары от лазерных систем с прокачкой, хладагентов и др.;
— продукты взаимодействия лазерного излучения с обрабатываемыми материалами;
— повышенная температура поверхностей лазерного изделия;
— опасность взрыва в системах накачки лазеров.
При эксплуатации и разработке лазерных изделий необходимо учитывать также возможность взрывов и пожаров при попадании лазерного излучения на горючие материалы.
1.3. Уровни опасных и вредных производственных факторов на рабочем месте не должны превышать значений, установленных действующими нормативными документами (см. Приложение 1) и настоящими Правилами.
1.4. Биологические эффекты воздействия лазерного излучения на организм определяются механизмами взаимодействия излучения с тканями (тепловой, фотохимический, ударно-акустический и др.) и зависят от длины волны излучения, длительности импульса (воздействия), частоты следования импульсов, площади облучаемого участка, а также от биологических и физико-химических особенностей облучаемых тканей и органов.
1.6. Повреждение кожи может быть вызвано лазерным излучением любой длины волны рассматриваемого спектрального диапазона (180-10 нм).
2. ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ
«САНИТАРНЫЕ НОРМЫ И ПРАВИЛА УСТРОЙСТВА И ЭКСПЛУАТАЦИИ ЛАЗЕРОВ» (утв. Главным государственным санитарным врачом СССР 31.07.91 N 5804-91)
Приложение 2. ПРИМЕРЫ ОПРЕДЕЛЕНИЯ ПРЕДЕЛЬНО ДОПУСТИМЫХ УРОВНЕЙ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ И КЛАССОВ ЛАЗЕРНЫХ ИЗДЕЛИЙ
П2.1. Определение ПДУ и классов лазеров
Одномодовый лазер на молекулярном азоте с длиной волны излучения 337,1 нм генерирует непрерывную последовательность равных по амплитуде импульсов с частотой Fи = 5 х 10(3) Гц. Длительность отдельного импульса тауи = 5 нс. Диаметр пучка вблизи выходного зеркала лазера по уровню интенсивности exp(-2) равен dи = 3 х 10(-3) м. Средняя мощность излучения _ P(t) = 0,5 Вт.
Найти предельно допустимые энергетические параметры излучения и определить класс лазера.
а) ПДУ однократного облучения глаз.
Таким образом, задача сводится к определению или серии импульсов с заданными параметрами при длительности воздействия 10 с.
Определяем (t) в соответствии с п.3.8.2 как наименьшее из значений E1 и E2.
Значения и Eпду(t) задаются п.3.2 (табл.3.1, рис.3.1 и 3.2) и составляют, соответственно, 37 Дж х м(-2) и 800 Вт х м(-2).
Число импульсов в серии определяется по формуле:
В общем случае величина N, вычисленная по формуле (2П.2), округляется до ближайшего меньшего целочисленного значения.
Для рассматриваемых условий N = 5 х 10(4). Тогда, в соответствии с формулами (2П.1), сравнивая E1 = 800 Вт х м(-2) и E2 = 830 Вт х м(-2), получаем, что предельно допустимое значение облученности при однократном воздействии на глаза серии импульсов рассматриваемого лазерного излучения следует принять равным E1.
Соответствующее значение энергетической экспозиции равно
Для УФ диапазона спектра нормируемой величиной является также суточная доза Hсигма(3 х 10(4)), которая, в соответствии с таблицей 3.2, не должна превышать 8 х 10(3) Дж х м(-2). Рассчитанная выше величина равна (3 х 10(4)); таким образом, условие 8) п.3.2.2 выполняется.
В общем случае, если расчетная величина больше (3 х 10(4)), ее следует уменьшить до значения (3 х 10(4)) и соответственно откорректировать величину (t).
б) ПДУ для однократного облучения кожи.
Время случайного воздействия на кожу излучения УФ, видимого ИК диапазонов, в соответствии с действующими международными нормами, принимается равным 10 с.
Таким образом, так же как и для глаз, расчетное значение (t) составляет 800 Вт х м(-2), а — 8 х 10(3) Дж х м(-2).
В рассматриваемом случае значение равно суточной дозе, т.е. является предельным. Любое повторное облучение кожи недопустимо.
в) ПДУ при хроническом воздействии на глаза и кожу
Максимальная суточная доза также составляет 800 Дж х м(-2). Следовательно, при рассматриваемых условиях для одного работающего допустимо проведение не более одной производственной операции продолжительностью 10 с в течение суток.
Если практические условия требуют проведения нескольких производственных операций в течение рабочего дня, предельно допустимая облученность глаз и кожи в рабочей зоне должна быть уменьшена таким образом, чтобы суммарная доза (см. п.3.2.2) не превышала значения, указанного в п.3.3.
В частности, если рассматриваемый в настоящем примере лазер необходимо использовать при проведении 10 технологических операций с временными промежутками большими 10 минут (см. п.3.8.2), предельно допустимое значение облученности глаз и кожи составит
В этом случае при проведении контрольных замеров в рабочей зоне средняя мощность коллимированного или рассеянного излучения, проходящего через круглую ограничивающую апертуру диаметром 1,1 х 10(-3) м, не должна _ превышать Pc(t) = 8 х 10(-6) Вт.
Если предельно допустимые энергетические параметры УФ излучения в рабочей зоне определены, в качестве нормируемого параметра, эквивалентного суточной дозе (3 х 10(4)), может быть использовано максимально допустимое число воздействий на оператора отдельных импульсов излучения M (см. п.3.2.2). Значение M рассчитывается по формуле
Если число импульсов в серии N при проведении одной производственной операции фиксировано, максимально допустимое число операций в течение рабочего дня равно M/N.
Для лазеров УФ диапазона спектра, работающих в режиме одиночных вспышек, длительность воздействия t равна длительности импульса излучения тауи. В этом случае формула (2П.3) может быть переписана в виде:
г) Определение класса лазера.
Для того, чтобы определить класс лазера, необходимо сопоставить фактические энергетические параметры генерируемого излучения с нормируемыми предельно допустимыми значениями для однократного воздействия.
Как показано выше, ПДУ энергетической экспозиции для рассматриваемого лазера при однократном воздействии составляет для глаз и кожи 8 х 10(3) Дж х м(-2). Согласно п.3.8.2, энергетическая экспозиция для одного импульса при этом равна 0,16 Дж х м(-2).
Проверяем выполнение условий в соответствии с таблицей 4.1.
Зная, что средняя мощность излучения P = 0,5 Вт, для одного импульса из серии получаем
Выполняется условие для II класса:
Поскольку ПДУ при однократном облучении равно значению ПДУ облученности для непрерывного излучения в течение 10 с, определение класса может быть проведено по режиму непрерывного излучения.
Лазер на стекле с неодимом, работающий в режиме модуляции добротности и удвоения частоты, генерирует одиночные импульсы. Поток излучения включает две пространственно совмещенные спектральные компоненты: ламбда1 = 1060 нм, W1 = 0,8 Дж и ламбда2 = 530 нм, W2 = 0,4 Дж.
Длительности импульсов излучения обеих спектральных компонент тауи = 2 х 10(-2). Диаметр пучка вблизи выходного зеркала лазера dп = 1,2 х 10(-2) м.
Найти предельно допустимые параметры излучения в условиях хронического воздействия на глаза и кожу.
Определить класс лазера.
В соответствии с требованиями п.3.10, определим и при воздействии на глаза коллимированного излучения с длинами волн 1060 нм и 530 нм.
Используя данные таблицы 3.3 (рис.3.3), с учетом дополнительного коэффициента запаса для хронического воздействия (п.3.5) получим:
Относительные энерговклады излучения с длинами волн 1060 и 530 нм C1 и C2 равны
Тогда значение Wсигмапду составляет:
Значение Wсигмапду для кожи определяется аналогичным образом с использованием данных таблицы 3.6 (рис.3.7) и с учетом поправки для хронического воздействия составляет 4,5 х 10(-5) Дж при ограничивающей апертуре 1,1 х 10(-3) м.
Проверяем выполнение условий таблицы 4.1, определяющих принадлежность лазера к определенному классу опасности. Получаем, что
Рассматриваемый лазер относится к III классу опасности.
Лазер на центрах окраски LiF:F(-2) генерирует серию из 15 импульсов. Длительность каждого импульса тауи = 8 х 10(-11) с, Fи = 10(8)Гц. Интервал между сериями импульсов больше 200 с. Длина волны излучения ламбда = 1200 нм. Суммарная энергия серии импульсов Wc(t) = 10(-4) Дж. Отношение энергии импульса, имеющего максимальную амплитуду, к средней энергии всех импульсов в серии кси = 2,5. Диаметр пучка вблизи выходного зеркала dп = 5 х 10(-3) м.
Найти предельно допустимые параметры излучения при воздействии на глаза и определить класс лазера.
Длительность серии импульсов в рассматриваемом случае составляет (см. формулу (2П.2)):
В соответствии с требованиями п.3.4.3, определим значения предельно допустимой энергии излучения для импульсов длительностью тауи = 8 х 10(-11) с и t = 1,4 х 10(-7) с для однократного воздействия на глаза коллимированного излучения. Согласно табл.3.3 (рис.3.3), эти значения равны:
По формуле (3.7) найдем значения W1 и W2:
Для кожи Wcпду(t) = 4,65 х 10(-4) Дж при однократном воздействии и Wcпду(t) = 4,65 х 10(-5) Дж при хроническом воздействии.
Для определения класса лазера проверяем выполнение условий таблицы 4.1, подставляя в неравенства значения Wпду для однократного воздействия.
Выполняется условие для II класса опасности:
Технологическая установка «Квант-15».
— длина волны излучения ламбда = 1060 нм;
— энергия одиночного импульса w = 8 Дж;
— длительность одного импульса тауи = 4 х 10(-3) с;
— частота следования импульсов Fи = 10 Гц;
— длительность одной технологической операции t = 2 c;
— диаметр пятна излучения на поверхности обрабатываемой детали dп = 3 х 10(-4) м.
Требуется найти предельно допустимые энергетические параметры излучения в условиях хронического воздействия на глаза и кожу и определить класс лазерного изделия.
Измерение уровня диффузно отраженного излучения на границе рабочей зоны при диаметрах ограничивающей апертуры 7 х 10(-3) м и 1,1 х 10(-3) м показало, что максимальное значение суммарной энергии всех импульсов за время одной технологической операции (t = 2 c) равно, соответственно, 1,54 х 10(-2) Дж и 1,9 х 10(-4) Дж. Источник диффузного отраженного излучения для точек, расположенных на границе рабочей зоны, является точечным.
В соответствии с требованиями п.3.4.3, находим предельно допустимый уровень энергии серии импульсов коллимированного потока лазерного излучения для глаз, который равен минимальному из двух значений энергии W1 и W2.
где тауи = 4 х 10(-3) с, N = Fих t + 1 = 21, кси = 1 (нестабильность энергии импульсов неизвестна).
Wпду(t) определяем в соответствии с п.3.4.1 по таблице 3.4 (рис.3.5)
Так как W2 = 3,04, где Dламбда= lgэта.
Установка для сварки стекла.
— длина волны излучения ламбда = 10600 нм;
— мощность излучения P = 30 Вт;
— длительность одной технологической операции t = 15 c;
— диаметр пятна излучения на поверхности обрабатываемой детали dп = 1 мм.
Максимальный уровень диффузно отраженного излучения на границе рабочей зоны равен 1,2 х 10(3) Вт х м(-2).
Требуется определить класс установки.
Согласно таблице 4.1, лазер, встроенный в установку, относится к II классу опасности:
Сравнение облученности на границе рабочей зоны с предельно допустимым значением облученности показывает, что диффузно отраженное излучение не представляет опасности для глаз и кожи.
Установка для спектроскопии.
— длина волны излучения ламбда = 340 нм;
— длительность одного импульса тауи = 10(-5) с;
— частота следования импульсов Fи = 10(3) Гц;
— средняя мощность P = 8 Вт;
— длительность одной операции t = 10 c;
— количество операций за рабочий день n = 250.
Максимальный уровень диффузно отраженного излучения на границе рабочей зоны создает облученность Emax = 10 Вт х м(-2). Суточная доза при выполнении 250 операций равна Hcигма = 25 х 10(3) Дж х м(-2).
Необходимо определить класс опасности лазерной установки.
Для определения класса опасности проверяем выполнение условий таблицы 4.1.
Установка относится ко II классу.
Сравнение Eпду и (3 х 10(4)) с максимальной облученностью Emax на границе рабочей зоны и суточной дозой Hсигма при выполнении 250 операций показывает, что отраженное излучение при выполнении одной операции не представляет опасности, однако при выполнении за рабочий день запланированных 250 операций суточная доза Hcигма превышает предельно допустимое значение (3 х 10(4)) в 31,2 раза.
При эксплуатации установки необходимо исключить воздействие зеркально отраженного излучения, а для защиты от диффузно отраженного излучения необходимо использовать средства защиты с оптической плотностью Dламбда > 1,5 (Dламбда >= lg 31,2).
Пучок лазерного излучения с параметрами, приведенными в примере 3, расширяется оптической системой до диаметра dп = 2 х 10 (-2) м. Поток излучения направлен перпендикулярно плоской диффузно отражающей поверхности. Точка наблюдения расположена на прямой, проходящей через центр облучаемой площадки под углом тета = 60°. Расстояние от поверхности до точки наблюдения l = 0,5 м.
Определить Wдпду для наблюдателя.
Правила расчета ПДУ диффузно отраженного излучения изложены в пункте 3.4.2.
Для коллимированного излучения значение определено в примере 3 и составляет 6 х 10(-7) Дж при однократном воздействии.
Угловой размер источника диффузионного излучения альфа с достаточной степенью точности рассчитывается по формуле:
В нашем случае = 3,5 х 10 (-3) рад.
Поправочный коэффициент B при длительности облучения 1,5 х 10(-7) с, согласно таблице 3.5 (рис.3.6), равен
Значение предельно допустимой энергии в точке наблюдения составляет
П2.2. Особенности определения ПДУ лазерного излучения видимого и ближнего ИК диапазонов спектра при использовании оптических средств наблюдения
П2.2.1. Коллимированное лазерное излучение
Если для наблюдения источника лазерного излучения используются оптические приборы (бинокли, телескопы и т.д.), энергетическая экспозиция или облученность сетчатки глаза может существенно возрастать. Наиболее надежным методом оценки изменения степени опасности излучения является сопоставление результатов измерения энергии или мощности, проходящей через ограничивающую апертуру диаметром 7 мм, при непосредственном наблюдении и при наблюдении с использованием оптического прибора. В последнем случае ограничивающая апертура располагается вблизи окуляра в плоскости, соответствующей положению роговицы глаза. Отношение результатов измерений дает поправочный коэффициент для коррекции предельно допустимых уровней излучения, устанавливаемых настоящим документом.
Теоретические оценки, как правило, являются приближенными. В рекомендациях по применению таких оценок здесь и далее рассматривается наиболее распространенный тип оптических средств наблюдения, у которых диаметр выходного зрачка меньше или равен 7 х 10(-3) м (теоретический диаметр зрачка глаза), а потери излучения, связанные с поглощением и отражением на поверхностях оптических элементов и т.д., пренебрежимо малы.
Применение оптического средства наблюдения с увеличением (кратностью) k с позиций безопасности эквивалентно увеличению диаметра ограничивающей апертуры в k раз.
Таким образом, для определения предельно допустимых уровней энергии излучения при прямом наблюдении коллимированных пучков с помощью оптических приборов следует нормировать энергию или мощность излучения, прошедшего через ограничивающую апертуру диаметром k х 7 х 10(-3) м, расположенную в плоскости входного зрачка прибора. Значения Wonпду и Ponпду не должны превышать Wпду и Pпду, определяемых пунктами 3.4 и 3.5.
Для создания оптических эффектов при проведении музыкального шоу используется непрерывный гелий-неоновый лазер, излучение которого при сканировании может оказаться направленным в зрительный зал. Определить предельно допустимую мощность лазера с учетом того, что отдельные зрители, занимающие ряды дальше седьмого, могут пользоваться театральными биноклями с кратностью k = 2,5. Диаметр пучка в плоскости 1-го ряда d(1)n = 5 х 10(-2) м, на уровне 7-го ряда d(2)n = 6 х 10(-2) м. Скорость сканирования в плоскости 1-го ряда v1 = 2 м х с(-1), в плоскости 7-го ряда v2 = 3 м х с(-1). Распределение интенсивности излучения в поперечном сечении лазерного пучка близко к однородному.
Время облучения глаз соответствует времени прохождения лазерного пучка через ограничивающую апертуру.
Для зрителей 1-го ряда
Для зрителей 7-го ряда
Соответствующие значения предельно допустимых параметров излучения с длиной волны 633 нм определяются по таблице 3.3 с учетом коэффициента гигиенического запаса, заданного пунктом 3.11.
Значение P(1)пду определяет предельную мощность излучения, прошедшего через апертуру диаметром 7 х 10(-3) м. Полная мощность лазера при этом составляет
Аналогично, для зрителей 7-го ряда, пользующимися театральными биноклями (ограничивающая апертура увеличена в 2,5 раза):
Таким образом, использование театрального бинокля существенно повышает опасность повреждения глаз. Мощность лазера при рассмотренных условиях не должна превышать 4,7 х 10(-4) Вт.
Определить пропускание защитного светофильтра T, устанавливаемого перед диоптрийной трубкой для обеспечения безопасной работы.
Длительность воздействия на глаза примем равной времени реакция мигания: t = 0,25 с.
Значение предельно допустимой мощности излучения с длиной волны 441 нм при прямом облучении глаз и ограничивающей апертуре диаметром 7 х 10(-3) м определяется по табл.3.3 (рис.3.4) с дополнительным коэффициентом запаса для хронического воздействия, в соответствии с п.3.5.
В рассматриваемом случае диаметр пучка излучения существенно меньше диаметра ограничивающей апертуры на входе диоптрийной трубки, равного k х 7 х 10(-3) м. На выходе оптической системы трубки диаметр пучка уменьшается до величины, равной приблизительно dп/k, что также существенно меньше теоретического диаметра зрачка (7 х 10(-3) м). Таким образом, практически все излучение лазера проходит через зрачок глаза, а приведенное выше значение Pпду определяет предельно допустимое значение общей мощности излучения P’, прошедшего защитный светофильтр: P’ = Pпду.
Аналогичный результат был бы получен и для случая прямого облучения глаз без использования оптического средства наблюдения, так как и здесь диаметр пучка dп меньше теоретического размера зрачка.
Иными словами, использование диоптрийной трубки не привело к увеличению опасности для глаз.
Последний вывод иллюстрирует общее правило, согласно которому применение оптических инструментов для наблюдения коллимированных лазерных пучков диаметром меньшим диаметра зрачка глаза не повышает степени опасности повреждения сетчатки.
Возвращаясь к решению поставленной задачи, определим минимально допустимую величину пропускания защитного фильтра T для излучения с длиной волны 441 нм.
П2.2.2. Рассеянное или диффузно отраженное излучение
При оценке изменений ПДУ для глаз, связанных с использованием оптических приборов, необходимо принимать во внимание наблюдаемое увеличение видимого углового размера источника излучения, которое составляет альфаоп = k х альфа.
Формула, определяющая поправочный коэффициент B в п.3.4.2, с учетом возможности использования оптического средства наблюдения, перепишется в виде:
При проведении хирургической операции используется лазерный скальпель на основе аргонового лазера и операционный микроскоп с увеличением k = 100. Мощность отраженного от тканей и попадающего на входной зрачок микроскопа излучения P = 0,1 Вт. Длина волны излучения 514 нм. Диаметр сфокусированного пучка на операционном поле: dп=10(-4) м. Длительность непрерывной работы с лазерным излучением t = 120 с.
Определить пропускание T защитного светофильтра, обеспечивающего безопасную работу хирурга.
По табл.3.4 (рис.3.5) с учетом поправочного коэффициента для хронического воздействия (п.3.5) найдем предельно допустимую мощность прямого облучения глаз коллимированным потоком излучения с длиной волны 514 нм: Pпду = 1,2 х 10(-6) Вт.
Поправочный коэффициент B и значение Pпду (п.3.4.2) определяется по табл.3.5:
Таким образом, пропускание защитного фильтра на длине волны 514 нм не должно превышать
П2.3. Предельно допустимые энергетические параметры некоторых типов лазеров при хроническом воздействии
Предельно допустимые значения нормируемых энергетических параметров излучения лазеров при хроническом воздействии на глаза и кожу приведены в таблице 2П.1.
Примечания к таблице 2П.1.
Длительность облучения глаз излучением видимого диапазона выбрана равной времени реакции мигания (приблизительно 0,25 с). Длительность облучения глаз УФ и ИК излучением и длительность облучения одного и того же участка кожи принята равной 10 с (см. пример 1 в п.П2.1).
Для лазеров, работающих с большой частотой следования импульсов излучения или в режиме модуляции мощности, приводятся значения ПДУ средней за время воздействия облученности тканей Ecпду(t) (ограничивающая апертура имеет диаметр 1,1 мм) или средней мощности излучения Pcпду(t) или энергии серии импульсов излучения Wcпду(t) (ограничивающая апертура имеет диаметр 7 мм). При этом параметр кси, характеризующий нестабильность энергии импульсов в серии (см. п.3.4.3), принят равным 1.
Используемое в таблице сокращение «один.» соответствует режимам, при которых воздействие на глаза и кожу отдельных импульсов считается независимым (см. п.3.4.3 и 3.8.2).
Предельно допустимые энергетические параметры излучения некоторых лазеров при хроническом воздействии