когда придумали логику в каком году
Логика. Шпаргалка
Цель учебного пособия – научить учащихся основам логики, привить навыки самостоятельного, творческого, последовательного и определенного мышления, познакомить с основными логическими понятиями, законами и методами. В издании большое внимание уделяется таким вопросам, как культура мышления, классическая и неклассическая логика, суждение и норма и т. д. Издание адресовано студентам высших учебных заведений гуманитарных специальностей, а также учащимся средних учебных заведений.
Оглавление
Приведённый ознакомительный фрагмент книги Логика. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.
2. История возникновения и развития логики как науки
Возникновение логики связывают с древнегреческим философом Аристотелем (384–322 гг. до н. э.), но зародилась она в Индии и Китае (VI в. до н. э.). На начальных этапах ее развития в Древней Индии большое внимание уделялось теории умозаключения, которое отождествлялось с доказательством. В Древнем Китае большинство логических теорий были разбросаны по различным трактатам, которые посвящались вопросам философии, этики, политики и естествознания. В них акцентируется внимание на таких логических проблемах, как теория имен, теория высказывания, теория рассуждения, законы мышления.
Аристотелем был написан фундаментальный труд по логике «Органон», что в переводе с греческого означает «орудия познания»). Аристотель сформулировал основные законы мышления: тождества, противоречия и исключенного третьего, описал важнейшие логические операции, разработал теорию понятия и суждения, исследовал дедуктивное (силлогистическое) умозаключение. Аристотелевское учение о силлогизме составило основу одного из направлений современной математической логики — логики предикатов.
Среди других античных мыслителей, развивавших и комментирующих логическое учение Аристотеля, выделяют Галена, Порфирия, Боэция, сочинения которых длительное время служили основными логическими пособиями.
Важнейшим этапом в развитии логики явилась теория индукции, разработанная английским философом Ф. Бэконом (1561–1626). Бэкон подверг критике извращенную средневековой схоластикой дедуктивную логику Аристотеля, которая, по его мнению, не может служить методом научных открытий. Таким методом должна быть индукция, принципы которой изложены в его сочинении «Новый Органон». Однако он неправомерно противопоставил индуктивный метод методу дедукции; в действительности эти методы не исключают, а дополняют друг друга. Бэкон разработал методы научной индукции, систематизированные впоследствии английским философом и логиком Дж. Миллем (1806–873).
Дальнейшее развитие логики связано с именами Р. Декарта, Г. Лейбница, И. Канта и др.
Французский философ Р. Декарт (1596–1650) развил идеи дедуктивной логики, сформулировал правила научного исследования.
Это был первый период развития логики, длившийся более двух тысячелетий. Второй начинается с трудов немецкого философа Г. Лейбница (1646–1716), сформулировавшего закон достаточного основания и выдвинувшего идею математической логики, которая получила развитие лишь в XIX–XX вв.
На первых порах современная логика ориентировалась почти всецело на анализ только математических рассуждений. В 1920-е гг. XX в. предмет логических исследований существенно расширился. Начали складываться символическая логика (включающая множество разделов, таких как логика высказываний, логика предикатов, вероятностная логика и т. д.), модальная логика (рассматривающая понятия «необходимо», «возможно», «случайно» и т. п.), деонтическая логика (изучающая логические связи нормативных высказываний), диалектическая логика (изучающая законы развития человеческого мышления) и др. Некоторые эти новые разделы не были непосредственно связаны с математикой, в сферу логического исследования вовлекались уже естественные и гуманитарные науки.
Знаменитыми русскими исследователями в области логики были М. И. Каринский (1840–1917) и Л. В. Рутковский (1859–1920). Так, М. И. Карийский внес значительный вклад в разработку классификации умозаключений. Л. В. Рутковский — автор труда «Основные типы умозаключений» (1888 г.) — считал возможным признать равноправными с отношениями тождества и такие, как отношения сходства, сосуществования и др.
Логика. Краткий курс
Настоящее издание представляет собой учебное пособие, подготовленное в соответствии с Государственным образовательным стандартом по дисциплине «Логика». Материал изложен кратко, но четко и доступно, что позволит в короткие сроки успешно подготовиться и сдать экзамен или зачет по данному предмету. Издание предназначено для студентов высших учебных заведений.
Оглавление
Приведённый ознакомительный фрагмент книги Логика. Краткий курс предоставлен нашим книжным партнёром — компанией ЛитРес.
3. История логики как науки
Наука логика сложилась более двух тысяч лет назад, в IV в. до н. э. Основателем логики считают древнегреческого философа Аристотеля (384–322 до н. э.).
В его трудах «Органон» («Орудия познания») были сформулированы основные законы мышления, такие как закон тождества, противоречия и исключенного третьего, и определены основные логические операции. Аристотель также разработал теорию понятия и суждения, обстоятельно исследовал дедуктивное, или силлогистическое, умозаключение, что послужило основой такого направления современной математической логики, как логика предикатов.
Логика получала развитие и в Средние века, но схоластика исказила аристотелевское оригинальное учение, адаптировав его для обоснования религиозной догматики.
Успехи логической науки в Новое время характеризуются теорией индукции, разработанной английским философом Ф. Бэконом (1561–1626). Ученый критиковал искаженную схоластикой дедуктивную логику Аристотеля и предложил индукцию как метод научных открытий. Основные положения индукции Бэкон изложил в сочинении «Новый Органон».
Методы индукции Бэкона систематизировал английский философ и логик Дж. С. Милль (1806–1873). Дедуктивную логику Аристотеля и индуктивную логику Бэкона — Милля называют формальной, как возникшую и получившую развитие науку о формах мышления. Другое ее название — традиционная, или аристотелевская, логика.
Последующий прогресс в развитии логики связан с такими выдающимися мыслителями, как Р. Декарт, Г. Лейбниц, И. Кант и др. Французский философ Р. Декарт (1596–1650) критиковал средневековую схоластику, а также развил идеи дедуктивной логики, сформулировал правила научного исследования в своем сочинении «Правила для руководства ума».
Неоценимый вклад в логическую науку внесли немецкий философ Г. Лейбниц (1646–1716), который сформулировал закон достаточного основания и выдвинул идею математической логики; немецкий философ И. Кант (1724–1804) и многие другие западноевропейские ученые.
Русские философы и ученые имеют не менее значительные заслуги в развитии науки логики. В их числе такие светила российской науки, как М. В. Ломоносов (1711–1765), А. Н. Радищев (1749–1802), Н. Г. Чернышевский (1828–1889), М. И. Каринский (1840–1917), Л. В. Рутковский (1859–1920), С. И. Поварнин (1870–1952).
Методы исчисления, разработанные в математике во второй половине XIX в., были широко внедрены в логику в трудах Д. Буля, Б. Рассела, Г. Фреге, Ч. Пирса и других математиков и логиков. Анализ дедуктивно проводимых рассуждений с помощью методов исчисления получил название математической, или символической, логики.
Символическая логика представляет собой область логических исследований, включающую множество так называемых «логик» (например, логика высказываний, логика предикатов, вероятностная логика и т. д.).
Широкое распространение логики в России началось в XIX в., когда она стала обязательной учебной дисциплиной в высших учебных заведениях. Расцвет логики приходится на вторую половину XIX — начало XX в. и связан с именами ученых В. Н. Карпова, М. И. Владиславлева, М. И. Каринского, Н. Я. Грота, Л. В. Рутковского, А. И. Введенского, П. С. Порецкого, С. И. Поварнина и др.
Золотой период для логики продлился в России недолго. В советской России в послереволюционный период формальная логика была объявлена буржуазной наукой. Но в 1947/1948 учебном году логику восстановили в учебных программах, причем предпочтение отдавалось логике диалектической.
Математическая логика существовала в рамках математики, избежав идеологического давления. На сегодняшний день математическая логика отошла от традиционной и не получила широкого распространения в среде гуманитариев в силу ее относительной сложности и отсутствия необходимости придавать естественным языковым выражениям символический вид.
Логика: предикатная, формальная и сентенциальная. Кванторы и создание информатики
1 | Введение
Логика, как эпистемологический инструмент, изобретена независимо в трёх отдельных государствах: Греции (Аристотелем), Китае (до правления Цинь Шихуанди) и Индии. В последних двух перечисленных государствах логика не распространилась настолько, чтобы «прижиться» и получить своё полноценное развитие. В античной же Греции произошло наоборот — логика сформировалась в своих основах столь определённо, что дополнилась только через 2 тысячелетия.
Значительные изменения в греческую логику, помимо Дж. Буля, О. де Моргана и Б. Рассела, внёс Готлоб Фреге — он придумал 2 вида кванторов. А также Курт Гёдель, открыв знаменитые две теоремы о неполноте, описывающие невозможность объединения множества доказуемых утверждений со множеством истинных. Он утверждал, что доказательства математики зависят от начальных предположений, а не фундаментальной истины, из которой происходят ответы. Одна из главных идей его работ состоит в том, что ни один набор аксиом, — в том числе математических, — не способен доказать свою непротиворечивость.
На этом этапе некоторые заметят влияние платонизма на австрийского логика. Верно, ведь Гёдель не раз заявлял о влиянии метафизики Платона на собственную деятельность. Но сам Платон развитию формальной логики способствовал лишь косвенно: в истории он вносит вклад в развитие другого направления — философской логики. Платоном созданы вопросы, на которых основывается вся западная философия вплоть до наших дней. Философия, в том виде, котором она известна, возникла только благодаря учителю Аристотеля.
Платон — учитель Аристотеля
В другие периоды в логику также вносили дополнения:
античной школой стоицизма введены термины «модальности», «материальной импликации», «оценки смысла и истины», которые являются задатками логики высказываний;
также средневековыми схоластами введены несколько понятий;
Но главное, что сами логические операции не изменились. «Органон» Аристотеля, как сборник из 6 книг — первоисточник, где подробно описаны главные логические законы. «Органон» (с древнегреческого ὄργανον), означает — инструмент. Аристотель считал, что логика является инструментом к познанию. Он объединяет методом получения информации такие науки:
Физика — наука о природе;
Метафизика — наука о природе природы;
Биология — раздел физики, наука о жизни;
Психология — раздел физики, наука о душе;
Кинематика — раздел физики, наука о движении;
2 | Терминология
У каждой из наук должен быть идентичный фундамент в способе получения гнозисов (знаний), который позволит упорядочить информацию и выводить новые силлогизмы (умозаключения). Только таким образом получится прогресс в познании истины. Без логики наука была бы похожа на коллекционирование фактов, т.к. информация бы не поддавалась анализу.
Сам Аристотель находит логике как средству убеждения иное применение: в риторике, спорах, дебатах, выступлениях и т. д., описывая это в своём труде «Риторика». В западной философии принято давать чёткие определения перед рассуждениями, поэтому определимся с терминами. Логика — наука о правильном мышлении.
В языковой зависимости возникают трудности трактовки термина «наука», но даже в оригинальном названии труда Фридриха Гегеля «Наука логики» — «Wissenschaft der Logik», употребляется слово «наука» (Wissenschaft). Поэтому придём к консенсусу и будем считать, что научной можно назвать ту дисциплину, в которой возможны открытия, исследование и анализ. Логика в таком случае — наука, ибо внутри неё возможно совершать открытия. Яркий пример — комбинаторика Лейбница.
Слово «правильный» сразу веет нормативными коннотациями: правильное поведение, правильное выражение лица, и т.д. Перечисленное соответствует некоторым критериям и логика выставляет их (критерии) для правильного мышления.
Слово «мышление» понимается на интуитивном уровне, но чёткое объяснение затруднительно, обширно и иногда не объективно.
Бюст Аристотеля
3 | Формальная и неформальная логика
Первоначально, деление логики происходит на формальную и неформальную. Формальная логика отличается тем, что, в отличие от неформальной, записывается уравнениями. Неформальная же логика пишется выражениями в форме языка, поэтому она подходит для риторики, а формальная логика для абстрактных наук.
Формальная логика равным образом делится на дедуктивную и индуктивную. Они различаются тем, что в дедуктивном аргументе истинность условий гарантирует истинность умозаключения или вывода. В индукции же, при истинности условий одинаково возможен ложный и истинный вывод.
Законы формальной логики:
1. Закон тождества (А = А): эквивокация или двусмысленность недопустимы. Нельзя подменять одно понятие, другим.
2. Закон непротиворечия (А ∧ ¬А = 0): одно и то же утверждение не может быть истинным и ложным одновременно.
3. Закон исключения третьего или бивалентности (А ∨ ¬А = 1): утверждение может быть либо истинным, либо ложным — третьего не дано.
Принципы формальной логики:
1. Принцип достаточного обоснования: достаточными являются такие фактические и теоретические обоснования, из которых данное суждение следует с логической необходимостью.
4 | Сентенциальная логика (алгебра высказываний)
Базовые операции сентенциальной логики — логики высказываний, где заглавная буква означает предложение:
Отрицание (Утверждение ¬A истинно тогда и только тогда, когда A ложно): если имеем утверждение «А» и имеем утверждение «не А», то, когда утверждение «А» будет истинным, утверждение «не А» будет ложным. Также и когда утверждение «А» будет ложным — утверждение «не А» будет истинным.
Конъюнкция (Утверждение A ∧ B истинно, если и A, и B — истинны. Ложно в противном случае): в английском языке — союз «and/&»; в русском — «и». В утверждении «А и В», между «А» с «В» стоит знак конъюнкции — «∧». Утверждение «А и В» является истинным, если «А» с «В» являются истинными одновременно. Если хоть один элемент ложен, то всё утверждение ложно. «А и В» подразумевает, во-первых: истинность «А», во-вторых: истинность «В».
Дизъюнкция (Утверждение A ∨ B верно, если A или B (или оба) верны. Если оба не верны — утверждение ложно): в английском языке — союз «or»; в русском — «или». Существует два типа дизъюнкции — включающая и исключающая (в логике используется включающее «или»). Условия таковы, что утверждение «А или В» будет истинным, когда один или оба элемента истинны, но никогда — когда оба элемента ложны. Это противоречит нашему обыденному мышлению, т.к. когда спрашивают: «Чай или кофе?» мы выбираем один элемент, но в логике подразумевается выбор не только одного, а нескольких возможных.
Импликация (Утверждение A ⇒ B ложно, только когда A истинно, а B ложно): в английском языке — «therefore»; в русском языке — «следовательно». Подразумевает истинность одного элемента при истинности другого. Потому что условия истинности соблюдаются всегда, кроме случая, когда «А» истинно, а «B» ложно. Поэтому утверждение: «А» ложно, следовательно «B» ложно — истинно. Покажется, что когда «А» ложно, а «В» истинно — не соблюдаются условия, но это не так. Если вы скажете, что после дождя промокните — это утверждение будет истинным вне зависимости от того, пошёл дождь или нет.
Эквивалентность (Утверждение A ⇔ B истинно, только если оба значения A и B ложны, либо оба истинны): если истинно утверждение «А, следовательно В» и истинно утверждение «В, следовательно А», то истинными являются выражения «А эквивалентно В» и соответственно «В эквивалентно А». Условия истинности соблюдаются в случаях, когда оба элемента истинны или оба ложны.
5 | Предикатная логика первого порядка
В XX веке, после добавлений в логику работ Готфрида Лейбница и Готлоба Фреге, на основе этой дисциплины создаётся новая — информатика. Языки программирования основываются на видоизменённой логике Аристотеля — предикатной логике, описательная способность которой выше, чем у логики высказываний (сентенциальной). Прежде чем разобрать этот новый тип логики, поговорим об её отличии от сентенциальной. Главная особенность предикатной логики, что заглавными буквами обозначаются предикаты, а не целые высказывания. Можно сказать, что предикат — это математическая функция, которая «накладывает» множество субъектов на множество утверждений.
Высказывание «Я пошёл в зоопарк» — состоит из субъекта и предиката. В нём субъект — «Я», а предикат — то, что остаётся кроме субъекта («… пошёл в зоопарк»). Субъект — кто совершает действие в предложении или имеет выраженное свойство; предикат — всё оставшееся. Таким образом, если в сентенциальной логике высказывание «Я пошёл в зоопарк» выражалось бы одной заглавной буквой, то в логике предикатов использовались бы две буквы (заглавная и подстрочная): «P» — для предиката; «x» — для субъекта. Субъекты обозначаются переменной («x»), потому что в предикатной логике появляются две относительно новые операции: универсальный и экзистенциальный кванторы. Особенность кванторов заключается в том, что ими возможно записать выражение истинное при всех возможных переменных «х» или хотя бы при одном.
Универсальный квантор (квантор всеобщности) обозначается символом — «∀», с указанием переменной под ним. Возьмём утверждение «Все пингвины чёрно-белые». В логике высказываний оно бы выражалось как «X ⇒ P», где «X» — нечто являющееся пингвином, а «P» — нечто являющееся чёрно-белым. В предикатной логике же используются субъекты и предикаты, поэтому нечто являющееся пингвином (субъект), обозначалось бы переменной «х» снизу под предикатом. «»х» — является пингвином, следовательно, является чёрно-белым». Записывается так: P(х) ⇒ B(х), где P(х): х — пингвин; B(х): x — чёрно-белый.
Однако этого недостаточно, ведь непонятно, один субъект «х» чёрно-белый или больше одного, а может вообще все. Поэтому утверждение «»х» — является пингвином, следовательно, является чёрно-белым», берётся в скобки и перед скобками используется символ «∀» с переменной «х» под ним — которые вместе и будут универсальным квантором.
Универсальный квантор переводится как: «Для всех «х» истинно, что …». Теперь утверждение «х — является пингвином, следовательно, является чёрно-белым» с универсальным квантором перед ним, расшифровывается так: «Для всех «х» истинно, что «х» — является пингвином, следовательно, является чёрно-белым». Это означает, что чем бы ни был объект во вселенной, если этот объект пингвин — он является чёрно-белым. Полная запись будет выглядеть так:
Экзистенциальный квантор (квантор существования) обозначается символом — «∃» с указанием переменной под ним. Возьмём утверждение «Некоторые пингвины серые». Как и в прошлый раз, выражение «»x» — является пингвином и «х» — является серым» возносим в скобки и ставим перед ними квантор, в этом случае экзистенциальный с указанной переменной. «»x» — является пингвином и «х» — является серым» записывается так: P(х) ∧ C(х), где P(х): х — пингвин; C(х): x — серый.
Экзистенциальный квантор можно перевести так: «Есть такой «х», для которого будет истинно, что …». Подразумевается, что есть как минимум один «х», для которого выполняются условия выражения. Если вам говорят, что картофеля не существует, достаточно показать одну картофелину для опровержения этого утверждения. Также и с кванторами, если существует хотя бы один серый пингвин, то утверждение об отсутствии серых пингвинов будет ложно. Полная запись экзистенциального квантора для выражения «Есть такой «х», для которого будет истинно, что «x» — является пингвином и «х» — является серым», будет выглядеть так:
6 | Заключение
Примечательно, что есть возможность перевода одного вида квантора в другой. Возьмём утверждение «Все пингвины не являются серыми». Для универсального квантора текстовая запись будет такая: «Для всех «х», будет истинным утверждение о том, что если «х» — является пингвином, то «х» — не является серым объектом». Но утверждение изменяется и для экзистенциального квантора, используя знак отрицания: «Нет такого «х», для которого бы было истинным утверждение о том, что «x»— является пингвином и «х»— является серым».
В середине XIX века, Готлоб Фреге дополнил логику Аристотеля двумя этими операциями, которые позже сформировались в отдельную дисциплину — предикатную логику. С введением в логику экзистенциального квантора (после универсального) — предикатная логика, в основе своей, завершилась как система…
Источники:
1 — Аристотель: «Органон» — «Первая аналитика» и «Вторая аналитика»;
2 — Аристотель: «Риторика»;
3 — Готлоб Фреге: «Исчисление понятий»;
4 — «Monatshefte für Mathematik und Physik» 1931 г.: Курт Гёдель «О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах»;
5 — The Early Mathematical Manuscripts of Leibniz;
6 — Мельников Сергей: «Введение в философию Аристотеля»;
7 — Гильмутдинова Нина: «Логика и теория аргументации»;
Логика
Из Википедии — свободной энциклопедии
Ло́гика (др.-греч. λογική — «наука о правильном мышлении», «способность к рассуждению» от др.-греч. λόγος — «логос», «рассуждение», «мысль», «разум», «смысл») — нормативная наука о законах, формах и приёмах интеллектуальной деятельности. [1]
Логика, как наука, возникла в недрах древнегреческой философии. Далее в течение почти двух с половиной тысячелетий до второй половины XIX века логика изучалась как часть философии и риторики. Начало современной логики, построенной в форме исчисления, положил Г. Фреге в сочинении «Begriffsschrift» («Запись в понятиях», в другом переводе — «Исчисление в понятиях», 1879). [2]
Основная сущность логики, её цель и функция всегда оставались неизменными: исследование того, как из одних утверждений можно выводить другие. При этом рассматриваются только такие выводы, которые зависят только от способа связи и строения входящих в вывод утверждений, а не их конкретного содержания. Изучая, как одни мысли следуют из других, логика выявляет наиболее общие формальные условия правильного мышления. При этом сфера конкретных интересов логики в выявлении условий формального вывода на протяжении её истории существенно менялась.
Кроме главного значения, как науки, изучающей законы мышления со стороны формы мыслей, а не их содержания, слово «логика» обладает также близкими, но более специализированными значениями «внутренняя закономерность, присущая тем или иным явлениям» или «правильный, разумный ход рассуждений». [3] В частности, этим словом может называться следующее: