Как называется водород на латыни
водород
1 водород
2 водород
3 Водород
См. также в других словарях:
Водород-4 — Таблица нуклидов Общие сведения Название, символ Водород 4, 4H Нейтронов 3 Протонов 1 Свойства нуклида Атомная масса 4,027810(110) … Википедия
Водород-5 — Таблица нуклидов Общие сведения Название, символ Водород 5, 5H Нейтронов 4 Протонов 1 Свойства нуклида Атомная масса 5,035310(110) … Википедия
Водород-6 — Таблица нуклидов Общие сведения Название, символ Водород 6, 6H Нейтронов 5 Протонов 1 Свойства нуклида Атомная масса 6,044940(280) … Википедия
Водород-7 — Таблица нуклидов Общие сведения Название, символ Водород 7, 7H Нейтронов 6 Протонов 1 Свойства нуклида Атомная масса 7,052750(1080) … Википедия
ВОДОРОД — (Hydrogenium), H, первый, наиболее легкий химический элемент периодической системы, атомная масса 1,00794; газ, tкип 252,76шC. Ядро атома водорода называют протоном. Водород входит в состав воды, живых организмов, нефти, каменного угля,… … Современная энциклопедия
Водород — (Hydrogenium), H, первый, наиболее легкий химический элемент периодической системы, атомная масса 1,00794; газ, tкип 252,76°C. Ядро атома водорода называют протоном. Водород входит в состав воды, живых организмов, нефти, каменного угля,… … Иллюстрированный энциклопедический словарь
ВОДОРОД — (символ Н), газообразный, неметаллический элемент, впервые выделенный и идентифицированный в 1766 г. Генри КАВЕНДИШЕМ, который назвал его «горючим воздухом». Водород бесцветен и не имеет запаха, его относят вместе со щелочными металлами к первой… … Научно-технический энциклопедический словарь
Водород — Н (лат. hydrogenium; a. hydrogen; н. Wasserstoff; ф. hydrogene; и. hidrogeno), хим. элемент периодич. системы элементов Mенделеева, к рый относят одновременно к I и VII группам, ат. н. 1, ат. м. 1,0079. Природный B. имеет стабильные… … Геологическая энциклопедия
Водород — H2 газ без цвета, запаха и вкуса. Молярная масса 2,0157 кг/кмоль, температура плавления 13,95 К, температура кипения 71,07 кг/м3, низшая теплота сгорания 114460 кДж/кг, газовая постоянная 4,124 Дж/(кг*К), стехиометрический коэффициент 34,25 кг… … Энциклопедия техники
водород — протий, дейтерий, тритий, гидроген Словарь русских синонимов. водород сущ., кол во синонимов: 10 • водотвор (1) • газ … Словарь синонимов
Водород — получают путем электролиза воды или из водяного газа, коксового газа или углеводородов. Водород обычно рассматривается как неметалл. Он хранится под давлением в стальных баллонах. Он используется для гидрирования масел (получение твердых жиров),… … Официальная терминология
Глоссарий. Химия
Водоро́д (калька с латинского: лат. Hydrogenium — hydro = «вода», gen = «порождающий»; hydrogenium — «порождающий воду»; обозначается символом H) — первый элемент периодической системы элементов. Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1 H — протон. Свойства ядра 1 H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.
Три изотопа водорода имеют собственные названия: 1 H — протий (Н), 2 H — дейтерий (D) и 3 H — тритий (радиоактивен) (T).
Простое вещество водород — H2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и ряде металлов: железе, никеле, палладии, платине.
История
Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Прямо указывал на выделение его и Михаил Васильевич Ломоносов, но уже определённо сознавая, что это не флогистон. Английский физик и химик Генри Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик Антуан Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.
Происхождение названия
Распространённость
Во Вселенной Водород — самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов (8 % составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца
6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре. Земная кора и живые организмы Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна
52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму). Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.
Получение
Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом — выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током. Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре: СН4 + 2Н2O = CO2↑ + 4Н2 −165 кДж Один из лабораторных способов получения водорода, который иногда применяется и в промышленности, — разложение воды электротоком. Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.
Значение слова «водород»
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
Три изотопа водорода имеют собственные названия: 1H — протий (Н), 2H — дейтерий (D) и 3H — тритий (радиоактивен) (T).
Простое вещество водород — H2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и ряде металлов: железе, никеле, палладии, титане, платине.
ВОДОРО’Д, а, мн. нет, м. (хим.). Самый легкий бесцветный газ, образующий в соединении с кислородом воду и не поддерживающий горения. Аэростат наполнен водородом.
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
водоро́д
1. неисч. хим. химический элемент с атомным номером 1, обозначается химическим символом H ◆ …водород — самый распространенный элемент во Вселенной. И. С. Шкловский, «Из истории развития радиоастрономии в СССР», 1960 г. (цитата из НКРЯ)
2. неисч. хим. простое вещество с химической формулой H2, при нормальных условиях лёгкий горючий газ без цвета и запаха ◆ В первом режиме используются три компонента топлива — кислород, керосин и водород, а во втором — только кислород и водород. Б. И. Каторгин, «Перспективы создания мощных жидкостных ракетных двигателей», 2004 г. // «Вестник РАН» (цитата из НКРЯ) ◆ А лёгкий газ водород, которым наполняют шары, я добыть сумею. Александр Волков, «Волшебник Изумрудного города», 1939 г. (цитата из НКРЯ)
3. исч. хим. жарг. атом или ион водорода [1] ◆ Способность цианмасляного и цианпропионового эфиров обменивать один из своих водородов на натрий позволяет синтезировать эти кислоты, действуя броммасляным и бромпропионовым эфирами соответственно на натрийцианпропионовый и натрийцианмасляный эфиры. Н. Д. Зелинский, «Исследование явлений стереоизомерии среди насыщенных углеродистых соединений», 1891 г. (цитата из НКРЯ)
Новое в блогах
Таблица Менделеева Д.И. Водород!
Три изотопа водорода имеют собственные названия: 1 H — протий (Н), 2 H — дейтерий (D) и 3 H — тритий (радиоактивен) (T).
Простое вещество водород — H2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и ряде металлов: железе, никеле, палладии, платине.
История
Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Прямо указывал на выделение его и Михаил Васильевич Ломоносов, но уже определённо сознавая, что это не флогистон. Английский физик и химик Генри Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик Антуан Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.
Происхождение названия
Распространённость
Во Вселенной
Водород — самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов (8 % составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца
6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.
Земная кора и живые организмы
Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна
52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму).
Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.
Получение
Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом — выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.
Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре:
СН4 + 2Н2O = CO2↑ + 4Н2 −165 кДж
Один из лабораторных способов получения водорода, который иногда применяется и в промышленности, — разложение воды электротоком. Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.
Электронная формула атома: 1 s 1
Электронно-графическая формула и схема строения элемента:
Водород — самый распространенный во Вселенной химический элемент. Его символом в таблице Менделеева является H, его атомное число — 1. Именно водород — своеобразная «точка отсчета», «химическая единица», и каждому человеку будет интересно узнать об нем немного побольше. Не исключено, что он станет топливом грядущих транспортных средств.
Новозеландский ресурс Science for Kids составил интереснейшую подборку информации о мейнстримнейшем из элементов периодической таблицы.
1. Водород — самый легкий, самый простой и самый распространенный химический элемент во Вселенной. Он составляет примерно 75% от всей массы элементов в ней.
2. В больших количествах водород обнаружен в звездах и планетах типа «газовый гигант». Он играет ключевую роль в протекающих в звездах реакциях синтеза.
4. Водород был впервые обнаружен в 1766 году Генри Кавендишем в процессе реакции окисления металла. В 1781 году он обнаружил также, что процесс горения водорода сопровождается образованием воды. Хотя Кавендиш и считается первооткрывателем водорода, ученые и до него выделяли этот элемент, не считая его при этом самостоятельным.
5. Через два года (в 1783 году) водород получил свое имя. Слово «гидроген» происходит из греческого языка и состоит из слов «гидро» (означающего воду) и «генез» (означающего рождение). Гидро- (водо-) ген (род) — порождающий воду.
6. Водород является газом с молекулярной формулой H2. При комнатной температуре и нормальном давлении водород является безвкусным, бесцветным и лишенным запаха газом.
7. Под давлением и при сильном холоде (-252,87 градусах по Цельсию) водород переходит в жидкое состояние. Хранимый в этом состоянии водород занимает меньше места, чем в своей «нормальной» газообразной форме. Жидкий водород используется в том числе и в качестве ракетного топлива.
8. При сверхвысоком давлении водород переходит в твердое состояние и становится металлическим водородом. В этом направлении ведутся научные исследования.
9. Водород используется в качестве альтернативного топлива для транспорта. Химическая энергия водорода высвобождается при его сжигании способом, подобным тому, который применяется в традиционных двигателях внутреннего сгорания. На его основе также создаются топливные элементы, в которых задействован процесс образования воды и электричества путем осуществления химической реакции водорода с кислородом.
10. Инженеры и автопроизводители исследуют возможность применения водорода в качестве массового топлива для автомобилей. Одной из перспектив является помещение в топливный бак водорода в твердом состоянии. На этом пути много трудностей, но и преимущества очевидны: если результат будет достигнут, заправляться придется реже.
11. Молекулярная формула перекиси водорода H2O2. Это вещество часто используется для отбеливания волос и в качестве чистящего средства. В виде медицинского раствора оно используется также для обработки ран.
12. С 1852 года — с тех самых пор, как первый дирижабль на основе водорода был создан Генри Гиффардом — водород использовался в воздухоплавании. Позднее водородные дирижабли называли «цеппелинами» (zeppelins). Их использование было прекращено после крушения дирижабля «Гинденбург» в 1937 году. Авария произошла в результате возгорания.
13. Водород широко применяется в нефтяной и химической отраслях, а также часто используется для различных физических и инженерных задач: например, в сварочном деле и в качестве охлаждающего вещества.
14. Водород потенциально опасен для человека, поскольку может возгораться при соприкосновении с воздухом. Кроме того, этот газ не годится для дыхания.
Разумеется, этим списком фактов знания о водороде не исчерпываются. Возможно вы знаете о самом простом химическом элементе что-то интересное?
Водород
Водород / Hydrogenium (H) | |
---|---|
Атомный номер | 1 |
Внешний вид | газ без цвета, вкуса и запаха |
Свойства атома | |
Атомная масса (молярная масса) | 1,00794 а. е. м. (г/моль) |
Радиус атома | 79 пм |
Энергия ионизации (первый электрон) | 1311,3 кДж/моль (эВ) |
Электронная конфигурация | 1s 1 |
Химические свойства | |
Ковалентный радиус | 32 пм |
Радиус иона | 54 (−1 e) пм |
Электроотрицательность (по Полингу) | 2,20 |
Электродный потенциал | |
Степени окисления | 1, −1 |
Термодинамические свойства | |
Плотность | 0,0000899 (при 273K (0 °C)) г/см³ |
Удельная теплоёмкость | 14,235 [1] Дж/(K·моль) |
Теплопроводность | 0,1815 Вт/(м·K) |
Температура плавления | 14,01 K |
Теплота плавления | 0,117 кДж/моль |
Температура кипения | 20,28 K |
Теплота испарения | 0,904 кДж/моль |
Молярный объём | 14,1 см³/моль |
Кристаллическая решётка | |
Структура решётки | гексагональная |
Период решётки | a=3,780 c=6,167 Å |
Отношение c/a | 1,631 |
Температура Дебая | 110 K |
Три из пяти изотопов водорода имеют собственные названия: 1 H — протий (Н), 2 H — дейтерий (D) и 3 H — тритий (радиоактивен) (T).
Содержание
История
Происхождение названия
Лавуазье дал водороду название hydrogène (от др.-греч. ὕδωρ — «вода» и γενναω — «рождаю») — «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии с ломоносовским «кислородом».
Распространённость
Во Вселенной
Водород — самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов ( 8 % составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1 % ). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца
6000 °C ) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных атомов и ионов.
Земная кора и живые организмы
Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна
52 % ). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере ( 0,00005 % по объёму).
Получение
Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом — выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.
Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):
В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который иногда применяется и в промышленности, — разложение воды электротоком.
Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.
В промышленности
1.Электролиз водных растворов солей:
2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C :
Конверсия с водяным паром: CH4 + H2O ⇄ CO↑ + 3H2↑ (1000 °C) Каталитическое окисление кислородом: 2CH4 + O2 ⇄ 2CO↑ + 4H2↑
4. Крекинг и риформинг углеводородов в процессе переработки нефти.
В лаборатории
1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:
2.Взаимодействие кальция с водой:
4.Действие щелочей на цинк или алюминий:
5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:
См. также
Физические свойства
Эмиссионный спектр водорода
Равновесная мольная концентрация пара-водорода
Водород — самый лёгкий газ, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.
Изотопы
Давление пара для различных изотопов водорода
Водород встречается в виде трёх изотопов, которые имеют индивидуальные названия: 1 H — протий (Н), 2 Н — дейтерий (D), 3 Н — тритий (радиоактивный) (T).
Температура плавления, K | Температура кипения, K | Тройная точка, K / kPa | Критическая точка, K / kPa | Плотность жидкий / газ, кг/м³ | |
---|---|---|---|---|---|
H2 | 13.95 | 20,39 | 13,96 / 7,3 | 32,98 / 1,31 | 70,811 / 1,316 |
HD | 22,13 | 16,60 / 12,8 | 35,91 / 1,48 | 114,80 / 1,802 | |
HT | 22,92 | 17,63 / 17,7 | 37,13 / 1,57 | 158,62 / 2,310 | |
D2 | 18,62 | 23,67 | 18,73 / 17,1 | 38,35 / 1,67 | 162,50 / 2,230 |
DT | 24.38 | 19,71 / 19,4 | 39,42 / 1,77 | 211,54 / 2,694 | |
T2 | 25,04 | 20,62 / 21,6 | 40,44 / 1,85 | 260,17 / 3,136 |
Дейтерий и тритий также имеют орто- и пара- модификации: p-D2, o-D2, p-T2, o-T2. Гетероизотопный водород (HD, HT, DT) не имеют орто- и пара- модификаций.
Химические свойства
Доля диссоциировавших молекул водорода
Молекулы водорода Н2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:
Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:
и с единственным неметаллом — фтором, образуя фтороводород:
С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:
Он может «отнимать» кислород от некоторых оксидов, например:
Записанное уравнение отражает восстановительные свойства водорода.
С галогенами образует галогеноводороды:
С сажей взаимодействует при сильном нагревании:
Взаимодействие со щелочными и щёлочноземельными металлами
При взаимодействии с активными металлами водород образует гидриды:
Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:
Взаимодействие с оксидами металлов (как правило, d-элементов)
Гидрирование органических соединений
Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы навзывают реакциями гидрирования. Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр. Катализатор Уилкинсона ), так и гетерогенным (напр. никель Ренея, палладий на угле).
Геохимия водорода
На Земле содержание водорода понижено по сравнению с Солнцем, гигантскими планетами и первичными метеоритами, из чего следует, что во время образования Земля была значительно дегазирована и водород вместе с другими летучими элементами покинул планету во время аккреции или вскоре после неё.
Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.
Особенности обращения
Взрывоопасные концентрации водорода с кислородом возникают от 4 % до 96 % объёмных. При смеси с воздухом от 4 % до 75(74) % объёмных.
Применение
Одно время высказывалось предположение, что в недалёком будущем основным источником получения энергии станет реакция горения водорода, и водородная энергетика вытеснит традиционные источники получения энергии (уголь, нефть и др.). При этом предполагалось, что для получения водорода в больших масштабах можно будет использовать электролиз воды. Электролиз воды — довольно энергоёмкий процесс, и в настоящее время получать водород электролизом в промышленных масштабах невыгодно. Но ожидалось, что электролиз будет основан на использовании среднетемпературной ( 500—600 °C ) теплоты, которая в больших количествах возникает при работе атомных электростанций. Эта теплота имеет ограниченное применение, и возможности получения с её помощью водорода позволили бы решить как проблему экологии (при сгорании водорода на воздухе количество образующихся экологически вредных веществ минимально), так и проблему утилизации среднетемпературной теплоты.
Химическая промышленность
Пищевая промышленность
Авиационная промышленность
Топливо
В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.