какую функцию можно дифференцировать
Дифференцирование функции, нахождение производной
Если вам нужно решить задачу, в рамках которой требуется вычислить производную какой-либо функции с одной переменной, советуем внимательно прочесть эту статью. Здесь приводятся общие положения теории дифференцирования, имеющие отношение к вычислению производной. Для этого могут быть использованы разные способы, ведь исходная функция может быть задана явно или неявно, в параметрическом виде, быть элементарной, основной или сложной, значит, в каждой ситуации бывает нужен свой подход.
Таблица дифференцирования функции
Мы собрали всю информацию, которую нужно знать для правильного дифференцирования функции, и представили ее в табличном виде:
Степенная фунция y = x p
y = a x a x ‘ = a x · ln a
В частности, при a = e имеем
log a x ‘ = 1 x · ln a
В частности, при a = e имеем
y = ln x ln x ‘ = 1 x
Производная сложной функции
( f ( g ( x ) ) ) ‘ = f ‘ ( g ( x ) ) · g ‘ ( x )
Производная неявно заданной функции
Производная обратной функции
Обратные тригонометрические функции
Производная параметрически заданной функции
y = f ( x ) y ‘ = y · ( ln ( f ( x ) ) ) ‘
Пояснения таблицы
Содержимое таблицы требует небольших пояснений. Например, в наиболее простом случае для дифференцирования нам пригодится определение производной, т.е. вычисление соответствующего предела. Это действие носит название непосредственного дифференцирования.
Если вам приходится работать с основной элементарной функцией, то следует использовать таблицу основных производных. В ней приводятся все готовые значения, доказанные на основании определения. Это очень удобно, и мы советуем вам держать такую таблицу под рукой.
Дифференцируемость
Дифференци́руемая фу́нкция в математическом анализе — это функция, которая может быть хорошо приближена линейной функцией. Дифференцируемость является одним из фундаментальных понятий в математике и имеет большое число приложений как внутри неё, так и в естественных науках, широко использующих математический аппарат.
Содержание
Определения
где и при ,
Свойства
Касательная прямая
Примеры
См. также
Ссылки
Полезное
Смотреть что такое «Дифференцируемость» в других словарях:
Дифференцируемость функции в точке — Дифференцируемая функция в математическом анализе это функция, которая может быть хорошо приближена линейной функцией. Дифференцируемость является одним из фундаментальных понятий в математике и имеет большое число приложений как внутри неё, так… … Википедия
Непрерывная дифференцируемость — Дифференцируемая функция в математическом анализе это функция, которая может быть хорошо приближена линейной функцией. Дифференцируемость является одним из фундаментальных понятий в математике и имеет большое число приложений как внутри неё, так… … Википедия
АППРОКСИМАТИВНАЯ ДИФФЕРЕНЦИРУЕМОСТЬ — обобщение понятия дифференцируемости с заменой обычного предела аппроксимативным пределом. Действительная функция действительного переменного наз. аппроксимативно дифференцируемой в точке х 0, если существует такое число А, что При этом величина… … Математическая энциклопедия
Аналитические функции — функции, которые могут быть представлены степенными рядами (См. Степенной ряд). Исключительная важность класса А. ф. определяется следующим. Во первых, этот класс достаточно широк; он охватывает большинство функций, встречающихся в… … Большая советская энциклопедия
Дифференцируемая функция — Дифференцируемая (в точке) функция это функция, у которой существует дифференциал (в данной точке). Дифференцируемая на некотором множестве функция это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является… … Википедия
Лобачевский, Николай Иванович — родился 22 октября 1793 г. в Нижегородской губернии (по одному источнику в Нижнем Новгороде, по другому в Макарьевском уезде). Отец его Иван Максимович, выходец из Западного края, по вероисповеданию католик, потом перешедший в православную веру,… … Большая биографическая энциклопедия
АНАЛИТИЧЕСКАЯ ФУНКЦИЯ — функция, к рая может быть представлена степенным рядом. Исключит, важность класса А. ф. определяется следующим. Во первых, этот класс достаточно ш и р о к: он охватывает большинство функций, встречающихся в основных вопросах математики и ее… … Математическая энциклопедия
Производная функции — У этого термина существуют и другие значения, см. Производная. Иллюстрация понятия производной Производная&# … Википедия
Голоморфная функция — осуществляет конформное отображение, преобразуя ортогональную сетку в ортогональную (там где комплексная производная не обращается в нуль). Голоморфная функция, также называемая регулярно … Википедия
ДИФФЕРЕНЦИРУЕМОСТЬ ФУНКЦИЙ. НЕПРЕРЫВНОСТЬ ДИФФЕРЕНЦИРУЕМОЙ ФУНКЦИИ.
Функция y=f(x) называется дифференцируемой в некоторой точке x0, если она имеет в этой точке определенную производную, т.е. если предел отношения существует и конечен.
Если функция дифференцируема в каждой точке некоторого отрезка [а; b] или интервала (а; b), то говорят, что она дифференцируема на отрезке [а; b] или соответственно в интервале (а; b).
Справедлива следующая теорема, устанавливающая связь между дифференцируемыми и непрерывными функциями.
Теорема. Если функция y=f(x) дифференцируема в некоторой точке x0, то она в этой точке непрерывна.
Доказательство. Если , то ,
где α бесконечно малая величина, т.е. величина, стремящаяся к нулю при Δx→0. Но тогда
Таким образом,из дифференцируемости функции следует ее непрерывность.
Таким образом, в точках разрыва функция не может иметь производной. Обратное утверждение неверно: существуют непрерывные функции, которые в некоторых точках не являются дифференцируемыми (т.е. не имеют в этих точках производной).
Рассмотрим на рисунке точки а, b, c.
В точке a при Δx→0 отношение не имеет предела (т.к. односторонние пределы различны при Δx→0–0 и Δx→0+0). В точке A графика нет определенной касательной, но есть две различные односторонние касательные с угловыми коэффициентами к1 и к2. Такой тип точек называют угловыми точками. В точке b при Δx→0 отношение является знакопостоянной бесконечно большой величиной . Функция имеет бесконечную производную. В этой точке график имеет вертикальную касательную. Тип точки – «точка перегиба» c вертикальной касательной.
В точке c односторонние производные являются бесконечно большими величинами разных знаков. В этой точке график имеет две слившиеся вертикальные касательные. Тип – «точка возврата» с вертикальной касательной – частный случай угловой точки.
Пример.
Покажем, что она не имеет производной в этой точке.
Т.о., отношение при Δx→ 0 справа и слева имеет различные пределы, а это значит, что отношение предела не имеет, т.е. производная функции y=|x| в точке x= 0 не существует. Геометрически это значит, что в точке x= 0 данная «кривая» не имеет определенной касательной (в этой точке их две).
Какую функцию можно дифференцировать
3.2.3. дЙЖЖЕТЕОГЙТХЕНПУФШ ЖХОЛГЙК. оЕРТЕТЩЧОПУФШ ДЙЖЖЕТЕОГЙТХЕНПК ЖХОЛГЙЙ
еУМЙ ЖХОЛГЙС ДЙЖЖЕТЕОГЙТХЕНБ Ч ЛБЦДПК ФПЮЛЕ ОЕЛПФПТПЗП ПФТЕЪЛБ [ Б ; b ] ЙМЙ ЙОФЕТЧБМБ ( Б ; b ), ФП ЗПЧПТСФ, ЮФП ПОБ ДЙЖЖЕТЕОГЙТХЕНБ ОБ ПФТЕЪЛЕ [ Б ; b ] ЙМЙ УППФЧЕФУФЧЕООП Ч ЙОФЕТЧБМЕ ( Б ; b ).
уРТБЧЕДМЙЧБ УМЕДХАЭБС ФЕПТЕНБ, ХУФБОБЧМЙЧБАЭБС УЧСЪШ НЕЦДХ ДЙЖЖЕТЕОГЙТХЕНЩНЙ Й ОЕРТЕТЩЧОЩНЙ ЖХОЛГЙСНЙ.
фБЛЙН ПВТБЪПН, ЙЪ ДЙЖЖЕТЕОГЙТХЕНПУФЙ ЖХОЛГЙЙ УМЕДХЕФ ЕЕ ОЕРТЕТЩЧОПУФШ.
еУМЙ , ФП
ЗДЕ ВЕУЛПОЕЮОП НБМБС ЧЕМЙЮЙОБ, Ф.Е. ЧЕМЙЮЙОБ, УФТЕНСЭБСУС Л ОХМА РТЙ . оП ФПЗДБ
фБЛЙН ПВТБЪПН, Ч ФПЮЛБИ ТБЪТЩЧБ ЖХОЛГЙС ОЕ НПЦЕФ ЙНЕФШ РТПЙЪЧПДОПК. пВТБФОПЕ ХФЧЕТЦДЕОЙЕ ОЕЧЕТОП: УХЭЕУФЧХАФ ОЕРТЕТЩЧОЩЕ ЖХОЛГЙЙ, ЛПФПТЩЕ Ч ОЕЛПФПТЩИ ФПЮЛБИ ОЕ СЧМСАФУС ДЙЖЖЕТЕОГЙТХЕНЩНЙ (Ф.Е. ОЕ ЙНЕАФ Ч ЬФЙИ ФПЮЛБИ РТПЙЪЧПДОПК).
тБУУНПФТЙН ОБ ТЙУХОЛЕ ФПЮЛЙ Б, b, c.
ч ФПЮЛЕ b РТЙ ПФОПЫЕОЙЕ СЧМСЕФУС ЪОБЛПРПУФПСООПК ВЕУЛПОЕЮОП ВПМШЫПК ЧЕМЙЮЙОПК .
жХОЛГЙС ЙНЕЕФ ВЕУЛПОЕЮОХА РТПЙЪЧПДОХА. ч ЬФПК ФПЮЛЕ ЗТБЖЙЛ ЙНЕЕФ ЧЕТФЙЛБМШОХА ЛБУБФЕМШОХА. фЙР ФПЮЛЙ – «ФПЮЛБ РЕТЕЗЙВБ» c ЧЕТФЙЛБМШОПК ЛБУБФЕМШОПК.
ч ФПЮЛЕ c ПДОПУФПТПООЙЕ РТПЙЪЧПДОЩЕ СЧМСАФУС ВЕУЛПОЕЮОП ВПМШЫЙНЙ ЧЕМЙЮЙОБНЙ ТБЪОЩИ ЪОБЛПЧ. ч ЬФПК ФПЮЛЕ ЗТБЖЙЛ ЙНЕЕФ ДЧЕ УМЙЧЫЙЕУС ЧЕТФЙЛБМШОЩЕ ЛБУБФЕМШОЩЕ. фЙР – «ФПЮЛБ ЧПЪЧТБФБ» У ЧЕТФЙЛБМШОПК ЛБУБФЕМШОПК – ЮБУФОЩК УМХЮБК ХЗМПЧПК ФПЮЛЙ.
тБУУНПФТЙН ЖХОЛГЙА y=|x|.
ьФБ ЖХОЛГЙС ОЕРТЕТЩЧОБ Ч ФПЮЛЕ x = 0, Ф.Л. .
рПЛБЦЕН, ЮФП ПОБ ОЕ ЙНЕЕФ РТПЙЪЧПДОПК Ч ЬФПК ФПЮЛЕ.
оП ФПЗДБ РТЙ
б РТЙ > 0
ф.П., ПФОПЫЕОЙЕ РТЙ УРТБЧБ Й УМЕЧБ ЙНЕЕФ ТБЪМЙЮОЩЕ РТЕДЕМЩ, Б ЬФП ЪОБЮЙФ, ЮФП ПФОПЫЕОЙЕ РТЕДЕМБ ОЕ ЙНЕЕФ, Ф.Е. РТПЙЪЧПДОБС ЖХОЛГЙЙ y=|x| Ч ФПЮЛЕ x = 0 ОЕ УХЭЕУФЧХЕФ. зЕПНЕФТЙЮЕУЛЙ ЬФП ЪОБЮЙФ, ЮФП Ч ФПЮЛЕ x = 0 ДБООБС «ЛТЙЧБС» ОЕ ЙНЕЕФ ПРТЕДЕМЕООПК ЛБУБФЕМШОПК (Ч ЬФПК ФПЮЛЕ ЙИ ДЧЕ).
Дифференциал функции в математике с примерами решения и образцами выполнения
Понятие дифференциала функции:
Известно, что если функция , дифференцируема в некоторой точке , то ее приращение в этой точке может быть представлено в виде
где функция такова, что
Слагаемое является линейной функцией от , а слагаемое есть бесконечно малая более высокого порядка, чем бесконечно малая . Поэтому говорят, что величина : составляет главную часть приращения функции в точке .
Определение:
Дифференциалом функции в точке называется линейная относительно функция составляющая главную часть приращения функции в точке .
Дифференциал функции обозначается («де эф от икс нулевое) или («де игрек»)»
Пример:
Найти дифференциал функции .
Решение:
По формуле (3) имеем:
Итак, дифференциал независимого переменного совпадает с его приращением . Поэтому равенство (3) можно записать в виде
Пример:
Найти дифференциал сложной функции .
Решение:
По формуле (4) находим:
Но — поэтому,
Таким образом, форма дифференциала не зависит от того, является аргумент данной функции независимой переменной или функцией другого аргумента. Это свойство дифференциала сложной функции называется инвариантностью формы дифференциала.
Пример:
Найти дифференциал функции
Решение:
По формуле (4) находим:
Геометрический смысл дифференциала
Пусть — дифференцируемая в точке функция, график которой изображен на рис. 74, — касательная к графику функции в точке с абсциссой . Рассмотрим ординату этой касательной, соответствующую абсциссе .
Из прямоугольного треугольника находим . По этому
Таким образом, дифференциал функции в точке равен приращению ординаты касательной, проведенной к графику этой функции в точке , соответствующему приращению ее абсциссы .
Можно показать, что этот вывод не зависит от расположения графика функции и касательной на координатной плоскости.
Дифференциал может быть как меньше приращения функции (см. рис. 74), так и больше (рис. 75). Однако при достаточно малых приращениях можно
принять . Этот вывод следует и из равенств (1) и (2) предыдущего параграфа.
Вычисление дифференциала
Мы установили, что дифференциал функции имеет форму
т. е. дифференциал функции равен произвелдению производной этой функции на дифференциал ее аргумента.
По формуле (1) можно вычислить дифференциал любой дифференцируемой функции. Так, например;
Аналогично, каждой из основных формул дифференцирования можно сопоставить соответствующую формулу для вычисления дифференциала.
Пример:
Найти дифференциал функции
Решение:
По формуле (1) находим:
Пример:
Найти дифференциал функции
Решение:
Находим:
Дифференциалы высших порядков
Из формулы следует, что дифференциал функции зависит от двух переменных, , причем не зависит.
Рассмотрим дифференциал только как функцию от , т. е. будем считать постоянным. В этом случае можно найти дифференциал этой функции.
Дифференциал от дифференциала функции называется дифференциалом второго порядка, или вторым дифференциалом этой функции и обозначается («де два игрек») или («де два эф от икс»).
Таким образом,
Принято скобки при степенях не писать, поэтому
Аналогично определяются дифференциалы третьего порядка:
Вообще, дифференциалом п-го порядка называется дифференциал от дифференциала порядка:
Таким образом, для нахождения дифференциала п—го порядка функции нужно найти производную п-го порядка от этой функции и полученный результат умножить на .
Пример:
Найти дифференциалы первого, второго и третьего порядка функции
Решение:
Находим соответствующие производные
от данной функции:
Приложение дифференциала приближенным вычислениям
Рассмотрим функцию , приращение которой
Выше (§ 2) было установлено, что при достаточно малых — имеем
Так как вычислять значительно проще, чем , то на практике формулу (3) применяют к различным приближенным вычислениям.
Вычисление приближенного значения приращения функции
Пример:
Найти приближенное значение приращения функции .
Решение:
Применив формулу (3), получим:
Посмотрим, какую погрешность мы допустили, вычислив дифференциал данной функции вместо ее приращения. Для этого найдем истинное значение приращения:
Далее, находим абсолютную погрешность приближения:
а затем и относительную погрешность:
Погрешность приближения оказалась довольно малой, что еще раз подтверждает целесообразность применения формулы (3).
Вычисление приближенного числового значения функции
Из формулы (1) имеем
Пример:
Найти приближенное значение функции
Решение:
Представим в виде суммы Приняв найдем
Приближенное вычисление степеней
Рассмотрим функцию Применив формулу (4), получим
По этой формуле наводят приближенное значение степеней.
Пример:
Найти приближенное значение степени .
Решение:
Представим данную степень в виде . Приняв по формуле
(5) найдем:
Приближенное извлечение корней
При и формула (5) примет вид
Формула (6), известная и по школьному курсу, дает возможность найти приближенные значения различных корней.
Пример:
Найти приближенное значение корня
Решение:
Представим данный корень в виде Приняв по формуле (6) найдем:
Дополнение к дифференциалу
Понятие о дифференциале в высшей математике
Сравнение бесконечно малых величин между собой
I. Мы рассмотрели действия над бесконечно малыми величинами и показали, что в результате сложения, вычитания и умножения их получаются также бесконечно малые величины. Однако частное от деления двух бесконечно малых друг на друга может быть не только бесконечно малой величиной, но и бесконечно большой и конечной.
В самом деле, пусть, например, а — бесконечно малая, тогда и 2а будут также бесконечно малыми. При делении их друг на друга возможны следующие случаи:
1) отношение — бесконечно малая величина,
2) отношение — бесконечно большая величина,
3) отношение — конечная величина.
Первое отношение показывает, что бесконечно малая составляет ничтожно малую часть от а и, следовательно, стремится к нулю значительно быстрее, чем а.
Второе отношение указывает на то, что а, неограниченно уменьшаясь, остается значительно больше, чем , т. е. стремится к нулю медленнее величины .
Сказанное можно иллюстрировать следующей таблицей:
Принято бесконечно малую по отношению к а называть бесконечно малой высшего порядка, а а по отношению к — бесконечно малой низшего порядка.
Что касается третьего отношения, то из него следует, что бесконечно малые 2а и а стремятся к нулю с одинаковой скоростью, так как при их изменении отношение остается постоянным. Такие бесконечно малые имеют, как говорят, одинаковый порядок малости.
Таким образом, частное от деления двух бесконечно малых величин позволяет сравнивать их между собой. Это сравнение особенно полезно в приближенных вычислениях, где отбрасывание бесконечно малых высшего порядка приводит к значительному упрощению вычислений.
II. Возьмем функцию ; ее приращение
Множитель при есть производная данной функции, а потому последнее равенство можно переписать так:
Сравним изменение величины обоих слагаемых правой части равенства (I) с уменьшением . Положив, например,
х = 2 и, следовательно, у’ = 4, составим следующую таблицу значений этих слагаемых:
Как видно из таблицы, слагаемые у’ и уменьшаются с уменьшением , причем первое пропорционально , второе же значительно быстрее.
Покажем, что то же самое справедливо для любой дифференцируемой функции f(x).
Пусть дана функция у = f(х). Ее производная
Согласно определению предела переменной имеем:
где а—бесконечно малая величина при . Отсюда
И здесь при уменьшении первое слагаемое у’ уменьшается пропорционально второе же слагаемое а уменьшается быстрее, так как отношение —бесконечно
малая величина при , т. е. по отношению к у’ величина а — бесконечно малая высшего порядка. Поэтому выражение у’ называют главной частью приращения функции у = f(х).
Определение:
Главная часть у’ приращения функции у = f(х) называется дифференциалом функции.
Дифференциал функции у = f(х) принято обозначать символом dу. Таким образом
Дифференциал аргумента dх принимают равным приращению аргумента т. е.
Поэтому равенство (3) можно переписать в следующем виде:
т. е. дифференциал функции равен произведению производной функции на дифференциал аргумента. Из формулы (4) следует:
Равенство (5) показывает, что производная функции есть отношение дифференциала функции к дифференциалу аргумента. На этом основании производную функции часто выражают в виде и читают: «дэ игрек по дэ икс».
III. Заменив в равенстве (2) символом dу, напишем:
Как было показано выше, — бесконечно малая высшего порядка по отношению к а потому, отбросив в равенстве (6) слагаемое , получим:
В практических вопросах часто используют формулу (7), т. е. берут дифференциал функции вместо ее приращения, делая при этом незначительную ошибку и тем меньшую, чем меньше .
Примечание:
В случае линейной функции . В самом деле, для функции приращение будет:
Множитель есть производная линейной функции; поэтому правая часть последнего равенства выражает дифференциал данной функции, т. е.
Итак, в случае линейной функции
Геометрическое изображение дифференциала
Возьмем функцию у = f(x), график которой изображен на рис. 104.
Пусть абсцисса точки М
Дадим аргументу х приращение и восставим в точке Р1 перпендикуляр Р1М1 к оси Ох, а из точки М проведем . Тогда, как известно,
Проведем в точке М касательную к кривой; полученный при этом отрезок QN, равный приращению ординаты точки М, движущейся по касательной, называется приращением ординаты касательной. Из прямоугольного треугольника МQN имеем:
а, согласно геометрическому смыслу производной,
Таким образом, если в точке М кривой у = f(х) провести касательную, то дифференциал функции у = f(х) в этой
точке изобразится приращением ординаты касательной, соответствующим приращению ее абсциссы на dx.
Дифференциал функции в данной точке может быть как меньше приращения ее (рис. 104), так и больше (рис. 105).
Дифференциал второго порядка
Дифференциал dy функции у = f(x), называемый первым дифференциалом или дифференциалом первого порядка, представляет собой также функцию x, а потому и от него можно найти дифференциал, который называют вторым дифференциалом или дифференциалом второго порядка. В этом случае пишут d(dy) или короче и читают: «дэ два игрек».
Найдем выражение дифференциала второго порядка от функции через ее производную. Для этого продифференцируем по х равенство.
считая dx постоянным множителем (так как dx не зависит от х):
Но согласно формуле (4)
т. е. дифференциал второго порядка равен произведению второй производной функции на квадрат дифференциала аргумента.
Из равенства (1) следует
Это дает основание для выражения второй производной
функции в виде отношения которое читают так: «дэ дна игрек по дэ икс квадрат».
Приложение дифференциала к приближенным вычислениям
Рассмотрим несколько примеров использования дифференциала в приближенных вычислениях.
а) Определение приращения функции.
Пример:
Найти приближенно приращение функции
при х = 2 и = 0,001.
Решение:
Так как приращение аргумента — величина малая, то согласно формуле (7) можем приращение функции заменить ее дифференциалом.
Дифференциал же данной функции
Заменив в равенстве (1) х и dх их значениями, получим:
Посмотрим, какую ошибку мы делаем, беря дифференциал вместо приращения. Для этого найдем точное значение приращения функции:
Сравнивая полученное точное значение с приближенным, видим, что допущенная ошибка равна 0,000002. Выражая ее в процентах, найдем:
Ошибка оказалась очень малой.
Пример:
Шар радиуса R = 20 см был нагрет, отчего радиус его удлинился на 0,01 см. Насколько увеличился при этом объем шара?
Решение:
Объем шара определяется по формуле
Каждому значению R по закону, заданному этой формулой, отвечает одно определенное значение v, т. е. v есть функция от R. Следовательно, наша задача сводится к определению приращения функции v при заданном приращении аргумента R. Так как приращение аргумента мало
то мы можем приращение функции заменить ее дифференциалом.
Находим дифференциал функции v.
б) Нахождение числового значения функции. Пусть требуется найти приближенное значение функции
при x1 = 2,001, т. е. найти величину f(2,001). Представим х1 в виде суммы
где 0,001 будем рассматривать как приращение аргумента. Из формулы для приращения функций
Полагая малой величиной, можем заменить величиной dу; тогда последнее равенство перепишется в виде
Применив равенство (2) к данному примеру, можем написать:
Равенство (2) может служить формулой для приближенного вычисления значения функции.
в) Вычисление по приближенным формулам. Пользуясь формулой (2), выведем приближенные формулы для вычисления некоторых выражений. 1) Возьмем функцию
и положим, что угол х, равный нулю, получает весьма малое приращение а. Применим формулу (2), полагая в ней х = 0 и dx = а. Получим:
Отсюда следует, что синус очень малого угла приближенно равен самому углу; при этом нужно помнить, что угол должен быть выражен в радианной мере. Так, например, sin 0,003 0,003. В самом деле, выразив данный угол в градусной мере, найдем:
2) Возьмем функцию и положим, что х, равный 1, получает весьма малое по сравнению с единицей приращение . Тогда согласно формуле (2) имеем:
Точно так же можно вывести равенство
По формулам (3) и (4) можно быстро найти приближенную степень числа, близкого к единице; например:
3) Выведем формулу для приближенного вычисления выражения где а имеет малое значение по сравнению с единицей. Для этого представим в виде степени
Аналогично выводится формула
По формулам (5) и (6) можно легко найти приближенное значение корня из числа, близкого к единице; например:
Кривизна кривой
Пусть дана кривая, определяемая уравнением у = f(х) (рис. 106).
Возьмем на ней две точки А и В и проведем в них касательные к кривой. При переходе от точки А к точке В касательная меняет угол наклона к положительному направлению оси абсцисс на некоторую величину. Если обозначим угол наклона касательной в точке А к оси Ох через а, то угол наклона касательной в точке В к той же оси, получив приращение , будет равен а + , а угол между самими касательными, как видно из рисежа, будет . Величину можно рассматривать как угол отклонения касательной от первоначального ее положения.
Разделив на длину дуги АВ = , получим среднюю величину угла отклонения, приходящегося на единицу длины дуги. Отношение называется средней кривизной кривой на ее участке АВ.
Средняя кривизна кривой на разных ее участках может быть различной.
Допустим теперь, что точка В, двигаясь по кривой, неограниченно приближается к точке А и уменьшается, стремясь к нулю; тогда предел отношения будет определять кривизну кривой в точке А. Обозначив кривизну кривой в точке буквой К, будем иметь:
Определение:
Кривизной кривой в данной ее точке А называется предел, к которому стремится средняя кривизна дуги АВ при неограниченном приближении точки В к А.
Согласно определению производной
Преобразуем правую часть этого равенства, выразив dа. и ds через производные данной функции у =f(x).
Согласно геометрическому смыслу производной имеем
где а — угол наклона касательной к кривой у =f(х) в точке А к положительному направлению оси абсцисс (рис. 106); отсюда
В этом равенстве аrctg у’ — функция от функции, так как аrctg у’ зависит от у’, a у’ зависит от х. Продифференцируем последнее равенство по аргументу х; получим:
Найдем выражение ds через производную функции у =f(x). Для этого возьмем снова тот же участок АВ кривой (рис. 107).
Будем рассматривать длину АВ как приращение дуги , соответствующее приращениям PQ = и RB = . Если достаточно мало, то отрезок дуги АВ можно считать прямолинейным; в этом случае, применяя теорему Пифагора, получим:
Разделив обе части равенства на, найдем:
Положим, что тогда
поэтому равенство (3) примет вид
Подставив значение da и ds в выражение (1), получим:
Формула (5) позволяет найти кривизну кривой, определяемой уравнением у = f(x), в любой ее точке.
Кривизна окружности
Проведем касательные в двух точках А и В окружности (рис. 108).
Обозначив дугу АВ через , найдем среднюю кривизну
на этом участке; она выразится дробью . Проведя радиусы в точки касания, получим:
так как углы АО1В и образованы взаимно перпендикулярными прямыми. Но, как известно, угол в радиаyной мере измеряется отношением длины дуги к радиусу; следовательно,
Ясно, что такой же вывод мы получим, взяв другой какой-либо участок окружности. Следовательно,
для любой точки окружности, т. е. кривизна окружности постоянна во всех ее точках и равна обратной величине ее радиуса.
Радиус кривизны кривой
При изучении кривизны кривой подбирают такую окружность, кривизна которой равна кривизне кривой в той или иной ее точке. Центр этой окружнoсти называется центром кривизны кривой в соответствующей точке, радиус—радиусом кривизны кривой в этой точке, а сама окружность— окружностью кривизны (рис. 109).
Определение:
Окружностью кривизны в точке М кривой называется окружность, проходящая через точку М и имеющая с кривой одинаковую кривизну и общую касательную.
Заметим, что центр окружности кривизны всегда располагается со стороны вогнутости кривой.
Кривизна окружности, как мы знаем,
Следовательно, и радиус кривизны кривой в точке ее определяется тем же равенством.
Применяя эту формулу к прямой линии, заданной, например уравнением получим:
так как
Это значит, что прямую линию можно рассматривать как окружность бесконечно большого радиуса.
Пример:
Найти радиус кривизны кривой в точке, абсцисса которой равна
Решение:
Найдем сначала первую и вторую производные функции для точки с абсциссой
Подставив значения у’ и у» в формулу (1), получим:
Как найти дифференциал — подробная инструкция
Бесконечно малые величины
Бесконечно малые величины В этом параграфе чаще всего независимое переменное будем обозначать через h.
Определение:
Бесконечно малой величиной вблизи h = a называется функция, зависящая от h и имеющая предел, равный нулю при условии, что независимое переменное стремится к а.
Например, является бесконечно малой величиной при условии, что h стремится к 3; sinh и tgh являются бесконечно малыми при условии, что h стремится к нулю.
Приведем примеры геометрического и физического содержания.
Пример:
Площадь S прямоугольника со сторонами х и h является бесконечно малой при любых х, так как
Пример:
Объема прямоугольного параллелепипеда, ребра которого равны 3, 2 и 2h, является бесконечно малым, так как
Пример:
Объем v прямоугольного параллелепипеда, ребра которого равны h, 2h и 5h, является бесконечно малым, так как
Пример:
По закону Ома v = Ri, где v — напряжение, R — сопротивление и i — ток. Отсюда следует, что при постоянном сопротивлении напряжение является бесконечно малым относительно тока, так как
Пусть дана бесконечно малая величина а (h), т. е.
Рассмотрим предел отношения
Если этот предел существует и равен нулю, то бесконечно малая величина a (h) называется бесконечно малой более высокого порядка, чем h.
Если предел равен конечному числу то бесконечно малые a (h) и h называются величинами одного порядка; если l =1, то a(h) и h называются эквивалентными бесконечно малыми.
Этот предел может зависеть от других переменных, отличных от h.
Пример:
Пусть Это бесконечно малая величина порядка более высокого, чем h, так как
Пример:
Пример:
Пример:
В заключение параграфа рассмотрим функцию y = f(x). Пусть приращение независимого переменного равно А, тогда приращение функции равно
Пример:
Пусть дана функция Ее приращение равно
Если же x = 0 и по-прежнему h =1, то
Здесь h сохраняет значение 1, но, поскольку х меняется, изменяется и .
Если же x = 2, а h = 0,5, то
Здесь х сохраняет значение 2, но h меняется, поэтому меняется и .
Если f(х)—функция непрерывная, то, по определению, ее приращение стремится к нулю при условии, что приращение h независимого переменного х стремится к нулю. Поэтому, используя введенное понятие бесконечно малой величины, можно сказать, что приращение непрерывной функции есть величина бесконечно малая относительно приращения независимого переменного.
Дифференциал
Пусть дана непрерывная функция у = f(х), имеющая производную. Тогда, по определению производной,
Очевидно, что первый член
Из равенства (4) получаем, что приращение функции с точностью до бесконечно малой высшего порядка равно f'(х)h ; это выражение называется дифференциалом функции.
Определение. Дифференциал есть та часть при-ращения функции , которая линейна относительно h . Таким образом, дифференциал функции равен произведению производной на приращение независимого переменного.
Дифференциал функции обозначают или dy, или df(x), так что
Для симметрии записей вводится определение дифференциала независимого переменного.
Определение:
Дифференциалом независимого переменного называется его приращение.
Дифференциал независимого переменного обозначается dx, так что имеем
Операция нахождения дифференциала называется дифференцированием.
Пример:
Найдем дифференциал функции у = sin х. Так как (sin х)’ = cos х, то dy = dsin х = cos х • h = cos xdx.
Пример:
Подставляя сюда вместо х его значение 2, а вместо dx его значение 0,1, получим
Из определения дифференциала функции следует, что дифференциал функции одного переменного является функцией двух переменных. Из формул (5) и (6) следует, что
Таким образом, производная равна отношению дифференциала функции к дифференциалу независимого переменного.
С этого момента для обозначения производной будем пользоваться и знаком ( )’ и отношением дифференциалов.
Таблица дифференциал
Применение к приближенным вычислениям
Перепишем формулу (4) § 2 в следующем виде:
и для начала посмотрим на примере, как будут выглядеть отдельные ее члены при некоторых числовых значениях х и h.
Пример:
Пусть Положим x = 2 и h = 0,01. Применяя формулу куба суммы, получаем
С другой стороны, применяя формулу (1) и зная, чтополучим
Сравнивая формулы (*) и (**), видим, что в левых частях стоит одно и то же, в правых же частях совпадают первые два члена, следовательно, третий член в формуле (**) равен двум последним членам в формуле (*), т. е.
Вычислим все члены, встречающиеся в этом примере, при указанных числовых значениях х и h:
Если бы мы захотели вычислить не точно, а приближенно с точностью до 0,01, то член а (x, h)h = 0,000601 никакого значения бы не имел, т. е. его можно было бы просто откинуть.
(знак обозначает приближенное равенство). Эту формулу имеет смысл употреблять только при малых значениях величины h, так как в противном случае ошибка может оказаться очень большой.
Приведем примеры применения формулы (2).
Пример:
Выведем приближенную формулу для вычисления кубического корня. Возьмем тогда Применяя формулу (2), получаем
Если положить , то полученному результату можно придать следующий вид:
Отсюда видно, что если нам известен кубический корень из числа, то для близких чисел можно с удобством воспользоваться выведенной формулой. Например, зная, что вычисляем Здесь z = 10, h = 3, поэтому получаем
Сделаем проверку, возведя 10,01 в куб. Видим, что вместо 1003 получили число 1003,003001, т. е. ошибка меньше 0,005.
Пример:
Выведем приближенную формулу для вычисления тангенсов малых углов. Так как то применяя формулу (2), получаем
Зная, что tg 0 = 0 и cos 0=1, и полагая в предыдущей формуле x = 0, найдем
Напоминаем, что здесь h есть радианная мера угла. Например, вычислим tg3°. Переведем сначала градусную меру угла в радианную:
Дифференциал площади криволинейной трапеции
Определение:
Криволинейной трапецией называется плоская фигура, ограниченная с трех сторон прямыми, а с четвертой стороны кривой. При этом две прямые параллельны между собой и перпендикулярны третьей, а кривая пересекается с любой прямой, параллельной боковым сторонам, в одной точке.
Не исключается случай, когда одна или обе боковые стороны обращаются в точку. На рис. 69, 70, 71 изображены криволинейные трапеции.
Все плоские фигуры, с которыми нам придется встречаться, могут быть представлены как совокупность криволинейных трапеций. Например, на рис. 72 фигура разбита на четыре криволинейные трапеции.
Конечная наша цель — определить площадь криволинейной трапеции, но пока эту задачу мы еще не можем решить. Однако мы сумеем найти дифференциал площади криволинейной трапеции. Решим эту задачу, предполагая, что трапеция расположена определенным образом.
Пусть дана криволинейная трапеция АВСD, ограниченная осью Ох, двумя прямыми, перпендикулярными этой оси, и кривой, заданной уравнением у=f(х) (рис. 73).
Будем считать, что прямая АВ неподвижна в процессе всех рассуждений, т. е. абсцисса точки А есть постоянная величина. «Прямую же СD будем двигать, т. е. абсцисса точки D будет переменной. Обозначим ее через х.
Ясно, что площадь криволинейной трапеции АВСD будет изменяться в зависимости от величины х, значит, площадь есть функция х. Обозначим ее F(х). Этой функции мы не знаем, но несмотря на это найдем ее дифференциал.
Дадим х приращение h = DК, тогда площадь F(x) получит приращение ( х ) (это приращение на рис. 73 заштриховано).
При изменении независимого переменного от величины х до х + h (от точки D) до точки К) функция f(х), т. е. ордината точки, лежащей на кривой, также изменяется и при этом достигает наибольшего значения М и наименьшего значения т. На рис. 73 QR = М и NР= т.
Обозначим разность между приращением и площадью Т2 через со, тогда
Остановимся на формуле (1) и проследим, как меняются ее члены при стремлении h к нулю.
Предварительно заметим, что, во-первых, всегда, т. е. при любых значениях x,
и, во-вторых, если , то точка К приближается к точке D. Точка N, абсциссу которой обозначим через , заключена между D и К, поэтому при точка N также приближается к точке D, следовательно,
Функция f(х) предполагается непрерывной. В силу свойств непрерывной функции (см. гл. VI, § 6) находим
а это значит, что можно записать (см. начало § 2 этой главы)
где а—бесконечно малая относительно h. Также можно заключить, что
где —бесконечно малая относительно h.
Исследуем порядок малости членов, стоящих в правой части равенства (1). Для этого найдем следующие пределы:
Первый предел находим непосредственно [применяя (3)]:
Чтобы найти второй предел, найдем сначала [используя (4) и (5)]
Так как удовлетворяет неравенству (2), то
а в силу равенства (7)
Таким образом, установлено, что и mh и являются бесконечно малыми. Кроме того, член со есть бесконечно малая высшего порядка относительно h.
Учитывая все эти рассуждения и применяя равенство (4), можно переписать равенство (1) в виде
В правой части равенства (8) стоят три члена. Каждый из них является бесконечно малым относительно h первый из них линеен относительно h, а два других имеют высший порядок малости.
Этим результатом мы воспользуемся в следующих главах.
Пример:
Найдем дифференциал площади F криволинейной трапеции, ограниченной осью Ох, кривой, заданной уравнением , прямой x =1 и подвижной прямой, параллельной оси Оу.
Применяя только что полученный результат, будем иметь
Пример:
Найти производную от площади криволинейной трапеции, ограниченной осью Ох, кривой, заданной уравнением у = sin x, прямой х = 2 и подвижной прямой, параллельной оси Оу.
Находим дифференциал этой площади: dF = sin x dx, а следовательно и производную:
Применение дифференциала к различным задачам
Рассуждения не только приводят к понятию дифференциала, но в некоторых случаях позволяют найти производную. Предположим, что приращение некоторой функции представлено в виде
где (x) не зависит от h, и
т. е. (x)—производная заданной функции.
Пример:
Найти производную от функции f(x), определенной геометрически как объем, ограниченный:
1) поверхностью Р, полученной от вращения вокруг оси Ох дуги ОА, принадлежащей параболе ;
2) плоскостью П1, перпендикулярной оси Ох и отстоящей от начала координат на расстояние х (рис. 74).
Рассмотрим два цилиндра: первый из них имеет основанием К1, образующую, параллельную оси Ох, и высоту h, второй имеет основанием К2 и образующую, также параллельную оси Ох (рис. 77).
Но oбъемы W1 и W2 легко подсчитать:
Разность объемов W1 и W2 (т. е. объем цилиндрического кольца) равна
Приращение (х) отличается от W1 на некоторую часть разности W2 — W1 поэтому
где— некоторое положительное число, меньшее единицы. Так как
то член —стоящий в правой части равенства (**), является бесконечно малой высшего порядка малости относительно h. Поэтому равенство (**) является частным случаем равенства (*). Следовательно, вывод, который был сделан в начале параграфа, может быть перенесен и на равенство (*), т. е. производная от функции f(х) равна .
В этом примере следует обратить внимание на то, что функция f(х) была определена чисто геометрически, нам не была известна формула, определяющая эту функцию, однако производную мы нашли.
Пример:
Рассмотрим цилиндрическую трубу, у которой радиус внешней поверхности R, радиус внутренней поверхности r, высота H. Найдем объем V материала, из которого сделана эта труба (рис. 78).
Будем называть этот объем объемом цилиндрического слоя. Поскольку объем внешнего цилиндра равен , а объем внутреннего равен, то объем цилиндрического слоя равен
Если стенка трубы тонкая, то r и R мало отличаются друг от друга. Обозначим их разность через h (h = R — r). Тогда формула (*) примет вид
Второй член, стоящий в правой части равенства (*), второго порядка относительно h. Поэтому при член становится бесконечно малой высшего порядка. Отбрасывая его, мы получим приближенную формулу для подсчета объема тонкого цилиндрического слоя:
Интересно отметить еще один способ получения этой формулы (рис. 79).
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института