какую природу имеет y излучение
Под «радиацией» понимают любые разновидности излучений, существующих в природе. Радиоволны, солнечный свет, ультрафиолетовое и рентгеновское излучение – это тоже радиация. Нейтронное, альфа-, бета-, гамма-излучения обладают наибольшей опасностью.
Что такое радиоактивность в физике
Атомное ядро состоит из протонов и нейтронов. Причем число протонов всегда одинаково и соответствует порядковому номеру химического элемента в периодической системе Менделеева. Ядра, в которых количество нейтронов отличается, называются изотопами.
Некоторые атомные ядра могут превращаться в разные изотопы с выделением элементарных частиц или легких ядер. Собственно этот процесс и называется радиоактивностью.
Можно дать такое определение этому явлению: способность атомного ядра бесконтрольно распадаться с испусканием проникающих частиц.
Распад ядер возможен в том случае, если он сопровождается выделением энергии. Сегодня известно около 3 тыс. атомных ядер. Из них не являются радиоактивными всего лишь 264.
В физике существуют такие виды радиоактивного распада:
α-распад с выделением α-частицы;
β-распад с испусканием электрона и антинейтрино, позитрона и нейтрино, а также поглощение ядром электрона с выделением нейтрино;
бесконтрольное деление ядра на осколки.
Альфа-излучение
Это поток ядер атомов гелия, имеющих положительный заряд. Возникает из-за распада атомов урана, тория или радия.
Их пробег очень короток (до 8 сантиметров в воздухе). Это означает, что их может задержать бумажный листок.
Вещества, которые испускают эти частицы, имеют большой период полураспада. Попадая в организм, они накапливаются в селезенке или лимфатических узлах и вызывают облучение.
Альфа-частицы опасны: они создают значительное количество ионов. Сами же альфа-частицы распространяются в тело на доли миллиметра.
Бета-излучение
Являет собой поток электронов (частиц с отрицательным зарядом) или позитронов (соответственно, с положительным зарядом). Электрон образуется при превращении нейтрона в протон, а позитрон – в процессе обратного превращения.
Электроны намного меньше ядра атомов гелия. Они могут проникать в тело человека примерно на 15 см. Попадая на кожу живого организма, частицы вызывают сильные ожоги. Чтобы оградиться от бета-излучения, достаточно тонкого оргстекла. Если вещество, излучающее электроны или позитроны, попадет в организм, то оно будет облучать ткани.
Бета-излучение применяется в медицине в качестве лучевой терапии.
Гамма-излучение
Это волны с огромной энергией, образующиеся внутри ядра.
переходе его из возбужденного состояния в стабильное;
аннигиляции электрона и позитрона.
Гамма-лучи могут проходить значительные расстояния, постепенно теряя свою энергию. Они обладают чрезвычайно высокой проникающей способностью.
Очень интенсивное излучение повреждает не только кожу, но и внутренние органы человека. Особая его опасность в том, что оно способно поражать ДНК, вызывая раковые новообразования.
Чтобы ослабить поток гамма-излучения, достаточно использовать вещества с высоким массовым числом атома и плотные составы.
Нейтронное излучение
Оно являет собой поток нейтронов, без заряда, не имеющих ионизирующего воздействия. Проявляется в результате рассеивания на атомных ядрах вещества.
Вещества, облученные нейтронами, могут обретать радиоактивные характеристики. Это свойство называется наведенной радиоактивностью.
Нейтроны отличаются наибольшей проникающей характеристикой. От них можно защититься материалами, содержащими атомы водорода. Излучение быстрых нейтронов губительно для всего живого в радиусе 2,5 км.
Рентгеновское излучение
Оно имеет внеядерное происхождение. Его источник – рентгеновская трубка и некоторые радиоактивные нуклиды. Рентгеновские лучи возникают в результате сильного ускорения заряженных частиц или в результате переходов в электронных оболочках атомов.
Рентгеновская трубка имеет катод и анод. При нагревании катода происходит излучение электронов. Движение этих частиц ускоряется электромагнитным полем, и частицы падают на анод, резко снижая скорость. Вследствие этого и возникают рентген-лучи.
Рентген-излучение, проходящее сквозь вещество, рассеиваются либо поглощается. Это их свойство используется в медицине.
Какое излучение самое опасное
Наиболее опасным является излучение нейтронов. Оно может пройти толщину вещества до 10 см. Приблизившись к ядру, нейтрон только отклоняется. А при столкновении с протоном нейтрон передает ему половину внутренней энергии, и последний увеличивает свою скорость, вызывая ионизацию.
Именно эти быстрые протоны разрушают весь организм. От наведенной нейтронной радиации нельзя избавиться.
Второе место в рейтинге опасности – гамма-излучение, обладающее высокой проникающей способностью.
В природе существует много разновидностей радиационного излучения. Не каждое их них опасно для здоровья. Соблюдая меры предосторожности, можно защитить себя от вредных лучей.
Ионизирующее излучение
Ионизирующее излучение представляет собой поток частиц, способных вызывать ионизацию вещества. При ионизации происходит отрыв электрона или нескольких электронов от атома, или молекулы, которые при этом превращаются в положительно заряженные ионы. Оторванные от атомов или молекул электроны могут присоединяться другими атомами, или молекулами, образуя отрицательно заряженные ионы.
Разряд заряженного электрометра, находящегося в воздухе, происходящий независимо от качества электрической изоляции прибора, заметил еще Шарль Кулон в 1785 г., но только в XX веке удалось объяснить обнаруженные им закономерности действием космических лучей, представляющих собой одну из составляющих естественного ионизирующего излучения.
Результат действия ионизирующего излучения называют облучением. Несмотря на многообразие явлений, которые возникают в веществе под действием ионизирующего излучения, оказалось, что облучение может быть охарактеризовано единой величиной, называемой дозой облучения.
Действие ионизирующего излучения в широком диапазоне доз скрыто от непосредственных ощущений человека и поэтому оно кажется ему одним из наиболее опасных факторов воздействия.
В быту и в некоторых отраслях науки, техники и медицины ионизирующее излучение принято называть просто радиацией. Строго говоря, это не совсем верно, т.к. сам по себе термин «радиация» охватывает все виды излучения, включая самые длинные радиоволны и потоки частиц любой сколь угодно малой энергии, а также волны деформации в веществе, например, звуковые волны. Тем не менее, употребление слова «радиация» применительно к ионизирующему излучению настолько вошло в привычку, что в науке прижились термины, сформированные на его основе, такие, как, например, радиология (наука о медицинских применениях ионизирующего излучения), радиационная защита (наука о методах снижения доз облучения до приемлемых уровней), естественный радиационный фон, и т.п.
Виды ионизирующих излучений
Это, по сути, поток элементарных частиц, ионов и электромагнитных волн, не видимых и не ощущаемых человеком. Однако, их действие может быть коварно. При определенном уровне облучения нарушаются биохимические и физические процессы в живых организмах. Это воздействие может привести к лучевой болезни и даже к смерти. Различные виды ионизирующего излучения различают по их ионизирующей и проникающей способности.
Чаще всего ионизирующие излучения делят на:
Корпускулярное ИИ состоит из частиц вещества – элементарных частиц и ионов, в т.ч. ядер атомов. Корпускулярное ИИ делят на:
Альфа-излучение (поток ядер гелия, возникающий в результате альфа распада ядер элементов) обладает высокой ионизирующей, но слабой проникающей способностью: пробег альфа-частиц в сухом воздухе при нормальных условиях не превышает 20 см, а в биологической ткани – 260 мкм. То есть слой воздуха 9-10 см, верхняя одежда, резиновые перчатки, марлевые повязки, даже бумага полностью защищают организм от внешних потоков альфа-частиц.
*Попадание источников альфа-частиц внутрь организма с воздухом, водой и пищей уже очень опасно.
Бета-излучение (поток электронов или позитронов, возникающий в результате бета-распада ядер) имеет меньшую ионизирующую способность, чем альфа-излучение, но большую проникающую способность. Поскольку максимальные энергии бета-частиц не превышают 3 МэВ, то от них гарантированно защитит оргстекло толщиной 1,2 см, либо слой алюминия в 5,2 мм. А вот на ускорителе с максимальной энергией электронов 7 МэВ от электронов защитит слой алюминия в 1,5 см, либо слой бетона шириной в 2 см.
*Интенсивность гамма лучей (Cs-137) уменьшают в два раза сталь толщиной 2,8 см., бетон – 10 см., грунт – 14 см., дерево – 30 см.
По подсчетам научного комитета по действию атомной радиации ООН, средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет приблизительно 350 мкЗв, то есть немного больше средней дозы облучения через радиационный фон, который образуется космическими лучами.
Для улучшенной консервативной оценки эквивалентной дозы, в целях индивидуальной дозиметрии профессионально облучаемых работников и мониторинга рабочих мест вводят модельную, т.н. рабочую величину, именуемую амбиентным эквивалентом дозы.
Лекция 1. Предмет и задачи сельскохозяйственной радиологии
3. Характеристика ионизирующих излучений
Все виды ИИ по природе принято делить на 2 группы:
1) корпускулярные (от лат. corpusculum – «тельце»);
2) волновые (электромагнитные).
Корпускулярные излучения представляют собой потоки лучей определенной массы, создаваемых элементарными и атомными частицами. Большинство этих лучей имеет электрический заряд, массу покоя и скорость распространения. Выделяют 3 группы корпускулярных излучений. Рассмотрим их подробнее.
a (альфа) – излучение. Это излучение создается альфа-частицами, каждая из которых состоит из двух протонов и двух нейтронов, прочно связанных между собой. Масса a-частицы составляет 4,003 атомных единиц массы (а.е.м.), а её заряд равен двум положительным элементарным единицам. При вылете из ядер одного и того же радиоизотопа все альфа-частицы имеют одинаковую энергию. Скорость их движения составляет от 0,05 до 0,08 скорости света, т. е. 14-20,6 тыс. км в секунду.
Вследствие положительного заряда и относительно невысокой скорости a-частицы весьма интенсивно взаимодействуют с электронами поглощающего материала; быстро расходуя свою энергию. При этом они успевают пройти очень небольшое расстояние и обладают самой высокой степенью линейной, удельной и объемной ионизации различных сред и веществ. Так, в воздухе на своем коротком пути движения одна альфа-частица приводит к образованию от 116 до 254 тыс. пар ионов. В воздухе a- частицы имеют путь пробега от 2,5 до 11 см, а в мягких тканях живых организмов – всего лишь 30-130 микрон в зависимости от своей энергии.
Поток альфа-частиц легко остановит даже лист бумаги. Поэтому обладающие самой большой энергией альфа-частицы не могут проникнуть сквозь огрубевшие верхние слои клеток кожи. Однако, альфа-излучение гораздо опаснее, когда его источники находятся внутри организма.
Кроме a-частиц, представляющих собой ядра гелия, существуют альфа-лучи, создаваемые дейтронами – ядрами дейтерия Н 2 (одного из изотопов водорода). Такое ядро состоит из одного протона и нейтрона, а сама частица при одинарном положительном заряде имеет массу, равную приблизительно двум атомным единицам массы.
b (бета) – излучение. По знаку может быть положительным и отрицательным. В первом случае оно создается потоком позитронов, а во втором – электронов.
В отличие от альфа-излучения бета-частицы одного и того же радиоизотопа обладают разным уровнем энергии. Скорость, с которой они движутся в пространстве, колеблется от 10 до 28,9 тыс. км в секунду (0,029-0,099 скорости света).
Вследствие большей скорости проникающая способность b-частиц выше, чем у альфа. В воздухе она составляет около 10 м, а в мягких тканях – до 10 мм и более.
Поток нейтрально заряженных частиц (нейтронов) представляет собой третью группу корпускулярных излучений. Оно возникает при превращении ядер одних химических элементов в другие. Нейтроны – это элементарные частицы, не имеющие заряда, и массой, практически равной массе протонов.
Лучи, создаваемые этими частицами, обладают сравнительно высоким коэффициентом ионизации, уступающим только a-лучам. В связи с отсутствием у нейтронов электрического заряда они проходят в веществе без взаимодействий сравнительно большие расстояния, измеряемые сантиметрами. Нейтроны сталкиваются, главным образом, с ядрами атомов различных веществ.
Явления, происходящие при взаимодействии нейтронов с ядрами, зависят от кинетической энергии нейтронов. Поэтому обычно нейтроны делят на отдельные энергетические группы – тепловые, медленные и быстрые нейтроны. Границы этих энергетических групп условны.
При взаимодействии с ядрами тяжелых элементов нейтроны могут вызывать реакции деления. Однако для живой материи, состоящей преимущественно из атомов легких элементов, эти реакции несущественны.
Таким образом, все заряженные частицы в результате их электростатического взаимодействия с электронами облучаемого вещества приводят к непосредственной прямой ионизации его атомов и молекул. Это взаимодействие тем эффективнее, чем больше порядковый номер вещества-поглотителя.
Второй вид ИИ представлен различными группами волновых (электромагнитных) лучей, которые распространяются в пространстве в виде колебаний электромагнитных полей. Характерным их свойством является постоянная скорость распространения в вакууме, равная скорости света (около 300 тыс. км в сек). Имея сходную природу образования, эти излучения отличаются между собой условиями образования, длиной волны, частоты колебания и энергией. При этом, чем меньше длина волны и больше частота колебания, тем больше энергия и проникающая способность электромагнитного ионизирующего излучения.
Ионизирующим эффектом из различных волновых излучений обладают рентгеновские и гамма-лучи, а также дальний («жесткий») ультрафиолет.
Наибольшее значение для всех живых организмов, населяющих Землю, имеют гамма-лучи. Это коротковолновое электромагнитное излучение с длиной волны менее 10 – 10 см, возникающее при распаде радиоактивных ядер и элементарных частиц и взаимодействии быстрых заряженных частиц с веществом.
По своей сути эти лучи представляют собой кванты, то есть порции электрических магнитных колебаний, имеющих наименьшую длину волны и наибольшую частоту колебания с другими видами волновых излучений.
В межзвёздном пространстве γ-излучение может возникать в результате соударений квантов более мягкого длинноволнового электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передаёт свою энергию электромагнитному излучению и видимый свет превращается в более жёсткое гамма-излучение.
Гамма-кванты являются электрически нейтральными, не отклоняются в магнитном поле, не имеют массы покоя и не вызывают прямой ионизации.
При прохождении среды они способны выбивать электроны с оболочек атомов, передавая им часть или всю свою энергию. Эти выбитые электроны (b-лучи) и производят эффект вторичной ионизации. Гамма-лучи отличаются очень высокой скоростью прохождения различных сред на довольно большие расстояния. Так, в воздухе путь их пробега равен 100-120 м, а в мягких тканях животных и человека – до 0,5 м и более.
При прохождении через вещество гамма-кванты взаимодействуют с атомами, электронами и ядрами, в результате их интенсивность уменьшается. В области энергий до 10 МэВ и более существенными процессами являются эффект Комптона (комптон-эффект), образование электрон-позитронных пар и фотоэффект.
При комптон-эффекте происходит рассеяние γ-кванта на одном из электронов, слабо связанных в атоме, В отличие от фотоэффекта, при этом взаимодействии γ-квант не исчезает, а лишь изменяет энергию (длину волны) и направление своего распространения. Узкий пучок гамма-лучей в результате комптон-эффекта становится более широким, а само излучение – более мягким (длинноволновым).
Если же энергия γ-кванта превышает 10 МэВ, становится возможным процесс образования электрон-позитронных пар в электрическом поле ядер. В свою очередь противоположный процесс аннигиляции электрон-позитронной пары является источником гамма-излучения.
Рентгеновские (X) лучи – это невидимое глазом электромагнитное излучение с длиной волны 10 –5 – 10 2 нм. Рентгеновское излучение возникает при взаимодействии электронов, движущихся с большими скоростями, с веществом. Когда электроны соударяются с атомами какого-либо вещества, они быстро теряют свою кинетическую энергию. При этом большая ее часть переходит в тепло, а небольшая доля, обычно менее 1%, преобразуется в энергию рентгеновского излучения. Эта энергия высвобождается в форме квантов – частиц, называемых фотонами, которые обладают энергией, но масса покоя которых равна нулю.
Вредное биологическое действие рентгеновского излучения обнаружилось вскоре после его открытия Рентгеном. Оказалось, что новое излучение может вызвать что-то вроде сильного солнечного ожога (эритему), сопровождающегося, однако, более глубоким и стойким повреждением кожи. Появлявшиеся при этом язвы нередко переходили в рак. Во многих случаях приходилось ампутировать пальцы или руки. Случались также и летальные исходы. Было установлено, что поражения кожи можно избежать, уменьшив время и дозу облучения, применяя экранировку (например, свинец) и средства дистанционного управления.
Ультрафиолетовое (UV) излучение. Вся область ультрафиолетового излучения условно делится на ближнюю (200-400 нм) и дальнюю (вакуумную) (10-200 нм). Последнее название обусловлено тем, что излучение этого диапазона сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.
UV– радиация находится в конце видимого фиолетового спектра, имеет длину волн короче 400 нм и подразделяется на:
1). UVA (320-400 нм), которая не вызывает покраснения или ожога кожи после чрезмерного воздействия;
2). UVB (280-320 нм) – этот подвид является основным в естественном солнечном свете, и именно он обусловливает острые и хронические повреждения кожи. UVB-радиация (спектр загара) является с биологической точки зрения наиболее опасной и требующей особого внимания;
3). UVC (100-280 нм), воздействию этих лучей кожа человека подвергается редко, поскольку они полностью рассеиваются в атмосфере.
Естественный солнечный свет является наиболее распространенным источником UVB– радиации. Слой озона в стратосфере, лежащий на высоте примерно от 15 до 30 км над уровнем моря, играет наиболее важную роль в защите от вредного воздействия ультрафиолета на здоровье. Озон поглощает большую часть УФ-радиации, излучаемой солнцем и вредной для человека.
Искусственные источники ультрафиолетовой радиации включают в себя флуоресцентные лампы, которые вырабатывают в основном UVA-лучи и используются в качестве ламп для загара в соляриях, а также для диагностики и терапии в дерматологии.
Нетрудно заметить, что для a-, b- и g-излучений наблюдается простая закономерность: чем выше ионизирующая способность излучения, тем ниже способность проникающая. Это вовсе не случайно: при взаимодействии этих излучений с веществом основная часть энергии расходуется именно на ионизацию.
Итак, ионизирующие излучения представляют собой потоки частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению его атомов или молекул. Это электроны, позитроны, протоны, нейтроны и другие элементарные частицы, а также атомные ядра и электромагнитное излучение гамма, рентгеновского и оптического диапазонов.
В случае воздействия нейтрального излучения (X-, γ-кванты и нейтроны) ионизацию осуществляют вторичные заряженные частицы, образующиеся при взаимодействии излучения с веществом. Это – электроны и позитроны (в случае воздействия Х- и γ-квантов) и протоны (в случае бомбардировки ядер нейтронами).
Виды радиоактивных излучений
Навигация по статье:
Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.
Что такое радиация
Для начала дадим определение, что такое радиация:
Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.
Альфа излучение
Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.
Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.
Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.
Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.
Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.
Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.
Нейтронное излучение
Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.
Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.
Бета излучение
Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.
При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.
Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.
Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.
Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.
Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.
Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.
Гамма излучение
Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.
Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения
Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.
Рентгеновское излучение
Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.
Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.
Каждое из рассмотренных излучений опасно!
Сравнительная таблица с характеристиками различных видов радиации
характеристика | Вид радиации | ||||
Альфа излучение | Нейтронное излучение | Бета излучение | Гамма излучение | Рентгеновское излучение | |
излучаются | два протона и два нейтрона | нейтроны | электроны или позитроны | энергия в виде фотонов | энергия в виде фотонов |
проникающая способность | низкая | высокая | средняя | высокая | высокая |
облучение от источника | до 10 см | километры | до 20 м | сотни метров | сотни метров |
скорость излучения | 20 000 км/с | 40 000 км/с | 300 000 км/с | 300 000 км/с | 300 000 км/с |
ионизация, пар на 1 см пробега | 30 000 | от 3000 до 5000 | от 40 до 150 | от 3 до 5 | от 3 до 5 |
биологическое действие радиации | высокое | высокое | среднее | низкое | низкое |
Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.
Коэффициент k | |
Вид излучения и диапазон энергий | Весовой множитель |
Фотоны всех энергий (гамма излучение) | 1 |
Электроны и мюоны всех энергий (бета излучение) | 1 |
Нейтроны с энергией 20 МэВ (нейтронное излучение) | 5 |
Протоны с энергий > 2 МэВ (кроме протонов отдачи) | 5 |
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) | 20 |
Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.