космология 20 века основана на фактах каких
Основы современной космологии
Урок 34. Астрономия 11 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Основы современной космологии»
Что же такое Вселенная? Этот вопрос волновал не одно поколение людей. По сути дела, существовавшие на каждом этапе развития человеческой цивилизации представления о строении мира можно считать космологическими теориями соответствующей эпохи.
Космология — это раздел астрономии, изучающий свойства, строение и эволюцию Вселенной в целом. Основу этой дисциплины составляют математика, физика, астрономия и философия.
А под Вселенной понимается совокупность наблюдаемых галактик всех типов и их скоплений, а также межгалактической среды.
Ранние формы космологии представляют собой религиозные мифы о сотворении и уничтожении существующего мира. А первой научно обоснованной космологической моделью Вселенной была геоцентрическая система мира Аристотеля — Птолемея. Мир считался ограниченным сферой неподвижных звёзд, за которой нет ничего.
В 1440 году в свет вышел трактат «Об учёном незнании» Николая Кузанского с новой революционной космологической моделью мира. В частности, Кузанский предполагал, что Земля — это одна из планет. Все небесные тела населены людьми, причём каждый наблюдатель во Вселенной с равным основанием может считать себя неподвижным. При этом он считал, что Вселенная безгранична, хотя и имеет конечные размеры, так как «бесконечность свойственна только одному Богу».
Ещё примерно через 200 лет появилась новая космологическая модель — гелиоцентрическая система Николая Коперника. В центр мира Коперник поместил Солнце, вокруг которого вращались планеты (в числе которых и Земля). Хотя Вселенную Коперник по-прежнему считал ограниченной сферой неподвижных звёзд.
Модификацией системы Коперника была система Томаса Диггеса, в которой звёзды располагаются не на одной сфере, а на различных расстояниях от Земли до бесконечности.
Решительный шаг от гелиоцентризма к бесконечной Вселенной, равномерно заполненной звёздами, сделал итальянский философ Джордано Бруно. В частности, он первым предположил, что звёзды — это далёкие солнца и что физические законы во всем бесконечном и безграничном пространстве одинаковы.
Возникновение современной космологии связано с развитием в начале XX века общей теории относительности Эйнштейна и физики элементарных частиц. Однако, что интересно, сам Эйнштейн считал, что Вселенная однородна, изотропна и, главное, стационарна. Даже после того, как было обнаружено, что объекты во Вселенной постоянно меняются, Эйнштейн считал, что это никак не влияет на облик Вселенной.
Эта идея была для великого учёного настолько очевидной, что в своё основное уравнение ОТО он ввёл космологическую постоянную (иногда называемую лямбда-членом). Сделано это было для того, чтобы решения уравнения допускали пространственную однородность и статичность Вселенной.
Однако в 1922 году выдающийся российский математик Александр Александрович Фридман предложил нестационарное решение уравнения Эйнштейна. Его анализ показал, что ни при каких условиях решение не может быть единственным. Это означало, что невозможно точно ответить на вопрос о том, какой формой обладает Вселенная, каков её радиус кривизны и вообще, стационарна она или нет.
Но из расчётов Фридмана вытекали три возможных следствия, которые мы попробуем объяснить, оперируя только привычными нам понятиями теории тяготения Ньютона. Итак, предположим, что распределение вещества во Вселенной действительно является однородным. Тогда галактика, расположенная на поверхности шара произвольного радиуса, будет притягиваться к его центру согласно закону всемирного тяготения:
При этом все остальные галактики, лежащие вне этого шара, не могут изменить величины этой силы, так как их действия будут равны по абсолютной величине и направлены в противоположные стороны. Из этого следует, что наша исследуемая галактика движется к центру шара с ускорением, сообщаемым силами гравитации:
Знак «минус» указывает на то, что ускорение соответствует притяжению, а не отталкиванию.
Уже из этой формулы следует, что Вселенная не может быть стационарной, поскольку в ней действуют силы тяготения.
Подтверждением нестационарной модели Вселенной стало открытие в 1929 году Эдвином Хабблом космологического закона расширения Вселенной — закона Хаббла.
После открытия закона Хаббла Эйнштейн сказал, что «введение космологической постоянной было моей величайшей ошибкой». А зря. Но об этом чуть позже.
Удаление галактик, которое происходит во все стороны от нас, не означает, что наша Галактика занимает какое-то особое положение во Вселенной. Точно такая же картина «разбегания» галактик будет наблюдаться и для любой другой галактики.
Поясним это на простом примере. Пусть мы находимся в некоторой галактике А. Проведём через эту галактику прямую. На ней окажется несколько галактик, которые удаляются от нас со скоростями, подчиняющимися закону Хаббла.
Теперь перепрыгнем из нашей галактики А в какую-нибудь другую галактику В, удаляющуюся от нас, и попробуем определить скорости всех галактик относительно неё. Для этого мы с вами должны вычесть скорость галактики В из скоростей остальных галактик.
Как видим, мы с вами получили картину, которая принципиально ничем не отличается от первоначальной. То есть скорости удаления галактик по-прежнему пропорциональны расстоянию до них.
Для определения примерного времени начала наблюдаемого расширения Вселенной можно воспользоваться постоянной Хаббла.
А пока вернёмся к работам Фридмана и Хаббла, которые показали, что Вселенная не может быть стационарной. А взаимное удаление галактик указывает на то, что в прошлом они были значительно ближе друг к другу. Более того, расчёты, проведённые на основе космологических моделей Фридмана, указывали на то, что в момент начала расширения вещество Вселенной должно было иметь бесконечно большую плотность, заключённую в бесконечно малом объёме. Но почему же Вселенная начала расширяться?
Чтобы найти ответ на этот вопрос, независимо друг от друга бельгийский священник Жорж Леметр и советско-американский физик Георгий Антонович Гамов предложили новую модель горячей Вселенной. В соответствии с ней на ранних стадиях расширения Вселенная характеризовалась не только высокой плотностью вещества, но и его высокой температурой. Эта гипотеза получила название Большого взрыва.
Согласно этой теории, предполагается, что Вселенная возникла в результате взрыва из состояния сингулярности. Космологическая сингулярность — это состояние Вселенной в определённый момент времени в прошлом, продолжавшийся от 0 до 10 –43 степени секунд. В это время вещество имело планковскую энергию (10 19 ГэВ), планковский радиус (10 –35 м), планковскую температуру (10 32 К) и планковскую плотность (
10 97 г/см 3 ). Затем Вселенная начала расширяться и охлаждаться. По мере охлаждения в ней начинают образовываться протоны и нейтроны. Начиная с четвёртой минуты Вселенная остыла до такой степени, что начали образовываться стабильные ядра самых лёгких химических элементов — водорода и гелия. Спустя пять минут после начала расширения температура во Вселенной упала настолько, что термоядерные реакции прекратились. В это время вещество состояло из смеси ядер водорода (около 70 % массы) и ядер гелия (около 30 %).
Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии). Через миллион лет после начала расширения наступила эра вещества, когда из горячей водородно-гелиевой плазмы с малой примесью других ядер стало развиваться многообразие нынешнего мира.
Самым эффектным результатом теории горячей Вселенной Гамова стало предсказание космического фона излучения или реликтового излучения. Оно представляет собой фотоны, которые образовались через 380 тысяч лет после Большого взрыва, когда Вселенная стала прозрачной, а вещество в ней стало очень сильно разреженным. Поэтому образовавшиеся в это время фотоны избежали рассеяния и до сих пор достигают Земли через пространство продолжающей расширяться Вселенной. При этом Гамов в 1950 году вместе со своими сотрудниками смог оценить температуру этого остаточного излучения — всего около трёх кельвинов.
В 1964 году американским радиоастрономам Анро Пензиасу и Роберту Уилсону удалось обнаружить космический фон излучения и измерить его температуру. Она оказалась равной именно 3 К. Это было самое крупное открытие в космологии со времён открытия Хабблом общего расширения Вселенной. Таким образом, теория Гамова была полностью подтверждена.
Казалось бы, на этом всё. Теория горячей расширяющейся Вселенной, которая опирается на работы Фридмана и Гамова, стала общепризнанной. Но Вселенная ухмыльнулась над потугами людей её познать и подкинула новый вопросик: как в дальнейшем будет происходить моё расширение?
Чтобы ответить на этот вопрос, необходимо было найти зависимость скорости удаления галактики от расстояния до неё. Казалось бы, нет ничего проще, если использовать закон Хаббла. Но не всё так просто, само значение параметра Хаббла требуется сначала каким-нибудь способом установить. А для этого нужно измерить значения красного смещения для галактик, расстояния до которых уже вычислены другими методами, например с помощью фотометрического параллакса. Так, известно, что поток фотонов, приходящих от источника излучения и регистрируемых наблюдателем, обратно пропорционален квадрату расстояния до источника:
Таким образом, по известной мощности излучения (то есть светимости) наблюдаемого объекта и измерив поток света, можно вычислить, на каком расстоянии этот объект находится:
Для этого в астрономии применяются так называемые «стандартные свечи» — объекты, светимость которых заранее известна. Пока лучшим типом «стандартной свечи» для космологических наблюдений являются сверхновые звёзды типа Ia. Связано это с тем, что все вспыхивающие этого типа, находящиеся на одинаковом расстоянии, должны иметь почти одинаковую наблюдаемую яркость.
Сравнивая наблюдаемую яркость сверхновых в разных галактиках, можно определить расстояния до этих галактик.
Так вот, в конце 90-х годов ХХ в. было обнаружено, что в удалённых галактиках, расстояние до которых было определено по закону Хаббла, сверхновые имеют яркость ниже той, которая им полагается. Иными словами, расстояние до этих галактик, вычисленное по методу «стандартных свеч», оказывается больше расстояния, вычисленного на основании ранее установленного значения параметра Хаббла. Это позволило сделать вывод о том, что Вселенная не просто расширяется, она расширяется с ускорением.
Более того, учёные пришли к выводу о том, что наблюдаемое ускорение должно создавать неизвестный прежде вид материи, которая обладает свойством антигравитации. Так появился гипотетический вид энергии, названный тёмной энергией.
Открытие антитяготения, которое оказалось неожиданным для большинства людей, подтвердило предвидение Эйнштейна. Таким образом, великий и ужасный лямбда-член вернулся в уравнение общей теории относительности.
Дальнейшие наблюдательные данные показали, что тёмная энергия практические равномерно заполняет пространство Вселенной. Более того, в марте 2013 года по данным изучения реликтового излучения космической обсерваторией «Планк» было установлено, что общая масса-энергия наблюдаемой Вселенной на 68,3 % состоит из тёмной энергии и на 26,8 % — из тёмной материи.
На основании этих данных учёными была предложена новая космологическая модель нашей Вселенной, которую назвали моделью Лямбда-СиДиЭм (ΛCDM). Новая модель позволила также уточнить возраст Вселенной —13,75 ± 0,11 миллиарда лет.
Таким образом, развитие современной космологии в очередной раз показало безграничные возможности человеческого разума, способного исследовать сложнейшие процессы, которые происходят во Вселенной на протяжении миллиардов лет.
Космология: открытия и загадки
Космология – особая наука. Ее предмет – вся Вселенная, рассматриваемая как единое целое, как физическая система с особыми свойствами, которые не сводятся к сумме свойств населяющих ее астрономических тел и физических полей. Размеры наблюдаемой Вселенной приблизительно 10 миллиардов световых лет. Это самый большой по пространственному масштабу объект науки. К тому же он существует в единственном экземпляре. В этом отношении космология, очевидно, сильно отличается от других естественнонаучных дисциплин. Но, как и в любой науке, главное в космологии – надежно установленные факты, достоверные сведения о реальных объектах, процессах и явлениях. В статье известных российских астрофизиков рассказывается о четырех крупнейших открытиях в космологии и трудных загадках этой науки – как старых, так и совсем свежих, которые еще предстоит разрешить
Чем дальше, тем быстрее
Современная космология берет начало в первые десятилетия ХХ века. В 1915—1917 гг. американский астроном Весто Слайфер обнаружил, что галактики (которые тогда называли туманностями) не стоят на месте, а движутся в пространстве, причем большинство из них удаляются от нас. Этот вывод следовал из наблюдений спектров галактик: их движение проявляло себя в сдвиге спектральных линий к красному концу спектра.
Такого рода красное смещение, которое можно интерпретировать как давно известный в физике эффект Доплера, имеет, как впоследствии оказалось, всеобщий характер: оно наблюдается у всех галактик во Вселенной. Исключение составляют только самые близкие к нам звездные системы, например, знаменитая туманность Андромеды и другие (менее крупные) галактики, находящиеся на расстояниях, не превышающих примерно 1 мегапарсек (1 Мпк ≈ 3,26 млн световых лет). Если расстояния больше 1 Мпк, то галактики, по выражению Слайфера, «разбегаются в пространстве».
В 1929 г. другой американский исследователь, Эдвин Хаббл, которого нередко называют величайшим астрономом ХХ в., определил, что движение разбегающихся галактик следует простому закону: скорость V удаления от нас галактики пропорциональна расстоянию R до нее: V = H R. Это соотношение между скоростью и расстоянием называют сейчас законом Хаббла, а коэффициент пропорциональности H – постоянной Хаббла. Величина H постоянна в том смысле, что она одинакова для всех галактик и не зависит ни от расстояния до галактики, ни от направления на нее на небе. По современным данным, значение постоянной Хаббла лежит в пределах от 60 до 75 км/с на мегапарсек.
Удаление галактик по закону Хаббла наблюдают сейчас вплоть до расстояний в несколько тысяч мегапарсек. Если галактика находится на расстоянии, скажем, 1000 Мпк, то она движется от нас прочь со скоростью 60—75 тыс. км/с. Это огромная скорость, которая лишь в 4—5 раз уступает скорости света. Всеобщее разбегание галактик — самый грандиозный феномен природы.
Открытия Слайфера и Хаббла, а также дальнейшие исследования заложили наблюдательную основу, на которой строится и развивается вся современная космология. Мы знаем теперь, что живем в огромном мире, который к тому же расширяется со временем. Расширение началось около 14 млрд лет назад; этот гигантский промежуток времени и считается возрастом мира. А событие, которое породило космологическое расширение, называют Большим Взрывом.
Но какова физическая природа Большого Взрыва? Откуда взялись у галактик огромные скорости разбегания? Что заставило их стремительно удаляться друг от друга? На эти вопросы не смогли ответить ни знаменитые астрономы-наблюдатели, основатели космологии, ни великие физики, начиная с Эйнштейна. Нет ответа на них и у космологов наших дней. Возможно, это самая трудная и самая не поддающаяся разрешению загадка из когда-либо возникавших в естественных науках. Мы не знаем, с чего, собственно, началось космологическое расширение, не имеем представления о физике, которая могла бы за этим стоять. Не известно даже, как нужно ставить задачу о причине космологического расширения. Тем более ничего нельзя сказать о том, что было до этого события, и даже не вполне понятно, что значит здесь «до».
И тем не менее сама возможность расширения мира была предсказана русским математиком Александром Фридманом, классиком мировой науки. Пользуясь теорией Эйнштейна, Фридман разработал в 1922—1924 гг. физико-математическую модель мира, который находится в состоянии общего расширения. Прямым следствием этой модели является закон пропорциональности скорости и расстояния, который и был открыт в наблюдениях Хаббла. Космологическая модель Фридмана – теоретическая база современной космологии. Эта модель в сочетании с данными астрономических наблюдений очень хорошо описывает динамику космологического расширения. Конечно, не с «самого начала», о котором ничего не известно. Но замечательно, что теория Фридмана справедлива сразу же после первой секунды космологического расширения. Кроме этой первой секунды, вся дальнейшая история мира нам известна; более того, эта теория говорит и о будущем Вселенной: она предсказывает, что космологическое расширение будет продолжаться неограниченно долго.
Лишний вес Вселенной
В 1933 г. швейцарско-американский астроном Фриц Цвикки заметил, что кроме светящегося вещества галактик во Вселенной должны быть еще невидимые, «скрытые» массы, которые проявляют себя только своим тяготением. Он изучал скопление галактик Кома в созвездии Волосы Вероники – крупное образование, содержащее тысячи звездных систем, подобных туманности Андромеды или нашей Галактике. Галактики движутся в этом скоплении со скоростями, достигающими 1000 км/с. Чтобы удержать их в объеме скопления, требуется тяготение, которое не способны создать одни только видимые, светящиеся массы самих галактик. Для этого необходимо более сильное тяготение, и, согласно подсчетам Цвикки, требуются дополнительные массы, которые примерно в 10 раз больше суммарной видимой массы галактик скопления.
Позднее, в 1970-х гг., усилиями астрономов СССР и США было обнаружено, что скрытые массы должны присутствовать не только в скоплениях галактик, но и в изолированных крупных галактиках. Яан Эйнасто, Вера Рубин, Джеремайя Острайкер, Джим Пиблс и их коллеги выяснили, что скрытые массы образуют невидимые гало галактик. Дело в том, что можно измерить зависимость скорости вращения спиральных галактик от расстояния до центра (кривая вращения), которое прослеживается как внутри звездной системы, так и вне ее (по движению облаков нейтрального водорода). В области вне видимого диска галактики кривая вращения становится, как правило, плоской, т. е. практически не зависит от расстояния. Во всех случаях ход этой «плоской» зависимости указывает на присутствие скрытой материи и внутри звездной системы, и вне ее, причем масса невидимой материи в гало в 3—10 раз больше массы галактики.
Эти гало имеют почти сферическую форму, их радиусы в 5—10 раз превышают размеры самих звездных систем. Такие крупные галактики, как, скажем, туманность Андромеды или наша Галактика, состоят из звездного диска, погруженного в распределение невидимой массы, которое простирается на расстояния до 100 кпк. Эти темные гало, как и дополнительные массы у Цвикки, проявляют себя исключительно тяготением. Невидимое вещество, наполняющее гало галактик и скоплений, принято сейчас называть темной материей.
Другие интересные эмпирические данные, подтверждающие существование темной материи, связаны с эффектом гравитационной линзы. Скопления галактик создают эйнштейновский эффект отклонения света полем тяготения. Источником света служат в этом случае далекие галактики и квазары. Изображения галактик искажаются при прохождении их света в гравитационном поле скопления, служащего своеобразной гравитационной линзой. Различают сильное и слабое линзирование. При сильном линзировании искажение столь значительно, что появляется несколько изображений источника. Это происходит, когда угловое расстояние между линзой и источником относительно невелико. При сравнительно больших угловых расстояниях искажение не так значительно (слабое линзирование), и оно сводится к изменению видимой формы источника, но уже без дробления его изображения. В обоих случаях этот эффект дает указание на массу скопления, служащего гравитационной линзой. Изучая такие искажения для сотен тысяч и миллионов далеких галактик, можно получить сведения о величине и распределении массы в скоплениях-линзах. Наблюдения такого рода неизменно указывают на то, что скопления содержат большие скрытые массы.
Открытие темной материи – второе (после открытия космологического расширения) важнейшее событие в истории космологии. Обычное вещество, из которого состоит планета Земля (и все, что на ней, включая и нас самих), Солнце, другие звезды, складывается всего из трех видов элементарных частиц: протонов, нейтронов и электронов. А темная материя, которой во Вселенной гораздо больше, имеет совсем другой состав: это не барионы (протоны и нейтроны), не электроны, а… неизвестно что.
Четверть века назад Я. Б. Зельдович активно развивал представление о том, что темная материя могла бы состоять из нейтрино. Космологические нейтрино (и антинейтрино) определенно имеются во Вселенной. Они вышли из равновесия с веществом, когда возраст мира был меньше одной секунды, и с тех пор присутствуют в космосе, взаимодействуя с остальными видами энергии практически только гравитационно. Их должно быть в среднем около 300 в каждом кубическом сантиметре пространства. В начале 1980-х гг. казалось, что лабораторный физический эксперимент позволяет этим частицам иметь массы, подходящие для того, чтобы нейтрино могли играть роль темной материи. Сейчас, однако, стало ясно, что массы нейтрино значительно меньше, так что на них можно списать в лучшем случае примерно 10 % темной материи. Каковы же тогда основные носители этой субстанции?
Одна из современных гипотез, выросшая из идеи Зельдовича, заключается в том, что темная материя состоит в основном из частиц, в некотором смысле очень похожих на нейтрино: они стабильны, не имеют электрического заряда и участвуют только в гравитационном и слабом взаимодействиях. Однако такие частицы сильно отличаются от нейтрино по массе: они должны быть очень тяжелыми, примерно в 1000 раз тяжелее протона, так что энергия покоя такой частицы составляет около 1 ТэВ. Такие частицы до сих пор не были известны ни в теории, ни в физическом эксперименте. Если они действительно существуют, то, как показывает теория, они вполне могли бы присутствовать во Вселенной в нужном количестве. Таким путем космология приходит к интересному предсказанию: в природе должны существовать массивные стабильные слабовзаимодействующие элементарные частицы, на долю которых приходится примерно 25 % всей массы и энергии Вселенной, что в 4—5 раз больше, чем вклад барионов.
Возможно, нужные по свойствам новые частицы будут обнаружены на Большом адронном коллайдере в ЦЕРНе, который готовится к проведению небывалых экспериментов. На этом мощнейшем ускорителе пучки протонов и ионов будут разгоняться до энергий более 10 ТэВ, что заметно превышает энергию покоя гипотетических темных частиц. В нескольких крупных лабораториях мира, в том числе и в России, строятся специальные установки для детектирования частиц темной материи, приходящих на Землю из гало нашей Галактики. Не исключено, что вопрос о физической природе темной материи будет решен уже в недалеком будущем. Во всяком случае эта загадка не кажется такой безнадежной, как природа космологического расширения.
Фон фотонов
В 1965 г. американские радиоастрономы Арно Пензиас и Роберт Вилсон обнаружили, что вся Вселенная пронизана электромагнитным излучением, приходящим на Землю изотропно, т. е. равномерно со всех направлений. Это третье из крупнейших открытий в космологии.
Максимум в спектре этого излучения приходится на миллиметровые волны, причем сам спектр, т. е. распределение по длинам волн (или частотам), совпадает по форме со спектром абсолютно черного тела. На языке квантов можно сказать, что в мире имеется газ фотонов, которые равномерно заполняют все пространство. Температура этого газа точно измерена: T = 2,725 K. Как видим, это очень низкая температура, она не выше трех градусов, считая от абсолютного нуля (по шкале Цельсия это −270°). Таких космических фотонов очень много во Вселенной: их почти в 10 млрд раз больше, чем протонов, если считать по числу частиц. В кубическом сантиметре пространства содержится примерно 500 реликтовых фотонов.
Само по себе изотропное космическое излучение не таит никаких особенных загадок. Это реликт, т. е. остаток, того состояния, в котором Вселенная находилась в очень далеком прошлом, в первые минуты своего расширения. В те времена в ней не было ни звезд, ни галактик, а все вещество распределялось в пространстве более или менее равномерно. Это можно себе представить, если мысленно обратить ход времени: глядя назад, мы увидим, что галактики не разбегаются, а сближаются между собой. И в определенный момент они должны перемешаться, так что их вещество окажется газом приблизительно однородной плотности. Этот газ должен быть очень горячим. Еще со школьной скамьи мы знаем, что при расширении тела охлаждаются, а при сжатии – нагреваются. Из физики известно также, что в горячем газе должны обязательно иметься фотоны, находящиеся с газом в термодинамическом равновесии. При расширении Вселенной фотоны не исчезают и должны сохраниться до современной эпохи.
Так рассуждал еще в 1940-х гг. Георгий Гамов, некогда студент профессора Фридмана в Ленинграде. Он построил теорию «горячей Вселенной», которую называют еще теорией Большого Взрыва, и на ее основе смог предсказать само существование этого остаточного, реликтового излучения. Более того, он предсказал и нынешнюю температуру реликтовых фотонов. По его расчетам, она не должна превышать 10 K. В одной из научно-популярных статей (в 1950 г.) Гамов написал, что температура должна быть примерно три градуса абсолютной шкалы. Как выяснилось через полтора десятка лет, предсказание оказалось очень точным. Многие считают, что это было самое красивое количественное предсказание во всей космологической теории.
Но кое-что не до конца ясно и с реликтовым излучением. Космологам не удается понять, почему реликтовых фотонов так много (по сравнению с протонами). Впрочем, правильнее было бы сказать, что это вопрос не о фотонах, а, скорее, о протонах: почему их именно столько, сколько известно из наблюдений? Ответа пока нет. С этой проблемой не удалось справиться даже А. Д. Сахарову, который считал ее одной из самых принципиальных как в космологии, так и во всей фундаментальной физике.
Открытие и изучение реликтового излучения отмечено двумя Нобелевскими премиями. Первая присуждена в 1978 г. Пензиасу и Вилсону, вторая – в 2006 г. Джорджу Смуту и Джону Матеру, которые в 1992 г. доказали, что реликтовое излучение – это действительно термодинамически равновесный газ фотонов определенной температуры. Это было сделано с помощью американского спутника COBE (Cоsmic Background Explorer). Кроме того, COBE измерил слабую — на уровне тысячных долей процента – анизотропию фонового излучения. Последняя представляет собой «отпечаток» первоначально слабых неоднородностей вещества ранней Вселенной, которые позднее дали начало наблюдаемым крупномасштабным космическим структурам – галактикам и скоплениям галактик.
В наши дни наблюдения реликтового излучения служат астрономам для изучения крупномасштабных свойств Вселенной. Самый яркий результат, достигнутый на этом пути в последние годы, касается геометрии трехмерного пространства, в котором происходит разбегание галактик. Начиная с Фридмана, космологи стремились выяснить тип геометрии реального пространства. Оказалось, что это обычная школьная эвклидова геометрия. Выходит, наш мир устроен не слишком сложно: по крайней мере его пространственная геометрия – самая простая из возможных.
Всемирное антитяготение
В 1998—1999 гг. две международные группы наблюдателей, одной из которых руководили Брайан Шмидт и Адам Райсс, а другой – Сол Перлматтер, установили, что наблюдаемое космологическое расширение происходит с ускорением: скорости удаления галактик возрастают со временем. Открытие сделано с помощью изучения далеких вспышек сверхновых звезд определенного типа (Ia), которые замечательны тем, что они могут служить «стандартными свечами», т. е. источниками с известной собственной светимостью. Из-за исключительной яркости сверхновые можно наблюдать на очень больших, истинно космологических расстояниях, составляющих тысячи мегапарсек.
Вещество (считая и с темной материей) не способно ускорять галактики, а лишь тормозит их разлет: взаимное притяжение галактик стремится сблизить их друг с другом. Поэтому открытый астрономами факт ускоренного расширения указывает на то, что наряду с обычным веществом, создающим тяготение, во Вселенной присутствует особая космическая масса, или энергия, которая создает не тяготение, а антитяготение – всеобщее отталкивание тел. При этом в космологическом масштабе антитяготение сильнее тяготения. Новая энергия получила название темной энергии. Она действительно невидима: не излучает, не рассеивает и не поглощает света (и всех вообще электромагнитных волн); она проявляет себя только антитяготением.
Астрономы выяснили, что до расстояний примерно в 7 млрд световых лет космологическое ускорение положительно. Но на еще более далеких расстояниях ускорение, как оказалось, меняет знак: там оно отрицательно, а значит, на этих сверхбольших расстояниях космологическое расширение происходит с замедлением.
Примем теперь во внимание, что свет распространяется в пространстве с конечной скоростью. Это означает, что мы видим объекты такими, какими они были, когда испустили принимаемый нами сейчас свет. Солнце мы видим с задержкой в 8 мин, далекие галактики наблюдаем такими, какими они были миллиарды лет назад. Телескоп – это настоящая машина времени, позволяющая воочию видеть прошлое мира. Возраст мира составляет 13,7 млрд лет – таковы самые свежие космологические данные.
Сказанное только что о космологическом ускорении означает, что первую половину своей истории Вселенная расширялась с замедлением, а вторую – с ускорением. Первые 7 млрд лет расширяющаяся Вселенная практически не чувствовала присутствия в ней темной энергии: плотность вещества (темной материи и барионов) была значительно выше плотности темной энергии. Предполагается, что плотность темной энергии не зависит от времени, это величина постоянная. А плотность вещества убывает в ходе расширения, так что в прошлом она была выше, чем сейчас; по этой причине до определенного момента тяготение вещества было сильнее антитяготения темной энергии. Эти две силы как раз и сравнялись по величине примерно 7 млрд лет тому назад. С тех пор темная энергия доминирует, и эта эпоха антитяготения будет длиться неограниченно долго.
По совокупности различных наблюдений (включая и наблюдения реликтового излучения) к настоящему времени установлена доля каждого космического компонента в общем энергетическом балансе Вселенной. Эти компоненты сейчас называют видами космической энергии. На долю темной энергии приходится примерно 70 % всей энергии мира; на темную материю – 25 %; на обычное вещество (протоны, нейтроны, электроны) – около 5 %; на реликтовое излучение – менее 0,1 %. Таков рецепт «энергетической смеси», заполняющей современную Вселенную. В ней, как мы видим, много «темного» – до 95 %. Это стало самой большой неожиданностью для астрономов, космологов и физиков.
Удивительно и достойно восхищения научное предвидение Эйнштейна: еще в 1917 г. он говорил о всеобщем космическом отталкивании как о возможном физическом феномене космологического масштаба. У Эйнштейна антитяготение описывается всего одной константой, которую называют космологической постоянной. Весь комплекс имеющихся сейчас наблюдательных данных о темной энергии прекрасно согласуется с таким описанием.
Эйнштейн не оставил нам физической интерпретации космологической постоянной. Согласно предложению Э. Б. Глинера, высказанному еще в 1965 г., космологическую постоянную можно рассматривать как физическую характеристику особого рода сплошной среды, идеально равномерно заполняющей все пространство Вселенной. Плотность этой среды не только однородна, но и не зависит от времени, она одна и та же во всех системах отсчета. Из этого представления вытекают особые макроскопические свойства темной энергии. Так, оказывается, что у нее имеется давление, причем оно отрицательно, а по абсолютной величине равно плотности энергии (напомним, что плотность энергии и давление имеют одну и ту же размерность). Именно из-за своего отрицательного давления темная энергия создает антитяготение – это специфический эффект общей теории относительности.
Но каковы не макроскопические, а микроскопические свойства темной энергии? Из чего она состоит? В конце 1960-х гг., задолго до открытия темной энергии, Зельдович обсуждал возможную связь между космологической постоянной и квантовым вакуумом элементарных частиц и физических полей. Этот физический вакуум не есть абсолютная пустота, он имеет свою отличную от нуля энергию. Ее носителями служат так называемые нулевые колебания квантовых полей, всегда существующие в пространстве даже в отсутствие в нем каких-либо частиц. Если этот квантовый вакуум рассматривать макроскопически как некую среду, то ему следует приписать не только плотность энергии, но также и давление. При этом связь между давлением и плотностью должна быть в точности такой, как и у темной энергии, описываемой эйнштейновской космологической постоянной. Так не тождественна ли темная энергия физическому вакууму?
Было бы замечательно, если бы удалось доказать, что это действительно так: объединение кажущихся разными сущностей – плодотворнейший путь развития науки. Это известно еще со времен Максвелла, объединившего электричество и магнетизм. Но до сих пор идею Зельдовича не удается ни доказать, ни опровергнуть. Физическая природа и микроскопическая структура темной энергии стала сейчас центральной проблемой космологии и всей фундаментальной физики. Похоже, она столь же сложна, как и вопрос о происхождении космологического расширения.
Итак, за 90 лет своего существования, считая от первых наблюдений Слайфера и теоретической работы Эйнштейна, космология превратилась из области абстрактных и почти фантастических, как казалось, занятий на далекой периферии тогдашней науки в одно из центральных направлений естествознания XXI в. Она обладает надежным наблюдательным фундаментом, который складывается из базовых фактов о Вселенной. На нем строится и развивается теория, прочно связанная со всей современной физикой, включая общую теорию относительности, ядерную физику и физику элементарных частиц. Космология ставит новые важные вопросы, выдвигает содержательные идеи и гипотезы, делает смелые предсказания. Она дает широкую, богатую и согласованную картину мира, которая становится сейчас неотъемлемой частью общей культуры человечества. А нерешенные проблемы в живой, сложной науке всегда есть и должны быть – это источник и резерв ее дальнейшего развития.
Вейнберг С. Первые три минуты. М.: Атомиздат, 1982.
Розенталь И. Л. Элементарные частицы и структура Вселенной. М.: Недра, 1984.
Тропп Э. А., Френкель В. Я., Чернин А. Д. Александр Александрович Фридман. Труды и жизнь. М.: Наука, 1988.
Черепащук А. М., Чернин А. Д. Вселенная, жизнь, черные дыры. Фрязино: Век-2, 2003.
Черепащук А. М., Чернин А. Д. Горизонты Вселенной. Новосибирск: Изд-во СО РАН, 2005.