какую физическую величину называют напряженностью электрического поля
Напряженность электрического поля
Что такое электрическое поле
Однажды Бенджамин Франклин, чей портрет можно увидеть на стодолларовой купюре, запускал воздушного змея во время дождя с грозой. Столь странное занятие он выбрал не просто так, а с целью исследования природы молнии. Заметив, что на промокшем шнуре волоски поднялись вверх (т. е. он наэлектризовался), Франклин хотел прикоснуться к металлическому ключу. Но стоило ему приблизить палец, раздался характерный треск и появились искры. Сработало электрическое поле.
Это случилось в середине XVIII века, но еще целое столетие ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».
В современной физике электрическое поле — это некая материя, которая возникает между заряженными телами и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим.
Объекты, несущие одноименные заряды, будут отталкиваться, а тела с разноименными зарядами — притягиваться.
Определение напряженности электрического поля
Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.
Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.
Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.
Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление, то есть вектор.
Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.
Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые объекты.
Единицы измерения и формулы
Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:
E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.
Если нужно выразить силу через напряженность, мы получим следующую формулу:
F = q × E
Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.
Поскольку сила измеряется в ньютонах, а величина заряда — в кулонах, единицей измерения напряженности электрического поля является Н/Кл (ньютон на кулон).
Принцип суперпозиции
Допустим, у нас есть несколько зарядов, которые перекрестно взаимодействуют и образуют общее поле. Чему равна напряженность электрического поля, создаваемого этими зарядами?
Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав напряжения, создаваемые каждым зарядом в отдельности в той же точке (с учетом вектора). Это и есть принцип суперпозиции.
Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:
речь идет о сверхсильных полях с напряженностью более 10 20 в/м.
Но задачи с такими данными выходят за пределы школьного курса физики.
Напряженность поля точечного заряда
У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.
Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.
Закон Кулона
Предположим, в вакууме есть два точечных заряженных тела, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на эти объекты воздействуют силы, направленные по соединяющей их прямой.
Закон Кулона
Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.
Силу электрического поля в конкретной точке можно найти по формуле: где q1 и q2 — модули точечных зарядов, r — расстояние между ними.
В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.
Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:
Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.
Линии напряженности
Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.
Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля.
При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.
Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.
Электрическое поле и его характеристики
теория по физике 🧲 электростатика
Вокруг заряженных тел существует особая среда — электрическое поле. Именно это поле является посредником в передаче электрического взаимодействия.
Свойства электрического поля
Характеристики электрического поля
Напряженность численно равна электрической силе, действующей на единичный положительный заряд:
q 0 — пробный заряд.
Пример №1. Сила, действующая в поле на заряд в 20 мкКл, равна 4Н. Вычислить напряженность поля в этой точке.
20 мкКл = 20∙10 –6 Кл
Силовые линии — линии, касательные к которым совпадают с вектором напряженности.
Потенциальная энергия взаимодействия двух зарядов W (Дж) в вакууме:
Потенциальная энергия взаимодействия двух зарядов W (Дж) в среде:
Знак потенциальной энергии зависит от знаков заряженных тел:
Потенциал — энергетическая характеристика электрического поля. Обозначается как ϕ. Единица измерения — Вольт (В).
Численно потенциал равен отношению потенциальной энергии взаимодействия двух зарядов к единичному положительному заряду:
q 0 — пробный заряд.
Потенциал — скалярная физическая величина. Знак потенциала зависит от знака заряда, создающего поле. Отрицательный заряд создает отрицательный потенциал, и наоборот.
Значение потенциала зависит от выбора нулевого уровня для отсчета потенциальной энергии, а разность потенциалов — от выбора нулевого уровня не зависит.
Напряжение — разность потенциалов. Обозначается как U. Единица измерения — Вольт (В). Численно напряжение равно отношению работы электрических сил по перемещению заряда из точки 1 в точку 2:
Эквипотенциальные поверхности — поверхности, имеющие одинаковый потенциал. Они равноудалены от заряженных тел и обычно повторяют их форму. Эквипотенциальные поверхности перпендикулярны силовым линиям.
Пылинка, имеющая массу 10 −6 кг, влетела в однородное электрическое поле в направлении против его силовых линий с начальной скоростью 0,3 м/с и переместилась на расстояние 4 см. Каков заряд пылинки, если её скорость уменьшилась при этом на 0,2 м/с, а напряжённость поля 105 В/м?
Какую физическую величину называют напряженностью электрического поля
159 дн. с момента
до конца учебного года
Электростатическое поле и его характеристики
Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность
Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.
Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.
Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном ( Силовые линии электростатических полей точечных зарядов. ).
Густота линий напряженности характеризует напряженность поля (чем плотнее располагаются линии, тем поле сильнее).
Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).
Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.
Напряженность электрического поля
Напряженность электрического поля в данной точке пространства — это физическая величина равная отношению силы действующей на пробный заряд, помещённый в данную точку поля, к величине этого заряда. Напряжённость поля является векторной величиной.
Сила (F) измеряется в ньютонах (Н), заряд (Q) измеряется в кулонах (Кл), а напряжённость электрического поля (E) измеряется:
Пример:
Какую силу (F) оказывает электрическое поле (E) равное 7,2 × 10^5 Н/Кл на точечный заряд −0,250 мкКл (микрокулонов)?
Формула: E = F/Q или F = Q × E
Q = −0,250 мкКл = − 0,250 ×10^(−6) Кл (отрицательное)
F = (0,250 ×10^(−6) Кл) × (7,2 × 10^5 Н/Кл) = 0,180 Н
Сила направлена противоположно направлению поля, т.к. Q является отрицательным.
Что такое электрическое поле?
Электрический заряд создаёт вокруг себя электрическое поле, оно действует с некой силой и на другие находящиеся вокруг него заряды. Электрическое поле может возникнуть и в веществе, и в вакууме, т.е. ему не нужна какая-либо специфическая среда.
Электростатическое поле можно изобразить в виде силовых линий (или линий напряжённости). Силовая линия — это воображаемая линия, проведённая таким образом, что касательная к ней в каждой точке поля указывает направление вектора напряжённости электрического поля в этой точке.
Что такое напряженность поля точечного заряда?
Напряженность поля точечного заряда определяется формулой:
E = (k × |Q|)/r²
k = 9×(10^9) (в единицах Н.м²/Кл²)
Q – заряд, создающий поле,
r – расстояние точки А от заряда Q
Пример:
Вычислите силу и направление электрического поля (E) от точечного заряда 2,00 нКл (нанокулонов) на расстоянии 5 мм от заряда.
Помним, что k = 9×(10^9) (в единицах Н.м²/ Кл²)
E = (9×(10^9) Н.м²/ Кл²) × (2 × 10^(−9) Кл) / ((5 × 10^(−3) м)²) ≈ 7,19 × 10^5 Н/Кл
Вектор напряжённости
Вектор напряжённости в данной точке направлен вдоль прямой, соединяющей точку с зарядом, и важно учитывать, что:
Электрическое поле. Напряженность. Принцип суперпозиции
Электрическое поле. Напряженность электрического поля. Линии напряженности электрического поля (силовые линии). Однородное электрическое поле. Напряженность электростатического поля точечного заряда. Принцип суперпозиции полей. Теорема Гаусса. Электростатическое поле равномерно заряженных плоскости, сферы и шара.
Электрическое поле представляет собой векторное поле, существующее вокруг тел или частиц, обладающее электрическим зарядом, а также возникающее при изменении магнитного поля.
Единицы измерения: \(\displaystyle [\text<В>/\text<м>]\) (вольт на метр).
всегда начинаются на положительных зарядах и заканчиваются на отрицательных.
— такое поле в данной области пространства. если вектор напряженности поля одинаков в каждой точке области.
При равномерном распределении электрического заряда \(q\) по поверхности площади \(S\) поверхностная плотность заряда \(\displaystyle \sigma\) постоянна и равна
Принцип суперпозиции полей
Заряженная плоскость
Её электрическое поле однородно, то есть его напряжённость одинакова на любом расстоянии от плоскости, линии напряжённости параллельны. По теореме Гаусса:
Заряженная сфера
Рассмотрим электрическое поле равномерно заряженной сферы. Поток напряжённости через любую замкнутую поверхность внутри сферы равен нуля, так как внутри этой поверхности нет заряда. Отсюда следует, что внутри сферы напряжённость равна нулю.
Заряженный шар