корнем какого уравнения является число 36
Умники и умницы
Умные дети — счастливые родители
ПНШ 4 класс. Математика. Учебник № 2, с. 113
Буквенные выражения и уравнения (повторение)
Ответы к с. 113
381. Найди корни следующих уравнений.
х + 25689 = 365148 462351 — х = 42365
х — 45361 = 75892 х • 15 = 42825
81954 : х = 18 х : 37 = 3652
х + 25689 = 365148 462351 — х = 42365
х = 365148 — 25689 х = 462351 — 42365
х = 339459 х = 419986
х — 45361 = 75892 х • 15 = 42825
х = 75892 + 45361 х = 42825 : 15
х = 121253 х = 2855
81954 : х = 18 х : 37 = 3652
х = 81954 : 18 х = 3652 • 37
х = 4553 х = 135124
382. Составь уравнение, корнем которого является неизвестное число, удовлетворяющее следующему условию: если к неизвестному числу прибавить число 38, а полученный результат разделить на 25, то в итоге получится 8.
(х + 38) : 25 = 8
383. Запиши, какое выражение является делимым в следующем уравнении:
(х + 38) : 25 = 8.
Можно ли по данному уравнению найти, чему должно быть равно делимое? Вычисли это число и составь новое уравнение с тем же самым неизвестным.
Найди корень составленного уравнения и проверь, будет ли это число являться корнем исходного уравнения.
Делимым является выражение х + 38.
Можно:
(х + 38) : 25 = 8
(х + 38) = 8 • 25
х + 38 = 200
Новое уравнение:
х + 38 = 200
х = 200 — 38
х = 162
Проверка:
(162 + 38) : 25 = 8
200 : 25 = 8
8 = 8
Следовательно, х = 162 — корень исходного уравнения.
384. Проверь, корнем какого из данных уравнений является число 237.
х + 53896 = 54123 82581 + х = 82918
х — 235689 = 125682 536982 — х = 536650
х • 36 = 7956 99 • х = 23661
х : 13 = 21 237237 : х = 1001
х + 53896 = 54123 82581 + х = 82918
х = 54123 — 53896 х = 82948 — 82581
х = 227 х = 367
х — 235689 = 125682 536982 — х = 536650
х = 125682 + 235689 х = 536982 — 536650
х = 361371 х = 332
х • 36 = 7956 99 • х = 23661
х = 7956 : 36 х = 23661 : 99
х = 221 х = 239
х : 13 = 21 237237 : х = 1001
х = 21 • 13 х = 237237 : 1001
х = 273 х = 237
Число 237 является корнем уравнения 237237 : х = 1001.
385. Составь три разных уравнения, корнем каждого из которых является число 725.
6525 : х = 9 5 • х = 3625 125 + х = 850
х = 6525 : 9 х = 3625 : 5 х = 850 — 125
х = 725 х = 725 х = 725
Мерзляк 5 класс — § 10. Уравнение
Вопросы к параграфу
1. Какое число называют корнем (решением) уравнения? — Корнем (решением) уравнения называют число, которое при подстановке вместо буквы обращает уравнение в верное числовое равенство.
2. Что значит решить уравнение? — Это значит найти все его корни или убедиться, что их вообще нет.
3. Как найти неизвестное слагаемое? — Надо из суммы вычесть известное слагаемое.
4. Как найти неизвестное уменьшаемое? — Надо к разности прибавить вычитаемое.
5. Как найти неизвестное вычитаемое? — Надо из вычитаемого вычесть разность.
Решаем устно
1. Найдите значение выражения 53 + х:
1. если х = 29, то 53 + х = 53 + 29 = 82
2. если х = 61, то 53 + х = 53 + 61 = 114
2. Найдите значение выражения 12y:
1. если: у = 7, то 12y = 12 • 7 = 84
2. если: у = 20, то 12y = 12 • 20 = 240
3. Найдите по формуле пути s = 50t расстояние (в метрах), которое проходит Петя:
1) за 4 мин: s = 50t = 50 • 4 = 200 метров
2) за 10 мин: s = 50t = 50 • 10 = 500 метров
Что означает числовой множитель в этой формуле? Числовой множитель 50 обозначает скорость движения Пети (м/мин).
4. Число а на 10 больше, чем число b. В виде каких из следующих равенств это можно записать:
Ответ: можно записать в виде равенств: а — b = 10; а — 10 = b; b + 10 = а.
5. Найдите все натуральные значения а, при которых выражение 20 : а принимает натуральные значения.
6. На одну чашу весов поставили несколько гирь по 2 кг, а на другую — по 3 кг, после чего весы пришли в равновесие. Сколько поставили гирь каждого вида, если всего их поставили 10?
На одну чашу весов надо поставить 6 гирь по 2 кг, а на другую — 4 гири по 3 кг.
Для решения использовано 10 гирь.
Упражнения
267. Какое из чисел 3, 12, 14 является корнем уравнения:
1) х + 16 = 28
Ответ: корнем уравнения является число 12.
2) 4х — 5 = 7
Ответ: корнем уравнения является число 3.
268. Какое из чисел 3, 12, 14 является корнем уравнения:
1) 234 — y = 220
Ответ: корнем уравнения является число 14.
2) 72 : b + 13 = 19
Ответ: корнем уравнения является число 12.
269. Решите уравнение:
270. Решите уравнение:
271. Решите уравнение:
272. Решите уравнение:
273. Решите с помощью уравнения задачу.
1) Оксана задумала число. Если к этому числу прибавить 43 и полученную сумму вычесть из числа 96, то получим число 25. Какое число задумала Оксана?
Пусть задуманное Оксаной число равно x. Тогда можно составить уравнение:
96 — (х + 43) = 25
х + 43 = 96 — 25
х + 43 = 71
х = 71 — 43
х = 28
Ответ: Оксана задумала число 28.
2) У Буратино было 74 сольдо. После того как он купил себе учебники для школы, папа Карло дал ему 25 сольдо. Тогда у Буратино стало 68 сольдо. Сколько сольдо потратил Буратино на учебники?
Пусть Буратино потратил на учебники х сольдо. Тогда можно составить уравнение:
(74 — х) + 25 = 68
74 — х = 68 — 25
74 — х = 43
х = 74 — 43
х = 31
Ответ: Буратино потратил на учебники х сольдо.
274. Решите с помощью уравнения задачу.
Ваня задумал число. Если к этому числу прибавить 27 и из полученной суммы вычесть 14, то получим число 36. Какое число задумал Ваня?
Пусть задуманное Ваней число равно х. Тогда можно составить уравнение:
(х + 27) — 14 = 36
х + 27 = 36 + 14
х + 27 = 50
х = 50 — 27
х = 23
Ответ: Ваня задумал число 23.
275. Какое число надо подставить вместо а, чтобы корнем уравнения:
1) (x + а) — 7 = 42 было число 22
Подставим вместо х число 22 — корень уравнения, затем найдём неизвестное а:
(22 + а) — 7 = 42
22 + а = 42 + 7
22 + а = 49
а = 49 — 22
а = 27
Ответ: вместо а надо подставить число 27.
2) (а — x) + 4 = 15 было число 3
Подставим вместо х число 3 — корень уравнения, затем найдём неизвестное а:
(а — 3) + 4 = 15
а — 3 = 15 — 4
а — 3 = 11
а = 11 + 3
а = 14
Ответ: вместо а надо подставить число 14.
276. Какое число надо подставить вместо а, чтобы корнем уравнения:
1) (х — 7) + а = 23 было число 9
Подставим вместо х число 9 — корень уравнения, затем найдём неизвестное а:
(9 — 7) + а = 23
2 + а = 23
а = 23 — 2
а = 21
Ответ: вместо а надо подставить число 21.
2) (11 + х) + 101 = а было число 5
Подставим вместо х число 5 — корень уравнения, затем найдём неизвестное а:
(11 + 5) + 101 = а
16 + 101 = а
117 = а
а = 117
Ответ: вместо а надо подставить число 117.
Упражнения для повторения
277. Лиза была в школе с 8 ч 15 мин до 15 ч 20 мин. Вечером она пошла на тренировку. Там она провела на 5 ч 40 мин меньше времени, чем в школе. Сколько времени Лиза была на тренировке?
1) 15 ч 20 мин — 8 ч 15 мин = 7 ч 5 мин — Лиза провела в школе.
2) 7 ч 5 мин — 5 ч 40 мин = 6 ч 65 мин — 5 ч 40 мин = 1ч 25 мин — Лиа провела на тренировке.
278. Начертите отрезок длиной 12 см. Над одним концом отрезка напишите число 0, а над другим — 480. Поделите отрезок на шесть равных частей. Отметьте на полученной шкале числа 40, 100, 280, 360, 420.
279. Можно ли, имея 900 р., купить 3 кг бананов по 65 р. за 1 кг, 2 кг мандаринов по 130 р. за 1 кг и 4 кг апельсинов по 95 р. за 1 кг?
Посчитаем общую стоимость предполагаемой покупки:
1) 65 • 3 = 195 (рублей) — потребуется на покупку бананов.
2) 130 • 2 = 260 (рублей) — потребуется на покупку мандаринов.
3) 95 • 4 = 380 (рублей) — потребуется на покупку апельсинов.
4) 195 + 260 + 380 = 835 (рублей) — будет стоить весь набор продуктов.
Сравним предполагаемую стоимость покупки с имеющейся суммой денег:
Значит купить все эти продукты на 900 рублей можно.
Задача от мудрой совы
280. В трёх ящичках лежат шары: в первом ящичке — два белых, во втором — два чёрных, в третьем — белый и чёрный. На ящички наклеены этикетки ББ, ЧЧ и БЧ так, что содержимое каждого из них не соответствует этикетке. Как, вынув один шар, узнать, что в каком ящичке лежит?
Этикетки на ящиках не соответствуют их содержимому. Значит в ящике БЧ не может лежать два разноцветных шарика. Там будет либо 2 белых шарика, либо два чёрных шарика. Вытащим один шар из ящика с этикеткой БЧ:
Ответ: надо вытащить шар из ящика с надписью БЧ.