двоичные коды и операции с двоичными кодами
Двоичная система счисления
Двоичная система — это один из видов позиционных систем счисления. Основание данной системы равно двум, то есть используется только два символа для записи чисел.
Немного истории
Впервые о данной системе чисел заговорил основоположник математического анализа Г.В. Лейбниц еще в XVII веке. Он доказал, что для данного множества действуют все арифметические операции: сложение, вычитание, умножение и даже деление. Однако вплоть до 30-х годов XX века данную систему не рассматривали всерьез. Но с развитием электронных устройств и ЭВМ, ученые вновь принялись к изучению данной темы, так как двоичная система отлично подходила для программирования и организации хранения данных в памяти компьютеров.
Таблица и алфавит
Кроме того, двоичная система является самой удобной для быстрого перевода в другие системы счисления.
1001102 = 1 ∙ 2 5 + 0 ∙ 2 4 + 0 ∙ 2 3 + 1 ∙ 2 2 + 1 ∙ 2 2 + 0 ∙ 2 0 = 32 + 0 + 0 + 4 + 2 + 0 = 3810
Чтобы наоборот перевести число в двоичную из десятичной, необходимо выполнить его деление на 2 с остатком, а затем записать все остатки в обратном порядке, начиная с частного:
Делимое | 38 | 19 | 9 | 4 | 2 |
---|---|---|---|---|---|
Делитель | 2 | 2 | 2 | 2 | 2 |
Частное | 19 | 9 | 4 | 2 | 1 |
Остаток | 0 | 1 | 1 | 0 | 0 |
Для перевода в другие системы необходимо:
Однако можно воспользоваться и более быстрым и удобным способом: разделить знаки двоичного числа на условные группы слева на право (для восьмеричной — по 3 знака; для шестнадцатеричной — по 4 знака), а затем воспользоваться таблицей перевода:
Двоичная | Восьмеричная | Шестнадцатеричная |
---|---|---|
0 | 0 | 0 |
001 | 1 | 1 |
010 | 2 | 2 |
011 | 3 | 3 |
100 | 4 | 4 |
101 | 5 | 5 |
110 | 6 | 6 |
111 | 7 | 7 |
1000 | 8 | |
1001 | 9 | |
1010 | A | |
1011 | B | |
1100 | C | |
1101 | D | |
1110 | E | |
1111 | F |
110010012 = 11 001 001 = 011 001 001 = 3118
110010012 = 1100 1001 = С916
Представление двоичных чисел
В двоичной системе также существует понятие «отрицательных» чисел. И для того, чтобы провести какую-либо операцию с ними в двоичном коде, необходимо представить его в виде дополнительного кода. Запись положительного числа при этом не меняется ни для одного из кодов.
Чтобы найти дополнительный код отрицательного числа, необходимо воспользоваться его прямым и дополнительным кодами.
Прямой код предполагает приписывание единицы в начале без изменений записи:
A > 0 | Aпр = 0A | 1010112; Aпр = 01010112 |
A ≤ 0 | Aпр = 1|A| | -1010112; Aпр = 11010112 |
Для записи обратного кода цифры заменяют на противоположное значение, первую единицу от прямого кода оставляют без изменений:
A > 0 | Aобр = 0A | 1010112; Aобр = 01010112 |
A ≤ 0 | Aобр = 1 A | -1010112; Aобр = 10101002 |
Дополнительный код предполагает использование обратного кода, с той лишь разницей, что к отрицательному числу прибавляют единицу:
A > 0 | Aдоп = 0A | 1010112; Aдоп = 01010112 |
A ≤ 0 | Aдоп = 1 A + 1 | -1010112; Aдоп = 10101012 |
Применение двоичной системы в информатике
Двоичная система получила особое распространение в программировании цифровых устройств, так как она соответствует требованиям многих технических устройств, поддерживающих два состояния (есть ток, нет тока). Кроме того, является более простой и надежной для кодирования информации. Именно поэтому программный код большей части ЭВМ основан именно на двоичной системе счисления.
Логические операции с двоичными кодами
Над двоичными кодами могут выполняться различные логические операции, среди которых особое место занимают:
Операция логического суммирования выполняется над двумя кодами и генерирует код той же разрядности, что и операнды, у которого в некотором i-м разряде находится единица, если хотя бы в одном операнде в i-м разряде имеет место единица.
10001101 ^ 11110000 = 11111101.
Операция логического умножения выполняется над двумя кодами и генерирует код той же разрядности, что и операнды, у которого в некотором i-м разряде находится единица, если оба операнда в этом i-м разряде имеются единицу, и ноль во всех других случаях.
10001101 Ù 11110000 = 10000000
Операция суммирования по модулю 2 выполняется над двумя кодами и генерирует код той же разрядности, что и операнды, у которого в некотором i-м разряде находится единица, если два заданных операнда в i-м разряде имеется противоположные значения. Иногда эта операция называется «исключающее ИЛИ».
10001101 Å 11110000 = 01111101.
Операция логического отрицания выполняется над одним кодом и генерирует результирующий код той же разрядности, что и операнд, у которого в некотором i-м разряде находится значение, противоположное значению в i-м разряде отрицаемого кода.
Операции сдвига в свою очередь, подразделяются на:
— арифметический сдвиги вправо и в лево, выполнение которого зависит от знака и кода сдвигаемого числа.
Сдвиг влево выполняется за счет установки в разряд значения, соответствующего исходному значению в ближайшем младшем разряде (освобождающийся самый правый т.е. самый младший, разряд заполняется 0, а «выталкиваемый» разряд пропадает). Например, код 11001110 после сдвига влево будет иметь вид 10011100.
Сдвиг вправо выполняется за счет установки в разряд значения, соответствующего исходному значению в ближайшем старшем разряде (в освобождающийся самый левый, т.е. самый старший, разряд заполняется 0, «выталкиваемый» разряд пропадает). Например, код 11001110 после сдвига влево будет иметь вид 01100111.
Арифметические сдвиги обеспечивают выполнения умножения (сдвиги влево) или операции деления (сдвиги вправо) двоичных кодов на два, точно так же, как сдвиги вправо и влево десятичного числа обеспечиваю выполнение деления и умножение на 10.
Если сдвигается положительное число, то сдвиг (вправо или влево) выполняется как соответствующий логический сдвиг (влево или вправо), с той лишь разницей, что предусматриваются средства определения факта переполнения при сдвиге влево, что реализуется и при всех других арифметических операциях. При любом сдвиге вправо предусматриваются средства для округления после завершения нужного количества сдвигов и средства обнаружения обнуления сдвигаемой величины после очередного сдвига.
Арифметические сдвиги влево положительных двоичных чисел выполняются независимо от используемого кода (прямого обратного, дополнительного). Его реализация иллюстрируются следующими примерами.
1.Найти результат арифметического сдвига влево на три разряда двоичного прямого кода числа [А]пк= 00. 00000101
Процесс выполнения заданного сдвига дает следующие промежуточные и конечное значения:
первый сдвиг: 00. 00000101à 00. 00001010;
второй сдвиг: 00. 00001010à 00. 00010100;
третий сдвиг: 00. 00010100à 00. 00101000.
2. Найти результат арифметического сдвига влево на четыре разряда двоичного прямого кода числа [А]пк= 00. 00101000.
Процесс заданного сдвига дает следующие промежуточные и конечное значения:
первый сдвиг: 00. 00000101à 00. 00001010;
второй сдвиг: 00. 00001010à 00. 00010100;
третий сдвиг: 00. 10100000à 01. 01000000.
После третьего сдвига будет выработан сигнал переполнения, так как после очередного сдвига в разрядах знакового поля появятся разные значения. Таким образом, не считая процедуры определения переполнения, арифметический сдвиг влево выполняется точно так же, как и логический сдвиг влево.
3. Найти результат арифметического сдвига вправо на два разряда двоичного прямого кода числа [А]пк= 00. 00000110.
Процесс заданного сдвига дает следующие промежуточные и конечное значение:
первый сдвиг: 00. 00000110à 00. 00000011;
второй сдвиг: 00. 00000011à 00. 00000001;
После выполнения заданного количества сдвигов выполняется округление на основании последнего «вытолкнутого» разряда; в данном случае последний «вытолкнутый» разряд равен 1, поэтому конечный результат выполнения заданного сдвига будет равен
4. Найти результат арифметического сдвига вправо на четыре разряда двоичного прямого кода числа [А]пк= 00. 00000110.
Процесс заданного сдвига дает следующие промежуточные и конечное значения:
первый сдвиг: 00. 00000110à 00. 00000011;
второй сдвиг: 00. 00000011à 00. 00000001;
третий сдвиг: 00. 00000001à 00. 00000000,
после выполнения третьего сдвига будет выработан сигнал о получении нулевого результата. Оставшиеся сдвиги могут не выполняться.
Арифметические сдвиги отрицательных двоичных чисел, представленных в прямом коде
Арифметические сдвиги влево и вправо реализуются по-разному в зависимости как от знака числа, так и от используемого кода (прямого обратного, дополнительного).
При арифметическом сдвиге отрицательного двоичного числа, представленного в прямом коде, осуществляется соответствующий сдвиг только модульного поля записи числа.
Реализация этого типа сдвига иллюстрируется следующими примерами.
Выполнить арифметический сдвиг влево двоичного числа А = 11. 001010 (соответствует 10 10), представленного в модифицированном прямом коде.
Заданный сдвиг, имеющий своей целью получение результата, в два раза превышающего по абсолютному значению значение исходного кода, дает в результате 11.010100 (2010), которое получается за счет логического сдвига влево только модульной части исходного кода. Факт получения переполнения устанавливается по наличию единичного значения старшего разряда в сдвигаемом коде перед очередным сдвигом.
Выполнить арифметический сдвиг вправо двоичного числа А = 11. 01110 (1410), представленного в модифицированном прямом коде.
Заданный сдвиг, имеющий своей целью получение кода, в два раза меньшего по абсолютному значению по отношению к значения исходного кода, дает в результате число 11.00111(710), которое получается за счет логического сдвига влево только модульной части исходного кода.
При арифметическом сдвиге влево отрицательного двоичного числа, представленного в обратном коде, осуществляется циклический сдвиг исходного кода с контролем за переполнением, например, сдвиг влево отрицательного двоичного числа 11.1100110(2510), представленного в обратном коде, дает в результате 11.1001101(5010).
При арифметическом сдвиге вправо отрицательного двоичного числа, представленного в обратном коде, осуществляется сдвиг только модульной части записи числа с установкой единицы в освобождающийся разряд.. При этом может осуществляется контроль за обнулением результата сдвиг (появление единичных значений во всех разрядах) и округление результата после выполнения заданного количества сдвигов.
Выполнить сдвиг вправо на четыре разряда двоичного числа 11.1001101(десятичный эквивалент 5010), представленного в обратном коде.
Первый сдвиг дает 11.11001101(5010) à 11.11100110(2510).
Второй сдвиг дает 11.11100110(2510)à 11.11110011(1210).
Третий сдвиг дает 11.11110011(1210)à 11.11111001(610).
Четвертый сдвиг дает 11.11111001(610),.à 11.11111100(310).
При выполнении сдвига вправо нечетного числа результат получается с точностью до младшего разряда кода, причем ошибка отрицательная.
В рассмотренном примере корректировать на единицу результат четвертого сдвига не надо, так как «вытолкнутый» разряд при последнем (четвертом) сдвиге равен единице. В данном случае конечный результат сдвига заданного отрицательного числа, представленного в обратном коде, равен 11.11111100.
При арифметическом сдвиге влево отрицательного двоичного числа, представленного в дополнительном коде, осуществляется логический сдвиг влево модуля исходного кода (освобождающийся разряд заполняется нулем) с контролем за переполнением, например, сдвиг влево отрицательного двоичного числа 11.11001110(5010), представленного в дополнительном коде, дает в результате 11.10011100 (10010).
При арифметическом сдвиге вправо отрицательного двоичного числа, представленного в дополнительном коде, осуществляется логический сдвиг вправо модуля записи числа с установкой единицы в освобождающийся разряд. При этом может осуществляется контроль за обнулением результата сдвига (появление единичных значений во всех разрядах).
Выполнить сдвиг вправо на четыре разряда двоичного числа 11.11001110 (десятичный эквивалент 5010), представленного в дополнительном коде.
Первый сдвиг дает 11.11001110à 11.11100111(2510),
Второй сдвиг дает 11.11100111à 11.11110011(1310),
Третий сдвиг дает 11.11110011à 11.11111001(710),
Четвертый сдвиг дает 11.11111001à 11.11111100(410).
При выполнении сдвига вправо нечетного целого числа результат получается с точностью до младшего разряда кода, причем ошибка положительная.
Арифметический сдвиг вправо может выполняться над отрицательными числами с переполнением (такие числа в модифицированном прямом, обратном или дополнительном коде имеют в знаковом поле 10). В этом случае после сдвига в знаковом поле будет 11, а в старшем разряде – 0, если число представлено в обратном или дополнительном коде, или 1, если число представлено в прямом коде.
Выполнить сдвиг вправо на 2 разряда число [А]пк= 10. 01000110 (А10=-326).
1-й сдвиг: 10. 01000110 à11.10100011 (-163);
2-й сдвиг: 11.10100011à11.01010001 (- 8110 и последний вытолкнутый разряд равен 1).
Окончательный результат с учетом округления имеем [А 2 2 ]пк=11.10010010.
Выполнить сдвиг вправо на 2 разряда число [А]ок= 10. 10111001 (А10=-326).
1-й сдвиг: 10. 10111001 à11.01011100 (-163);
Выполнить сдвиг вправо на 2 разряда число [А]ок= 10. 10111010 (А10=-326).
1-й сдвиг: 10. 10111010 à11.01011101 (-163);
Окончательный результат с учетом округления имеем [А 2 2 ]ок=
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Двоичное счисление на пальцах
Все знают, что компьютеры состоят из единиц и нулей. Но что это значит на самом деле?
Если у вас в школе была информатика, не исключено, что там было упражнение на перевод обычных чисел в двоичную систему и обратно. Маловероятно, что кто-то вам объяснял практический смысл этой процедуры и откуда вообще берётся двоичное счисление. Давайте закроем этот разрыв.
Эта статья не имеет практической ценности — читайте её просто ради интереса к окружающему миру. Если нужны практические статьи, заходите в наш раздел «Где-то баг», там каждая статья — это практически применимый проект.
Отличный план
Чтобы объяснить всё это, нам понадобится несколько тезисов:
Система записи — это шифр
Если у нас есть девять коров, мы можем записать их как 🐄🐄🐄🐄🐄🐄🐄🐄🐄 или как 9 × 🐄.
Почему 9 означает «девять»? И почему вообще есть такое слово? Почему такое количество мы называем этим словом? Вопрос философский, и короткий ответ — нам нужно одинаково называть числа, чтобы друг друга понимать. Слово «девять», цифра 9, а также остальные слова — это шифр, который мы выучили в школе, чтобы друг с другом общаться.
Допустим, к нашему стаду прибиваются еще 🐄🐄🐄. Теперь у нас 🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄 — двенадцать коров, 12. Почему мы знаем, что 12 — это «двенадцать»? Потому что мы договорились так шифровать числа.
Нам очень легко расшифровывать записи типа 12, 1920, 100 500 и т. д. — мы к ним привыкли, мы учили это в школе. Но это шифр. 12 × 🐄 — это не то же самое, что 🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄. Это некая абстракция, которой мы пользуемся, чтобы упростить себе счёт.
Мы привыкли шифровать десятью знаками
У нас есть знаки 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9 — всего десять знаков. Этим числом знаков мы шифруем количество единиц, десятков, сотен, тысяч и так далее.
Мы договорились, что нам важен порядок записи числа. Мы знаем, что самый правый знак в записи означает число единиц, следующий знак (влево) означает число десятков, потом сотен и далее.
Например, перед нами число 19 547. Мы знаем, что в нём есть:
Если приглядеться, то каждый следующий разряд числа показывает следующую степень десятки:
Нам удобно считать степенями десятки, потому что у нас по десять пальцев и мы с раннего детства научились считать до десяти.
Система записи — это условность
Представим бредовую ситуацию: у нас не 10 пальцев, а 6. И в школе нас учили считать не десятками, а шестёрками. И вместо привычных цифр мы бы использовали знаки ØABCDE. Ø — это по-нашему ноль, A — 1, B — 2, E — 5.
Вот как выглядели бы привычные нам цифры в этой бредовой системе счисления:
0 — Ø 1 — A 2 — B 3 — C 4 — D 5 — E | 6 — AØ 7 — AA 8 — AB 9 — AC 10 — AD 11 — AE | 12 — BØ 13 — BA 14 — BB 15 — BC 16 — BD 17 — BE | 18 — CØ 19 — CA 20 — CB 21 — CC 22 — CD 23 — CE | 24 — DØ 25 — DA 26 — DB 27 — DC 28 — DD 29 — DE | 30 — EØ 31 — EA 32 — EB 33 — EC 34 — ED 35 — EE | 36 — AØØ 37 — AØA 38 — AØB 39 — AØC 40 — AØD 41 — AØE |
В этой системе мы считаем степенями шестёрки. Число ABADØ можно было бы перевести в привычную нам десятичную запись вот так:
A × 6 4 = 1 × 1296 = 1296
B × 6 3 = 2 × 216 = 432
1296 + 432 + 36 + 24 + 0 = 1788. В нашей десятичной системе это 1788, а у людей из параллельной вселенной это ABADØ, и это равноценно.
Выглядит бредово, но попробуйте вообразить, что у нас в сумме всего шесть пальцев. Каждый столбик — как раз шесть чисел. Очень легко считать в уме. Если бы нас с детства учили считать шестёрками, мы бы спокойно выучили этот способ и без проблем всё считали. А счёт десятками вызывал бы у нас искреннее недоумение: «Что за бред, считать числом AD? Гораздо удобнее считать от Ø до E!»
То, как мы шифруем и записываем числа, — это следствие многовековой традиции и физиологии. Вселенной, космосу, природе и стадам коров глубоко безразлично, что мы считаем степенями десятки. Природа не укладывается в эту нашу систему счёта.
Двоичная система (тоже нормальная)
Внутри компьютера работают транзисторы. У них нет знаков 0, 1, 2, 3… 9. Транзисторы могут быть только включёнными и выключенными — обозначим их 💡 и ⚫.
Мы можем научить компьютер шифровать наши числа этими транзисторами так же, как шестипалые люди шифровали наши числа буквами. Только у нас будет не 6 букв, а всего две: 💡 и ⚫. И выходит, что в каждом разряде будет стоять не число десяток в разной степени, не число шестёрок в разной степени, а число… двоек в разной степени. И так как у нас всего два знака, то получается, что мы можем обозначить либо наличие двойки в какой-то степени, либо отсутствие:
9 — 💡 ⚫⚫ 💡
10 — 💡 ⚫ 💡 ⚫
11 — 💡 ⚫ 💡 💡
12 — 💡 💡 ⚫⚫
13 — 💡 💡 ⚫ 💡
14 — 💡 💡 💡 ⚫
15 — 💡 💡 💡 💡
17 — 💡 ⚫⚫⚫ 💡
18 — 💡 ⚫⚫ 💡 ⚫
19 — 💡 ⚫⚫ 💡 💡
20 — 💡 ⚫ 💡 ⚫⚫
21 — 💡 ⚫ 💡 ⚫ 💡
21 — 💡 ⚫ 💡 💡 ⚫
23 — 💡 ⚫ 💡 💡 💡
24 — 💡 💡 ⚫⚫⚫
25 — 💡 💡 ⚫⚫ 💡
26 — 💡 💡 ⚫ 💡 ⚫
27 — 💡 💡 ⚫ 💡 💡
28 — 💡 💡 💡 ⚫⚫
29 — 💡 💡 💡 ⚫ 💡
30 — 💡 💡 💡 💡 ⚫
31 — 💡 💡 💡 💡 💡
33 — 💡 ⚫⚫⚫⚫ 💡
34 — 💡 ⚫⚫⚫ 💡 ⚫
35 — 💡 ⚫⚫⚫ 💡 💡
36 — 💡 ⚫⚫ 💡 ⚫⚫
37 — 💡 ⚫⚫ 💡 ⚫ 💡
38 — 💡 ⚫⚫ 💡 💡 ⚫
39 — 💡 ⚫⚫ 💡 💡 💡
40 — 💡 ⚫ 💡 ⚫⚫⚫
41 — 💡 ⚫ 💡 ⚫⚫ 💡
42 — 💡 ⚫ 💡 ⚫ 💡 ⚫
43 — 💡 ⚫ 💡 ⚫ 💡 💡
44 — 💡 ⚫ 💡 💡 ⚫⚫
45 — 💡⚫💡💡⚫💡
46 — 💡⚫💡💡💡⚫
47 — 💡⚫💡💡💡💡
48 — 💡💡⚫⚫⚫⚫
49 — 💡💡⚫⚫⚫💡
50 — 💡💡⚫⚫💡⚫
51 — 💡💡⚫⚫💡💡
52 — 💡💡⚫💡⚫⚫
53 — 💡💡⚫💡⚫💡
54 — 💡💡⚫💡💡⚫
55 — 💡💡⚫💡💡💡
56 — 💡💡💡⚫⚫⚫
57 — 💡💡💡⚫⚫💡
58 — 💡💡💡⚫💡⚫
59 — 💡💡💡⚫💡💡
60 — 💡💡💡💡⚫⚫
61 — 💡💡💡💡⚫💡
62 — 💡💡💡💡💡⚫
63 — 💡💡💡💡💡💡
Если перед нами число 💡 ⚫💡⚫⚫ 💡💡⚫⚫, мы можем разложить его на разряды, как в предыдущих примерах:
256 + 0 + 64 + 0 + 0 + 8 + 4 + 0 + 0 = 332
Получается, что десятипалые люди могут записать это число с помощью цифр 332, а компьютер с транзисторами — последовательностью транзисторов 💡⚫💡⚫⚫ 💡💡⚫⚫.
Если теперь заменить включённые транзисторы на единицы, а выключенные на нули, получится запись 1 0100 1100. Это и есть наша двоичная запись того же самого числа.
Почему говорят, что компьютер состоит из единиц и нулей (и всё тлен)
Инженеры научились шифровать привычные для нас числа в последовательность включённых и выключенных транзисторов.
Дальше эти транзисторы научились соединять таким образом, чтобы они умели складывать зашифрованные числа. Например, если сложить 💡⚫⚫ и ⚫⚫💡, получится 💡⚫💡. Мы писали об этом подробнее в статье о сложении через транзисторы.
Дальше эти суммы научились получать супербыстро. Потом научились получать разницу. Потом умножать. Потом делить. Потом всё это тоже научились делать супербыстро. Потом научились шифровать не только числа, но и буквы. Научились их хранить и считывать. Научились шифровать цвета и координаты. Научились хранить картинки. Последовательности картинок. Видео. Инструкции для компьютера. Программы. Операционные системы. Игры. Нейросети. Дипфейки.
И всё это основано на том, что компьютер умеет быстро-быстро складывать числа, зашифрованные как последовательности включённых и выключенных транзисторов.
При этом компьютер не понимает, что он делает. Он просто гоняет ток по транзисторам. Транзисторы не понимают, что они делают. По ним просто бежит ток. Лишь люди придают всему этому смысл.
Когда человека не станет, скорость света будет по-прежнему 299 792 458 метров в секунду. Но уже не будет тех, кто примется считать метры и секунды. Такие дела.
Бинарный код
Двоичная система счисления — это позиционная система счисления с основанием 2. В этой системе счисления натуральные числа записываются с помощью всего лишь двух символов (в роли которых обычно выступают цифры 0 и 1).
Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и соответствует требованиям:
В цифровой электронике одному двоичному разряду в двоичной системе счисления соответствует один двоичный логический элемент (инвертор с логикой на входе) с двумя состояниями (открыт, закрыт).
Содержание
Таблица умножения двоичных чисел
Использование двоичной системы при измерении дюймами
При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 7 15 / 16″, 3 11 / 32″ и т. д.
Преобразование чисел
Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:
512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1 называется двоичной точкой.
Преобразование двоичных чисел в десятичные
Допустим, вам дано двоичное число 110011. Какому числу оно эквивалентно? Чтобы ответить на этот вопрос, прежде всего запишите данное число следующим образом:
512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | ||||
32 | +16 | +2 | +1 |
Затем, начиная с двоичной точки, двигайтесь влево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа. Таким образом, двоичное число 110011 равнозначно 51.
Либо .
Преобразование методом Горнера
Для того, что бы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева-направо, умножая ранее полученный результат на основу системы (в данном случае 2). Например, двоичное число 1011011 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+0=22 >> 22*2+1=45 >> 45*2+1=91 То есть в десятичной системе это число будет записано как 91. Или число 101111 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+1=23 >> 23*2+1=47 То есть в десятичной системе это число будет записано как 47.
Преобразование десятичных чисел к ближайшей степени двойки, неменьшей этого числа
Ниже приведена функция, возвращающая число, неменьшее аргумента, и являющееся степенью двух.
Преобразование десятичных чисел в двоичные
Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой :
Итак, мы делим каждое частное на 2 и записываем в остаток 1 или 0. Продолжать деление надо пока в делимом не будет 1. Ставим числа из остатка друг за другом, начиная с конца. В результате получаем число 19 в двоичной записи (начиная с конца): 10011.
Другие системы счисления
В статье «Системы счисления (продолжение)» [1] описываются преимущества и недостатки 4-ричной системы счисления по сравнению с двоичной в компьютерах, созданных Хитогуровым.
См. также
Ссылки
Полезное
Смотреть что такое «Бинарный код» в других словарях:
Код Грея — 2 битный код Грея 00 01 11 10 3 битный код Грея 000 001 011 010 110 111 101 100 4 битный код Грея 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000 Код Грея система счисления, в которой два соседних значения… … Википедия
Пойнт-код — Код сигнальной точки (англ. Signal Point Code (SPC)) сигнальной системы 7 (SS7, ОКС 7) это уникальный (в домашней сети) адрес узла, используемый на третьем уровне MTP (маршрутизация) в телекоммуникационных ОКС 7 сетях для идентификации … Википедия
Бесквадратное число — В математике бесквадратным называется число, которое не делится ни на один квадрат, кроме 1. К примеру, 10 бесквадратное, а 18 нет, так как 18 делится на 9 = 32. Начало последовательности бесквадратных чисел таково: 1, 2, 3, 5, 6, 7,… … Википедия
Direct3D 10 — Для улучшения этой статьи желательно?: Викифицировать статью. Переработать оформление в соответствии с правилами написания статей. Исправить статью согласно стилистическим правилам Википедии … Википедия
Python — У этого термина существуют и другие значения, см. Python (значения). Python Класс языка: му … Википедия
Хакерская атака — в узком смысле слова в настоящее время под словосочетанием понимается «Покушение на систему безопасности», и склоняется скорее к смыслу следующего термина Крэкерская атака. Это произошло из за искажения смысла самого слова «хакер». Хакерская… … Википедия
Грей — (от англ. gray/grey серый) шотландская и английская фамилия. Содержание 1 Известные носители 2 Грей, как псевдоним известных людей … Википедия
Кодирование Голомба — Коды Голомба это семейство энтропийных кодеров, являющихся общим случаем унарного кода. Также под кодом Голомба может подразумеваться один из представителей этого семейства. Код Голомба позволяет представить последовательность символов в виде… … Википедия
Крэкерская атака — Хакерская атака в узком смысле слова в настоящее время под словосочетанием понимается «Покушение на систему безопасности», и склоняется скорее к смыслу следующего термина Крэкерская атака. Это произошло из за искажения смысла самого слова «хакер» … Википедия