какую скорость будет иметь свободно падающее тело через 1 с после начала движения
Движение тела с ускорением свободного падения
теория по физике 🧲 кинематика
Свободное падение — это движение тела только под действием силы тяжести.
В действительности при падении на тело действует не только сила тяжести, но и сила сопротивления воздуха. Но в ряде задач сопротивлением воздуха можно пренебречь. Воздух не оказывает значимого сопротивления падающему мячу или тяжелому грузу. Но падение пера или листа бумаги можно рассматривать только с учетом двух сил: небольшая масса тела в сочетании с большой площадью его поверхности препятствует свободному падению вниз.
В вакууме все тела падают с одинаковым ускорением, так как в нем отсутствует среда, которая могла бы дать сопротивление. Так, брошенные в условиях вакуума с одинаковой высоты перо и молоток приземлятся в одно и то же время!
Ускорение свободного падения
Свободное падение
Свободное падение — частный случай равноускоренного прямолинейного движения. Если тело отпустить с некоторой высоты, оно будет падать с ускорением свободного падения без начальной скорости. Тогда его кинематические величины можно определить по следующим формулам:
v — скорость, g — ускорение свободного падения, t — время, в течение которого падало тело
Пример №1. Тело упало без начальной скорости с некоторой высоты. Найти его скорость в конечный момент времени t, равный 3 с.
Подставляем данные в формулу и вычисляем:
Перемещение при свободном падении тела равно высоте, с которой оно начало падать. Высота обозначается буквой h.
Внимание! Перемещение равно высоте, с которой падало тело, только в том случае, если t — полное время падения.
Если известна скорость падения тела в момент времени t, перемещение (высота) определяется по следующей формуле.
Если скорость тела в момент времени t неизвестна, но для нахождения перемещения (высоты) используется формула:
Если неизвестно время, в течение которого падало тело, но известна его конечная скорость, перемещение (высота) вычисляется по формуле:
Пример №2. Тело упало с высоты 5 м. Найти его скорость в конечный момент времени.
Так как нам известна только высота, и найти нужно скорость, используем для вычислений последнюю формулу. Выразим из нее скорость:
Формула определения перемещения тела в n-ную секунду свободного падения:
s(n) — перемещение за секунду n.
Пример №3. Определить перемещение свободно падающего тела за 3-ую секунду движения.
Движение тела, брошенного вертикально вверх
Движение тела, брошенного вертикально вверх, описывается в два этапа
Два этапа движения тела, брошенного вертикально вверх Этап №1 — равнозамедленное движение. Тело поднимается вверх на некоторую высоту h за время t с начальной скоростью v0 и на мгновение останавливается в верхней точке, достигнув скорости v = 0 м/с. На этом участке пути векторы скорости и ускорения свободного падения направлены во взаимно противоположных направлениях ( v ↑↓ g ). Этап №2 — равноускоренное движение. Когда тело достигает верхней точки, и его скорость равна 0, начинается свободное падение с начальной скоростью до тех пор, пока тело не упадет или не будет поймано на некоторой высоте. На этом участке пути векторы скорости и ускорения свободного падения направлены в одну сторону ( v ↑↑ g ). Формулы для расчета параметров движения тела, брошенного вертикально вверх Перемещение тела, брошенного вертикально вверх, определяется по формуле:
Если известна скорость в момент времени t, для определения перемещения используется следующая формула:
Если время движения неизвестно, для определения перемещения используется следующая формула:
Формула определения скорости:
Какой знак выбрать — «+» или «–» — вам помогут правила:
Обычно тело бросают вертикально вверх с некоторой высоты. Поэтому если тело упадет на землю, высота падения будет больше высоты подъема (h2 > h1). По этой же причине время второго этапов движения тоже будет больше (t2 > t1). Если бы тело приземлилось на той же высоте, то начальная скорость движения на 1 этапе была бы равно конечной скорости движения на втором этапе. Но так как точка приземления лежит ниже высоты броска, модуль конечной скорости 2 этапа будет выше модуля начальной скорости, с которой тело было брошено вверх (v2 > v01).
Пример №4. Тело подкинули вверх на некотором расстоянии 2 м от земли, придав начальную скорость 10 м/с. Найти высоту тела относительно земли в момент, когда оно достигнет верхней точки движения.
Конечная скорость в верхней точке равна 0 м/с. Но неизвестно время. Поэтому для вычисления перемещения тела с точки броска до верхней точки найдем по этой формуле:
Согласно условию задачи, тело бросили на высоте 2 м от земли. Чтобы найти высоту, на которую поднялось тело относительно земли, нужно сложить эту высоту и найденное перемещение: 5 + 2 = 7 (м).
Уравнение координаты и скорости при свободном падении
Уравнение координаты при свободном падении позволяет вычислять кинематические параметры движения даже в случае, если оно меняет свое направление. Так как при вертикальном движении тело меняет свое положение лишь относительно оси ОУ, уравнение координаты при свободном падении принимает
Уравнение скорости при свободном падении:
Построение чертежа
Решать задачи на нахождение кинематических параметров движения тела, брошенного вертикально вверх, проще, если выполнить чертеж. Строится он в 3 шага.
Свободное падение на землю с некоторой высоты
Тело подбросили от земли и поймали на некоторой высоте
Уравнение скорости:
Тело подбросили от земли, на одной и той же высоте оно побывало дважды
Интервал времени между моментами прохождения высоты h:
Уравнение координаты для первого прохождения h:
Уравнение координаты для второго прохождения h:
Важно! Для определения знаков проекций скорости и ускорения нужно сравнивать направления их векторов с направлением оси ОУ.
Пример №5. Тело падает из состояния покоя с высоты 50 м. На какой высоте окажется тело через 3 с падения?
Из условия задачи начальная скорость равна 0, а начальная координата — 50.
Через 3 с после падения тело окажется на высоте 5 м.
Алгоритм решения
Решение
Записываем исходные данные:
Перемещение (высота) свободно падающего тела, определяется по формуле:
В скалярном виде эта формула примет вид:
Учтем, что начальная скорость равна нулю, а ускорение свободного падения противоположно направлено оси ОУ:
Относительно оси ОУ груз совершил отрицательное перемещение. Но высота — величина положительная. Поэтому она будет равна модулю перемещения:
Вычисляем высоту, подставив известные данные:
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алгоритм решения
Решение
Записываем исходные данные:
Записываем формулу для определения скорости тела в векторном виде:
Теперь запишем эту формулу в скалярном виде. Учтем, что согласно чертежу, вектор скорости сонаправлен с осью ОУ, а вектор ускорения свободного падения направлен в противоположную сторону:
Подставим известные данные и вычислим скорость:
pазбирался: Алиса Никитина | обсудить разбор | оценить
Какую скорость будет иметь свободно падающее тело через 1 с после начала движения
На рисунке представлен график зависимости высоты свободно падающего тела от времени на некоторой планете. Ускорение свободного падения на этой планете равно
Движение ускоренного тела описывается уравнением движения, в данном случае
где — начальная координата тела, g — ускорение свободного падения, t — время движения. Выразив ускорение свободного падения, получаем:
Правильный ответ указан под номером 2.
График изображен условно? Просто по нему получается, что в первую секунду тело прошло приблизительно 1 метр (если самостоятельно провести 2 пересекающихся линии).
Да, в этой задаче тело за первую секунду проходит 1 метр.
Тело свободно падает с нулевой начальной скоростью. Сопротивление воздуха пренебрежимо мало. За третью секунду скорость тела увеличится на
Правильный ответ указан под номером 2.
Аналоги к заданию № 166: 193 Все
На вертикально расположенной доске закреплена электрическая схема (см. рисунок), состоящая из источника тока, лампы, упругой стальной пластины АВ. К одному концу пластины подвесили гирю, из-за чего пластина изогнулась и разомкнула цепь. Что будет наблюдаться в электрической цепи, когда доска начнет свободно падать? Ответ поясните.
Ответ: цепь замкнётся и лампа загорится.
Объяснение: когда доска начнёт свободно падать, то наступит состояние, близкое к состоянию невесомости. Гиря практически станет невесомой и перестанет действовать на пластину, пластина постепенно выпрямится и замкнёт цепь.
— время падения.
Координата камушка в момент времени равна
Путь, пройденный за последнюю секунду:
Ответ :
Космонавт, находящийся на орбитальной космической станции, летающей вокруг Земли, выдавил из тюбика с космическим питанием каплю жидкости, которая начала летать по кабине станции. Какую форму примет эта капля?
Поверхностное натяжение жидкостей
Если взять тонкую чистую стеклянную трубку (она называется капилляром), расположить её вертикально и погрузить её нижний конец в стакан с водой, то вода в трубке поднимется на некоторую высоту над уровнем воды в стакане. Повторяя этот опыт с трубками разных диаметров и с разными жидкостями, можно установить, что высота поднятия жидкости в капилляре получается различной. В узких трубках одна и та же жидкость поднимается выше, чем в широких. При этом в одной и той же трубке разные жидкости поднимаются на разные высоты. Результаты этих опытов, как и ещё целый ряд других эффектов и явлений, объясняются наличием поверхностного натяжения жидкостей.
Возникновение поверхностного натяжения связано с тем, что молекулы жидкости могут взаимодействовать как между собой, так и с молекулами других тел — твёрдых, жидких и газообразных, — с которыми находятся в соприкосновении. Молекулы жидкости, которые находятся на её поверхности, «существуют» в особых условиях — они контактируют и с другими молекулами жидкости, и с молекулами иных тел. Поэтому равновесие поверхности жидкости достигается тогда, когда обращается в ноль сумма всех сил взаимодействия молекул, находящихся на поверхности жидкости, с другими молекулами. Если молекулы, находящиеся на поверхности жидкости, взаимодействуют преимущественно с молекулами самой жидкости, то жидкость принимает форму, имеющую минимальную площадь свободной поверхности. Это связано с тем, что для увеличения площади свободной поверхности жидкости нужно переместить молекулы жидкости из её глубины на поверхность, для чего необходимо «раздвинуть» молекулы, находящиеся на поверхности, то есть совершить работу против сил их взаимного притяжения. Таким образом, состояние жидкости с минимальной площадью свободной поверхности является наиболее выгодным с энергетической точки зрения. Поверхность жидкости ведёт себя подобно натянутой упругой плёнке — она стремится максимально сократиться. Именно с этим и связано появление термина «поверхностное натяжение».
Приведённое выше описание можно проиллюстрировать при помощи опыта Плато. Если поместить каплю анилина в раствор поваренной соли, подобрав концентрацию раствора так, чтобы капля плавала внутри раствора, находясь в состоянии безразличного равновесия, то капля под действием поверхностного натяжения примет шарообразную форму, поскольку среди
всех тел именно шар обладает минимальной площадью поверхности при заданном объёме.
Если молекулы, находящиеся на поверхности жидкости, контактируют с молекулами твёрдого тела, то поведение жидкости будет зависеть от того, насколько сильно взаимодействуют друг с другом молекулы жидкости и твёрдого тела. Если силы притяжения между молекулами жидкости и твёрдого тела велики, то жидкость будет стремиться растечься по поверхности твёрдого тела. В этом случае говорят, что жидкость хорошо смачивает твёрдое тело (или полностью смачивает его). Примером хорошего смачивания может служить вода, приведённая в контакт с чистым стеклом. Капля воды, помещённая на стеклянную пластинку, сразу же растекается по ней тонким слоем. Именно из-за хорошего смачивания стекла водой и наблюдается поднятие уровня воды в тонких стеклянных трубках. Если же силы притяжения молекул жидкости друг к другу значительно превышают силы их притяжения к молекулам твёрдого тела, то жидкость будет стремиться принять такую форму, чтобы площадь её контакта с твёрдым телом была как можно меньше. В этом случае говорят, что жидкость плохо смачивает твёрдое тело (или полностью не смачивает его). Примером плохого смачивания могут служить капли ртути, помещённые на стеклянную пластинку. Они принимают форму почти сферических капель, немного деформированных из-за действия силы тяжести. Если опустить конец стеклянного капилляра не в воду, а в сосуд с ртутью, то её уровень окажется ниже уровня ртути в сосуде.
Свободное падение тел. Движение тела, брошенного вертикально вверх
Решебник к сборнику задач по физике для 7- 9 классов, Перышкин А.В.
1588. Как определить ускорение свободного падения, имея в своем распоряжении секундомер, стальной шарик и шкалу высотой до 3 м?
1589. Какова глубина шахты, если свободно падающий в нее камень достигает дна через 2 с после начала падения.
1590. Высота Останкинской телебашни 532 м. С ее самой верхней точки уронили кирпич. За какое время он упадет на землю? Сопротивление воздуха не учитывать.
1591. Здание Московского государственного университета на Воробьевых горах имеет высоту 240 м. С верхней части его шпиля оторвался кусок облицовки и свободно падает вниз. Через какое время он достигнет земли? Сопротивление воздуха не учитывать.
1592. Камень свободно падает с обрыва. Какой путь он пройдет за восьмую секунду с начала падения?
1593. Кирпич свободно падает с крыши здания высотой 122,5 м. Какой путь пройдет кирпич за последнюю секунду своего падения?
1594. Определите глубину колодца, если камень, упавший в него, коснулся дна колодца через 1 с.
1595. Со стола высотой 80 см на пол падает карандаш. Определить время падения.
1596. Тело падает с высоты 30 м. Какое расстояние оно проходит в течение последней секунды своего падения?
1597. Два тела падают с разной высоты, но достигают земли в один и тот же момент времени; при этом первое тело падает 1 с, а второе — 2 с. На каком расстоянии от земли было второе тело, когда первое начало падать?
1598. Докажите, что время, в течение которого движущееся вертикально вверх тело достигает наибольшей высоты h, равно времени, в течение которого тело падает с этой высоты.
1599. Тело движется вертикально вниз с начальной скоростью. На какие простейшие движения можно разложить такое движение тела? Напишите формулы для скорости и пройденного пути этого движения.
1600. Тело брошено вертикально вверх со скоростью 40 м/с. Вычислите, на какой высоте будет тело через 2 с, 6 с, 8 с и 9 с, считая от начала движения. Ответы объясните. Для упрощения расчетов принять g равным 10 м/с2.
1601. С какой скоростью надо бросить тело вертикально вверх, чтобы оно вернулось назад через 10 с?
1602. Стрела пущена вертикально вверх с начальной скоростью 40 м/с. Через сколько секунд она упадет обратно на землю? Для упрощения расчетов принять g равным 10 м/с2.
1603. Аэростат равномерно поднимается вертикально вверх со скоростью 4 м/с. К нему на веревке подвешен груз. На высоте 217 м веревка обрывается. Через сколько секунд груз упадет на землю? Принять g равным 10 м/с2.
1604. Камень бросили вертикально вверх с начальной скоростью 30 м/с. Через 3 с после начала движения первого камня бросили также вверх второй с начальной скоростью 45 м/с. На какой высоте камни встретятся? Принять g = 10 м/с2. Сопротивлением воздуха пренебречь.
1605. Велосипедист поднимается вверх по уклону длиной 100 м. Скорость в начале подъема 18 км/ч, а в конце 3 м/с. Предполагая движение равнозамедленным, определите, как долго длился подъем.
1606. Санки движутся вниз по горе равноускоренно с ускорением 0,8 м/с2. Длина горы 40 м. Скатившись с горы, санки продолжают двигаться равнозамедленно и останавливаются через 8 с….
1607. Кусок скалы падает с края пропасти вниз. Звук его падения услышан наверху через 2,5 с. Определите глубину пропасти, если скорость звука 340 м/с.
1608. Черепица оторвалась от крыши дома и полетела вниз. Окно высотой 1,8 м она пролетела за 0,3 с. Каково расстояние между крышей и верхним краем окна?
1609. Два одинаковых камня бросают вниз с высоты 9,8 м. Первый падает свободно, второй бросают с начальной скоростью. Второй камень упал на 0,5 с раньше первого. Чему равна начальная скорость второго камня?
1610. Из фонтана бьет струя воды на высоту 19,6 м. С какой скоростью она выбрасывается фонтаном?
1611. Из прорванного водопровода бьет струя воды вертикально вверх со скоростью 29,4 м/с. Какую скорость она будет иметь через 2 с и на какую высоту поднимется?
Задачи на свободное падение тел: примеры решения задач по кинематике
Вторник, а это значит, что сегодня мы снова решаем задачи. На это раз, на тему «свободное падение тел».
Присоединяйтесь к нам в телеграм и получайте актуальную рассылку каждый день!
Задачи на свободное падение тел с решением
Задача №1. Нахождение скорости при свободном падении
Условие
Тело падает с высоты 20 метров. Какую скорость оно разовьет перед столкновением с Землей?
Решение
Высота нам известна по условию. Для решения применим формулу для скорости тела в момент падения и вычислим:
Ответ: примерно 20 метров в секунду.
Задача №2. Нахождение высоты и времени движения тела, брошенного вертикально.
Условие
Индеец выпускает стрелу из лука вертикально вверх с начальной скоростью 25 метров в секунду. За какое время стрела окажется в наивысшей точке и какой максимальной высоты она достигнет стрела?
Решение
Сначала запишем формулу из кинематики для скорости. Как известно, в наивысшей точке траектории скорость стрелы равна нулю:
Теперь запишем закон движения для вертикальной оси, направленной вертикально вверх.
Ответ: 2,5 секунды, 46 метров.
Задача №3. Нахождение времени движения тела, брошенного вертикально вверх
Условие
Мячик бросили вертикально вверх с начальной скоростью 30 метров в секунду. Через какое время мяч окажется на высоте 25 метров?
Решение
Запишем уравнение для движения мячика:
Мы получили квадратное уравнение. Упростим его и найдем корни:
Как видим, уравнение имеет два решения. Первый раз мячик побывал на высоте через 1 секунду (когда поднимался), а второй раз через 5 секунд (когда падал обратно).
Ответ: 1с, 5с.
Задача №4. Нахождение высоты при движении тела под углом к горизонту
Условие
Камень, брошенный с крыши дома под углом альфа к горизонту, через время t1=0,5c достиг максимальной высоты, а еще через время t2=2,5c упал на землю. Определите высоту Н дома. Сопротивлением воздуха пренебречь. Ускорение свободного падения g = 10 м/с2.
Решение
Камень брошен со скоростью v0 под углом α к горизонту с дома высотой Н. Эту скорость можно разложить на две составляющие: v0X (горизонтальная) и v0Y (вертикальная). В горизонтальном направлении на камень не действует никаких сил (сопротивлением воздуха пренебрегаем), поэтому горизонтальная составляющая скорости неизменна на протяжении всего времени полета камня (равномерное движение). Максимальная точка траектории камня над уровнем земли (исходя из кинематических соотношений):
Здесь t1 – время подъема камня с высоты Н на высоту h; g – ускорение свободного падения.
Вертикальную составляющую скорости можно вычислить исходя из геометрических соображений:
Подставив выражение для скорости в первое уравнение, получим:
Также высоту h можно выразить через время t2 падения камня с высоты h на землю (исходя из кинематических соотношений и учитывая, что с вертикальная составляющая скорости в наивысшей точке равна нулю):
Для высоты дома можно записать:
Так как вертикальная составляющая скорости камня в максимальной точке траектории равна нулю:
Подставляем в формулу для высоты H и вычисляем:
Ответ: H = 30 м.
Задача №5. Нахождение закона движения тела
Условие
Найти закон движения тела против силы тяжести, при начальной скорости V0. И на какую максимальную высоту поднимется тело? Тело бросили под углом 90 градусов.
Решение
Тело брошено под углом α=90° к горизонту. Другими словами, тело брошено вертикально вверх с начальной скоростью V0. Направим координатную ось х вертикально вверх, так ее направление совпадает с вектором начальной скорости. F – сила тяжести, направленная вниз. В начальный момент тело находится в точке А.
В задаче нужно найти закон движения тела, то есть зависимость координаты тела от времени. В общем случае этот закон задается кинематическим соотношением:
где х0 – начальная координата тела; a – ускорение.
Так как мы поместили начало координат в точку А, х0=0. Тело движется с ускорением свободного падения g, при этом сила тяжести направлена против начальной скорости, поэтому в проекции на вертикальную ось a=-g. Таким образом, искомый закон движения перепишется в виде:
Далее будем использовать еще одно общее кинематическое соотношение:
где V – конечная скорость.
Максимальная высота подъема тела указана на рисунке точной B, в этот момент конечная скорость V равна нулю, а координата х равна максимальной высоте Н подъема тела. Отсюда можно найти выражение для этой величины:
Полезные формулы для решения задач на свободное падение
Свободное падение описывается формулами кинематики. Мы не будем приводить их вывод, но запишем самые полезные.
Формула для максимальной высоты подъема тела, брошенного вертикально вверх c некоторой начальной скоростью:
Кстати, как выводится именно эта формула можно посмотреть в последней задаче.
Формула для времени подъема и падения тела, брошенного вертикально вверх:
Скорость тела в момент падения с высоты h:
Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.
Вопросы с ответами на свободное падение тел
Вопрос 1. Как направлен вектор ускорения свободного падения?
Ответ: можно просто сказать, что ускорение g направлено вниз. На самом деле, если говорить точнее, ускорение свободного падения направлено к центру Земли.
Вопрос 2. От чего зависит ускорение свободного падения?
Ответ: на Земле ускорение свободного падения зависит от географической широты, а также от высоты h подъема тела над поверхностью. На других планетах эта величина зависит от массы M и радиус R небесного тела. Общая формула для ускорения свободного падения:
Вопрос 3. Тело бросают вертикально вверх. Как можно охарактеризовать это движение?
Ответ: В этом случае тело движется равноускоренно. Причем время подъема и время падения тела с максимальной высоты равны.
Вопрос 4. А если тело бросают не вверх, а горизонтально или под углом к горизонту. Какое это движение?
Ответ: можно сказать, что это тоже свободное падение. В данном случае движение нужно рассматривать относительно двух осей: вертикальной и горизонтальной. Относительно горизонтальной оси тело движется равномерно, а относительно вертикальной – равноускоренно с ускорением g.
Баллистика – наука, изучающая особенности и законы движения тел, брошенных под углом к горизонту.
Вопрос 5. Что значит «свободное» падение.
Ответ: в данном контексте понимается, что тело при падении свободно от сопротивления воздуха.
Свободное падение тел: определения, примеры
Свободное падение – равноускоренное движение, происходящее под действием силы тяжести.
Первые попытки систематизированно и количественно описать свободное падение тел относятся к средневековью. Правда, тогда было широко распространено заблуждение, что тела разной массы падают с разной скоростью. На самом деле, в этом есть доля правды, ведь в реальном мире на скорость падения сильно влияет сопротивление воздуха.
Однако, если им можно пренебречь, то скорость падающих тел разной массы будет одинакова. Кстати, скорость при свободном падении возрастает пропорционально времени падения.
Ускорение свободно падающих тел не зависит от их массы.
Примеры свободного падения тел:
При свободном падении тела возникает состояние невесомости. Например, в таком же состоянии находятся предметы на космической станции, движущейся по орбите вокруг Земли. Можно сказать, что станция медленно, очень медленно падает на планету.
Конечно, свободное падение возможно не только не Земле, но и вблизи любого тела, обладающего достаточной массой. На других комических телах падения также будет равноускоренным, но величина ускорения свободного падения будет отличаться от земной. Кстати, раньше у нас уже выходил материал про гравитацию.
При решении задач ускорение g принято считать равным 9,81 м/с^2. В реальности его величина варьируется от 9,832 (на полюсах) до 9,78 (на экваторе). Такая разница обусловлена вращением Земли вокруг своей оси.
Нужна помощь в решении задач по физике? Обращайтесь в профессиональный студенческий сервис в любое время.