какую энергию считает электросчетчик

Какую энергию считает электросчетчик

Традиционные счётчики с диском специально созданы так, чтобы считать только активную энергию. Реактивную они не считают (по крайней мере если счётчик правильно спроектирован и изготовлен), т.к. там после сдвига по фазе на обмотках тока и напряжения ток, а соотв. и магнитное поле, будут попадать в фазе либо в противофазе, т.е. будут работать как если бы это была одна большая обмотка. А от этого вращающего момента на диске не возникнет. Специально суммировать активную с реактивной обычный счётчик с одним диском просто не может. Можно считать их (таким методом) только отдельно: один счётчик, допустим, активной энергии, и отдельный счётчик реактивной. Считать просто полную энергию не имеет физического и экономического смысла для энергетиков, потому что это на самом деле не энергия никакая. Хотя допускаю, что м.б. и существуют какие-то дурацкие электронные счётчики, которые считают путём интегрирования действующих напряжения и тока без учёта фазовых соотношений. Но это вообще говоря, если и так, то несусветная наглость. К примеру, если я у себя дома поставлю электростанцию, которая будет выдавать ток точно в противофазе с напряжением, такой счётчик насчитал бы всё равно положительное потребление, хотя должен был отрицательное, и никакой реактивной энергии в этом случае тоже нет.

Редактировано 1 раз(а). Последний раз 11.02.11 12:38 пользователем Toman.

Что значит ближайшая розетка? В квартире можно с хорошей точностью считать, что там все розетки одинаково ближайшие к счётчику. Ему абсолютно всё равно, в какую розетку включать какое угодно устройство. Компенсировать реактивную составляющую, конечно, можно. Вотни в розетку конденсатор или дроссель соответственно, и компенсируй. Только для этого надо вначале узнать, в какую сторону и насколько компенсировать. А вот откуда это узнает прибор, просто воткнутый в одну из розеток, совершенно непонятно. Он же не знает общий ток, потребляемый всеми потребителями на всех ветвях в квартире.

И есть ли в плане учёта полной энергии разница между индукционными счётчиками и электронными?

В принципе, если проводка плохая, а токи большие, то лучше воткнуть его в ближайшую к потребителю розетку, просто чтобы минимизировать пути прохождения реактивных токов, и соответственно, нагрев проводов и падение напряжения в них.

Я в детстве экспериментировал со своим счётчиком СО-2М2, подключая асинхронные двигатели и конденсаторы в разных комбинациях. Не похоже, чтобы скорость вращения диска существенно менялась.

Редактировано 1 раз(а). Последний раз 11.02.11 13:23 пользователем Неунывающий питерский бродяга.

Источник

Пять причин завышенного учета потребления электроэнергии новыми электронными электросчетчиками

В статье автор описывает ситуации, когда после установки новых электронных элект­росчетчиков они насчитает, в тех же квартирах, больший расход электроэнергии, чем ста­рые, индукционные. Объясняет причины завышенного учета, приводит схемы и дает ре­комендации по устранению недостатков и по экономии электроэнергии.какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Жалоба потребителя электроэнергии: «Я живу водной из квартир многоквартирного дома. Раньше, для учета по­требления электроэнергии в моей квартире, в силовом щи­те на лестничной клетке был установлен индукционный эле­ктросчетчик СО-2, он много лет насчитывал, зимой больше летом меньше, но больше 100 кВт/час в месяц не было. Сей­час «Киевэнерго» заменил его, и установил электронный эле­ктросчетчик НІК 2102 и он насчитывает в 2 раза больше, и это притом, что нагрузка в моей квартире не изменилась».

Подобных жалоб в Интернете очень много. Давайте разбе­ремся в причинах завышенного учета электроэнергии электрон­ными счетчиками.

Новые электронно-механические счётчики

Старые индукционные электросчетчики типа СО-2, массо­во и долго устанавливались в наших квартирах, считали ак­тивною мощность, надежно работали многие поды, но облада­ли рядом недостатков. Среди них, низкая чувствительность, они учитывали мощности только выше 11…22 Вт (в зависимости от класса точности), далее, их легко можно было обмануть, т.е. остановить учет электроэнергии, чем «умельцы» массово и за­нимались. Все эго приводило к убыткам энергосбывающих ор­ганизаций, которые нынче стали частными, а частник убытки не потерпит. Поэтому, по заданию энергосбывающих органи­заций, конструкторы разработали новые, электронные (элект­ромеханические) электросчетчики (ЭС) лишенные вышеуказан­ных недостатков. Рынок перенасыщен такими ЭС, среди них и ча­сто упоминаемый в Интернете электроно-механический электро­счетчик типа НІК 2102 (рис.1), выпускающийся на Украине и имеющий много модификаций. Он полностью соответствует тре­бованиям энергосбыта, а именно, считает активною мощность, имеет высокую чувствительность, т.к. учитывает потребляемою мощность выше 2,75 Вт, (а не 11…22 Вт как в СО-2). В нем заложено много методов защиты от воровства электроэнергии. Среди них, высокая невосприимчивость к искусственным внеш­ним магнитным полям и внешним радиоизлучениям, а также, в зависимости от модели, может быть установлен один датчик тока (только в фазном проводе), или два датчика тока (в фаз­ном и нулевом проводе).

Узнать сколько датчиков тока у вашем электросчетчике НИК 2102 можно по трем признакам.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Энергосбыт очень любит ЭС НІК 2102 с 2 датчиками тока и именно их массово и бесплатно, устанавливает в силовых металлических щитах во всех наших многоквартирных домах.

Откуда же такая любовь энергосбыта к новым электро­счетчикам с 2-мя датчиками тока. А весь фокус в том, что ЭС учитывает расход электроэнергии по показаниям того дат­чика (фазы или нуля) через который течет больший ток. С одной стороны, это затрудняет воровство электроэнергии, но с другой стороны, позволяет электрикам энергосбыта, неправильно подключать ЭС и этим обманывать потребителей, т.е. начислять им счёт за электроэнергию, которою они в действительности не потребляют.

Зоны ответственности

Прежде, чем понять все причины завышенного учета элект­роэнергии, необходимо знать зоны ответственности участ­ков электросети, т.е. кто за что отвечает.

За силовой щит многоквартирного дома (на лестничной клетке) отвечает ЖЭК или электрик объединенных собствен­ников многоквартирного дома.

Энергосбыт отвечает, за ЭС в электрощите многоквартир­ного дома и провода его подключения (до автоматических вы­ключателей АВ), а также опломбирование и эксплуатацию ЭС.

За электропроводку квартиры, многоквартирного дома, начиная от автоматических выключателей (АВ) в силовом щите, отвечает владелец квартиры.

В частном же доме, все принадлежит владельцу дома: си­ловой щит, электросчетчик, электропроводка дома и зазем­ление (если оно имеется), но пломбы на электросчетчике при­надлежать энергосбыту, и срывать, их после опломбирова­ния, нельзя.

Итак, рассмотрим 5 причин завышенного учета ЭС ново­го поколения электроэнергии.

Но он подключил его по неправильной схеме, отчего ЭС насчитывает электроэнергии намного больше, чем потребля­ет владелец квартиры. Это одна из наиболее частых причин завышенного учета электроэнергии.

Просматривая Интернет, я был удивлен, что никто даже и не догадывается об этой афере электриков энергосбыта, а она применяется сплошь и рядом.

На рис. 2 показаны две монтажные схемы подключения ЭС в силовых щитах наших многоквартирных домов, на рис.2,а схе­ма правильного включения ЭС, а на рис.2, б — неправильного.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Правильно включен — это значит, что выход нулевого про­вода с ЭС до квартиры должен быть прямой (рис.2,а), а не в разрыв, через корпус электрощита (рис.2,б). При правильном включении (рис.2,а), в обеих проводах ЭС (фазе и нуле) течет одинаковый ток, и ЭС правильно начисляет электроэнергию.

Но часто, электрик, или из-за своей некомпетентности, или специально, подключает ЭС к квартире не правильно (рис.2,б). Т.е. выход нулевого провода с ЭС и вход его в квартиру под­ключает не напрямую, а через металлический корпус силово­го электрощита, и даже под один зажимной болт с соседями (рис.2,б). Тогда, в нулевой провод, от соседей в электрощите, будет подмешиваться дополнительный ток, циркулирующий в ме­таллическом корпусе электрощита, и ЭС будет вам начислять дополнительною электроэнергию, которою вы не потребляете.

Схема циркуляции токов нулевого провода в металличе­ском корпусе электрощита все время меняется, т.к. зависит от соотношения токов потребления всех квартир соседей в электрощите. Обычно в электрощитах 3-4 ЭС, но на рис.2, для простоты, рассмотрения изображены только два.

Причем, соседи могут влиять на ваш ЭС так же, как и вы на него, естественно, если и они включены по неправиль­ной схеме (рис.2, б).

Справедливости ради следует отметить, конструкторы ЭС с двумя датчиками тока, того же НИК 2102, предусмот­рели на его передней панели светодиод «ЗЕМЛЯ» (рис.1). Его свечение указывает на то, что по фазному и нулевому проводу проходят разные токи, это не нормальное состоя­ние и вам начисляется дополнительная электроэнергия, ко­торою вы не потребляете.

Выявить причину свечения светодиода «ЗЕМЛЯ» очень легко, существует два варианта.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

В новых многоквартирных домах, с новой электропровод­кой вышеописанных проблем с ЭС, как правило, не бывает, а вот в старых домах советской постройки, они сплошь и рядом.

Как же действовать в ситуации, когда вы обнаружите, что на вашем электросчетчике, в силовом щите многоквартирно­го дома, светится светодиод «ЗЕМЛЯ». Есть три варианта.

Если электрик энергосбыта, по указанию директора, все же придет к вам для устранения недостатка, то обязательно будет вам лгать, что виноват ваш сосед, который подклю­чился к вашему счетчику. Вы будете ненавидеть соседа, считать его своим врагом и даже ругаться с ним, но он аб­солютно невиноват и даже не знает об этом. А фактически вся вина лежит электрике энергосбыта, но он никогда в этом не признается [1]. Но ваша задача, при его появлении, до­биться устранения недостатка.

В следствии этого электросчетчик насчитывает дополни­тельною электроэнергию, даже при отсутствии полезной на­грузки. Это еще одна причина повышенного учета электро­счетчиком электроэнергии, но энергосбыт при этом, не ви­новат, т.к. электропроводка квартиры (частного дома) при­надлежит её владельцу.

Плохая изоляция в электропроводке, как между прово­дами так и «на землю», может быть по причине ее старо­сти, или попадания влаги (воды) на электропроводку, напри­мер, вас залили соседи. Такая же ситуация может быть и в кабеле, который вы проложили в земле в гараж, или лет­нюю кухню, или баню на территории дачи или частного до­ма, и в этот кабель попала грунтовая вода — злейший враг изоляции.

По нормам «Правил учета электроустановок» (ПУЭ) со­противления изоляции электропроводки, должна быть не ме­нее 0,5 МОм. Но ЭС начинают учитывать электроэнергию от утечки тока, при куда меньших значений сопротивления изоляции. Например, старые ЭС типа СО-2 учитывают мощ­ности выше 11…22 Вт, что соответствует сопротивлению изо­ляции ниже 4,4…2,2 кОм. Новые, электронные ЭС имеют бо­лее высокою чувствительность, они учитывают электроэнер­гию мощностью выше 2,75 Вт, т.е. если сопротивление изо­ляции менее 17,6 кОм. При сопротивлении изоляции элект­ропроводки ниже вышеприведенного порога, ЭС насчитыва­ют электроэнергию «и день и ночь», и не зависимо от того, потребляете вы электроэнергию или нет.

Выявлять низкою изоляцию электропроводки должен спе­циалист, разбирающийся в электрике. Как известно, электронно-механический ЭС, тот же НІК 2102, считая электро­энергию, мигает светодиодом. Отключая по очереди участ­ки электропроводки, специалист выявляет электропровода с заниженной изоляцией, измеряют сопротивление изоляции прибором, и делает заключение о необходимости замены про­водки. Неисправными, т.е. виновниками утечки тока, могут быть и автоматические выключатели АВ (рис.2,а), установ­ленные в силовых щитах, правда это бывает редко, но спе­циалист должен проверять и их. По итогам обследования спе­циалист делает заключение.

Если вы без обследования квартирной электропроводки, пожалуетесь электрикам энергосбыта, на большой учет электроэнергии новыми ЭС, то они, чтобы не заниматься сутью проблемы, ответят вам стандартно: «Меняйте электропровод­ку, энергосбыт за электропроводку вашей квартиры не отве­чает». Владелец квартиры, получив без обследования такое «компетентное заключение», тратит кучу денег, меняет про­водку, а ЭС как считал в 2 раза больше, так и считает, т.к. причина может быть совсем в другом.

Это еще одна причина завышенного учета электроэнергии.

Начну с жалобы хозяина дачи: «У меня на даче элект­ромеханический счетчик НИК 2102 с двумя датчиками тока, я оборудовал на даче заземления и подключил его в сило­вом щите на шину нулевого провода. Сосед-электрик посо­ветовал, защититься этим от молнии, или аварийной ситуа­ции при обрыве нулевого провода на столбах. Каково же бы­ло мое удивление, когда через месяц количество потребля­емой электроэнергии у меня возросло почти в 2 раза, в чем дело я не пойму».

На рис.4,а приведена схема такого подключения зазем­ления к нулевой шине в силовом щите. Подключать зазем­ление к нулевому проводу после ЭС нельзя, нигде, ни в электрощите, ни в трехконтактной розетке в квартире или до­ме. Т.к. через датчик тока нулевого провода ЭС будет про­текать дополнительный (уравнивающий) ток (на рис.4,а он по­казан пунктирной линией со стрелочкой). И ЭС будет насчи­тывать дополнительную электроэнергию, которою владелец частного дома не потребляет. Количество начисленной эле­ктроэнергии может быть значительным и зависит от величи­ны уравнивающего тока. Его можно легко измерить токоизмерительными клещами — для этого необходимо обхватить ими земляной провод.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Уравнивающие токи, разной величины, протекают по всем заземлениям нулевого (PEN) провода, на всем пути его прохождения от питающего трансформатора до потребителя (рис.5), включая и заземления силовых щитов частных до­мов (рис.4,а, рис.4,б).

Существования уравнивающих токов вызвано тем, что на питающем трехфазном трансформаторе (10 кВ / 380 В) три обмотки фаз (400 В) соединены «звездой» и их общий, ну­левой провод, заземлен.

Эта 4-проводная система электропитания потребителей называется TN-C (рис.5). Величина уравнивающих токов, тем больше, чем меньше сопротивление заземления и чем боль­шую мощность, в данное время, потребляют все потребите­ли, подключенные к питающему трансформатору, например 10 кВ / 0,4 кВ (рис.5). Правда, при равенстве токов в каж­дой из трех фаз сети, ток в нулевом проводе будет практи­чески нулевым, но точного равенства токов во всех фазах не бывает.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Зато, при наступлении аварийных ситуаций, например, при обрыве нулевого провода на столбах, этот ток может дости­гать значительных величин, десятков и более Ампер и если соединения с землей, в электрощите сделаны по схеме рис.4,а, т.е. после ЭС, то он насчитает очень много электроэнергии, которую потребитель реально не потреблял.

Как же правильно поступить в данной ситуации? Вот три варианта.

Недостаток схемы приведенной на рис.4,б — это отсутст­вие ограничителя сверхбольших уравнивающих токов, воз­никающих при аварийных ситуациях и могущих сжечь у вла­дельцев дома его соединительный кабель к электроопоре, а также, электросчетчик и силовой щит. Поэтому практикую­щие электрики рекомендуют подключать заземление к нулевому проводу по схеме рис.6. В ней, также как и на рис.4,б, установлен электросчетчик с двумя датчиками то­ка, но перед ЭС добавлен спаренный автоматический выклю­чатель АВ-2, например, на ток 32 А, который при аварийных ситуациях (больших уравнивающих токах) автоматически от­ключит и фазу и нуль и этим защитит соединительный элек­трокабель и ЭС от повреждения.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

При применении схемы рис.6, энергосбыт опломбирует спаренный автомат АВ-2, используя специальный пломбиро­вочный бокс, а при схеме рис.4,б, — опломбируют место со­единения заземления к корпусу и ответвления на ЭС, все эго делается для предотвращения умышленного отключения ЭС, с целью воровства электроэнергии. Схемы, приведенные на рис.4,б, рис.6, показаны, как упрощенные варианты со единений в электрощите, например, в них не показаны диф­ференциальные автоматы, которые рекомендуют устанавли­вать в силовых щитах. Главное назначение этих схем, пока­зать, как избежать начисления ЭС электроэнергии от урав­нивающих токов.

Старые индукционные ЭС типа СО-2, не учитывали ма­лые мощности вышеупомянутого дежурного режима бытовой техники, примерно до 11…22 Вт.

Новые ЭС гораздо чувствительней, и все потреблённое вы­шеперечисленной бытовой техникой учитывается новыми эле­ктросчетчиками. И в итоге за месяц набирается солидная сум­ма кВт·ч электроэнергии, за что вам и приходится платить.

Если вы хотите уменьшить показания новых ЭС, то обес­точивайте всю бытовую технику, т.е. полностью выключайте ее. Для этого лучше всего иметь удлинитель электросети с выключателем. Это же заметно увеличит срок службы быто­вой электронной техники и уменьшит вероятность пожара вследствие её возгорания.

Правда здесь есть одно существенное психологическое препятствие — человеку тяжело менять старые привычки, т.е. подниматься с дивана и руками выключать бытовую техни­ку, легче пультом управления перевести ее из рабочего ре­жима в дежурный режим и, не поднимаясь с того же дива­на, лечь спать, а электросчетчик пускай считает.

Напомню, электросчетчики в многоквартирных домах, при­надлежит энергосбыту, а в частных домах — их владельцам.

Многие считают, что причиной начисления большого количе­ства электроэнергии новыми электронными ЭС, является их высокий класс точности, этого ложного мнения придержива­ются и некоторые электрики, навязывающие его потребите­лям. В действительности, старые индукционные счетчики име­ли высокий класс точности [4], а некоторые из их моделей,

по этому показателю, были более точными, чем новые эле­ктронные ЭС. Например, класс точности индукционных ЭС был: 0.5; 1.0; 2.0; 2.5, тогда как тот же НІК2102 имеет класс точности всего лишь 1.0.

Каждый из типов ЭС, индукционный, или электронный имеет и слабые и сильные стороны. Например, индукцион­ные ЭС более надежные, и мало подвержены воздействию грозовых разрядов, но их можно было легко обмануть. Эле­ктронные ЭС более защищены от обмана, но слабее проти­водействуют молниям. Если молния близко мигнула, и наве­ла высокое напряжение в электролинии, или прямо ударила в нее, то электронные ЭС часто повреждаются и ничего не начисляют или начисляет очень мало, но никак не больше чем исправные. Конструкторы, постоянно усовершенствуют электронику ЭС, в том числе и их молниезащиту.

Поэтому слухи о том, что электронные ЭС часто не ис­правные и поэтому начисляют много электроэнергии невер­ные. Главные причины завышенного учета, ЭС электроэнер­гии изложены в пунктах 1, 2 и 3.

Так или иначе, если у пользователя электроэнергии воз­никают сомнения в правильности работы ЭС, то он может или сам его проверить, или обратиться в энергосбыт. Если решил сам проверить, вот два совета.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Но, самая точная проверка ЭС, может быть вы­полнена в специальной поверочной лаборатории энергосбыта, они точно могут сказать, исправен ли ЭС и соответствует ли он, классу точности за­явленным заводом-изготовителем. Поэтому, если у потребителя электроэнергии, есть сомнения в пра­вильности работы ЭС, он может написать заявле­ние директору энергосбыта, и поверочная лабора­тория проверит его.

Услуги поверочной лаборатории для энерго­сбыта бесплатные, для частных владельцев ЭС — платные.

Выводы

Установка энергосбывающими организациями новых электросчетчиков, требует и новых подходов потребителей электроэнергии, желающих как умень­шить энергопотребление, так и не платить за реально не потребленную ими электроэнергию. Все советы для этого даны выше в статье.

Кроме них, потребителям электроэнергии необходимо при­менять и методы энергосбережения. Надо выключать осве­щение, телевизоры, компьютеры и т. п., при ненадобности в их использовании в данное время. Особенно это касается глав­ных пожирателей электроэнергии в доме — электробойлеров.

Автор: Николай Власюк, г. Киев
Источник: журнал Электрик №1-2/2017

Источник

Обзор и устройство современных счётчиков электроэнергии

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

За последнее время на смену индукционным счётчикам электроэнергии пришли электронные. В данных счётчиках счётный механизм приводится во вращение не с помощью катушек напряжения и тока, а с помощью специализированной электроники. Кроме того, средством счёта и отображения показаний может являться микроконтроллер и цифровой дисплей соответственно. Всё это позволило сократить габаритные размеры приборов, а также, снизить их стоимость.

В состав практически любого электронного счётчика входит одна или несколько специализированных вычислительных микросхем, выполняющие основные функции по преобразованию и измерению. На вход такой микросхемы поступает информация о напряжении и силе тока с соответствующих датчиков в аналоговом виде. Внутри микросхемы данная информация оцифровывается и преобразуется определённым образом. В результате, на выходе микросхемы формируются импульсные сигналы, частота которых пропорциональна текущей потребляемой мощности нагрузки, подключенной к счётчику. Импульсы поступают на счётный механизм, который представляет собой электромагнит, согласованный с зубчатыми передачами на колёсики с цифрами. В случае с более дорогостоящими счётчиками с цифровым дисплеем применяется дополнительный микроконтроллер. Он подключается к вышесказанной микросхеме и к цифровому дисплею по определённому интерфейсу, ведёт накопление результата измерения электроэнергии в энергонезависимую память, а также, обеспечивает дополнительный функционал прибора.

Рассмотрим несколько подобных микросхем и моделей счётчиков, которые мне попадались под руку.

Ниже на рисунке в разобранном виде изображён один из наиболее дешёвых и популярных однофазных счётчиков «НЕВА 103». Как видно из рисунка, устройство счётчика довольно простое. Основная плата состоит из специализированной микросхемы, её обвески и узла стабилизатора питания на основе балластового конденсатора. На дополнительной плате размещён светодиод, индицирующий потребляемую нагрузку. В данном случае – 3200 импульсов на 1 кВт*ч. Также есть возможность снимать импульсы с зелёного клеммника, расположенного вверху счётчика. Счётный механизм состоит из семи колёсиков с цифрами, редуктора и электромагнита. На нём отображается посчитанная электроэнергия с точностью до десятых кВт*ч. Как видно из рисунка, редуктор имеет передаточное отношение 200:1. По моим замечаниям, это означает «200 импульсов на 1 кВт*ч». То есть, 200 импульсов, поданных на электромагнит, поспособствуют прокрутке последнего красного колёсика на 1 полный оборот. Это соотношение кратно соотношению для светодиодного индикатора, что весьма не случайно. Редуктор с электромагнитом размещён в металлической коробке под двумя экранами с целью защиты от вмешательства внешним магнитным полем.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

В данной модели счётчика применяется микросхема ADE7754. Рассмотрим её структуру.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

На пины 5 и 6 поступает аналоговый сигнал с токового шунта, который расположен на первой и второй клеммах счётчика (на фотографии в этом месте видно повреждение). На пины 8 и 7 поступает аналоговый сигнал, пропорциональный напряжению в сети. Через пины 16 и 15 есть возможность устанавливать усиление внутреннего операционного усилителя, отвечающий за ток. Оба сигнала с помощью узлов АЦП преобразуются в цифровой вид и, проходя определённую коррекцию и фильтрацию, поступают на умножитель. Умножитель перемножает эти два сигнала, в результате чего, согласно законам физики, на его выходе получается информация о текущей потребляемой мощности. Данный сигнал поступает на специализированный преобразователь, который формирует готовые импульсы на счётное устройство (пины 23 и 24) и на контрольный светодиод и счётный выход (пин 22). Через пины 12, 13 и 14 конфигурируются частотные множители и режимы вышеперечисленных импульсов.

Стандартная схема обвески практически представляет собой схему рассматриваемого счётчика.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Общий минусовой провод соединён с нулём 220В. Фаза поступает на пин 8 через делитель на резисторах, служащий для снижения уровня измеряемого напряжения. Сигнал с шунта поступает на соответствующие входы микросхемы также через резисторы. В данной схеме, предназначенной для теста, конфигурационные пины 12-14 подключены к логической единице. В зависимости от модели счётчика, они могут иметь разную конфигурацию. В данном кратком обзоре эта информация не столь важна. Светодиодный индикатор подключен к соответствующему пину последовательно вместе с оптической развязкой, на другой стороне которой подключается клеммник для снятия счётной информации (К7 и К8).

Из этого же семейства микросхем существуют похожие аналоги для трёхфазных измерений. Вероятнее всего, они встраиваются в дешёвые трёхфазные счётчики. В качестве примера на рисунке ниже представлена структура одной из таких микросхем, а именно ADE7752.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Вместо двух узлов АЦП, здесь применено их 6: по 2 на каждую фазу. Минусовые входы ОУ напряжения объединены вместе и выводятся на пин 13 (ноль). Каждая из трёх фаз подключается к своему плюсовому входу ОУ (пины 14, 15, 16). Сигналы с токовых шунтов по каждой фазе подключаются по аналогии с предыдущим примером. По каждой из трёх фаз с помощью трёх умножителей выделяется сигнал, характеризующий текущую мощность. Эти сигналы, кроме фильтров, проходят через дополнительные узлы, которые активируются через пин 17 и служат для включения операции математического модуля. Затем эти три сигнала суммируются, получая, таким образом, суммарную потребляемую мощность по всем фазам. В зависимости от двоичной конфигурации пина 17, сумматор суммирует либо абсолютные значения трёх сигналов, либо их модули. Это необходимо для тех или иных тонкостей измерения электроэнергии, подробности которых здесь не рассматриваются. Данный сигнал поступает на преобразователь, аналогичный предыдущему примеру с однофазным измерителем. Его интерфейс также практически аналогичен.

Стоит отметить, что вышеописанные микросхемы служат для измерения активной энергии. Более дорогие счётчики способны измерять как активную, так и реактивную энергию. Рассмотрим, например, микросхему ADE7754. Как видно из рисунка ниже, её структура намного сложнее структуры микросхем из предыдущих примеров.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Микросхема измеряет активную и реактивную трёхфазную электроэнергию, имеет SPI интерфейс для подключения микроконтроллера и выход CF (пин 1) для внешней регистрации активной электроэнергии. Вся остальная информация с микросхемы считывается микроконтроллером через интерфейс. Через него же осуществляется конфигурация микросхемы, в частности, установка многочисленных констант, отражённых на структурной схеме. Как следствие, данная микросхема, в отличие от предыдущих двух примеров, не является автономной, и для построения счётчика на базе этой микросхемы требуется микроконтроллер. Можно зрительно в структурной схеме пронаблюдать узлы, отвечающие по отдельности за измерение активной и реактивной энергии. Здесь всё гораздо сложнее, чем в предыдущих двух примерах.

В качестве примера рассмотрим ещё один интересный прибор: трёхфазный счётчик «Энергомера ЦЭ6803В Р32». Как видно из фотографии ниже, данный счётчик ещё не эксплуатировался. Он мне достался в неопломбированном виде с небольшими механическими повреждениями снаружи. При всё при этом он находился полностью в рабочем состоянии.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Как можно заметить, глядя на основную плату, прибор состоит из трёх одинаковых узлов (справа), цепей питания и микроконтроллера. С нижней стороны основной платы расположены три одинаковых модуля на отдельных платах по одному на каждый узел. Данные модули представляют собой микросхемы AD71056 с минимальной необходимой обвеской. Эта микросхема является однофазным измерителем электроэнергии.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Модули запаяны вертикально на основную плату. Витыми проводами к данным модулям подключаются токовые шунты.

За пару часов удалось срисовать электрическую схему прибора. Рассмотрим её более детально.

какую энергию считает электросчетчик. картинка какую энергию считает электросчетчик. какую энергию считает электросчетчик фото. какую энергию считает электросчетчик видео. какую энергию считает электросчетчик смотреть картинку онлайн. смотреть картинку какую энергию считает электросчетчик.

Справа на общей схеме изображена схема однофазного модуля, о котором говорилось выше. Микросхема D1 этого модуля AD71056 по назначению похожа на микросхему ADE7755, которая рассматривалась ранее. На четвёртый контакт модуля поступает питание 5В, на третий – сигнал напряжения. Со второго контакта снимается информация в виде импульсов о потребляемой мощности через выход CF микросхемы D1. Сигнал с токовых шунтов поступает через контакты X1 и X2. Конфигурационные входы микросхемы SCF, S1 и S0 в данном случае расположены на пинах 8-10 и сконфигурированы в «0,1,1».

Каждый из трёх таких модулей обслуживает соответственно каждую фазу. Сигнал для измерения напряжения поступает на модуль через цепочку из четырёх резисторов и берётся с нулевой клеммы («N»). При этом стоит обратить внимание, что общим проводом для каждого модуля является соответствующая ему фаза. А вот, общий провод всей схемы соединён с нулевой клеммой. Данное хитрое решение по обеспечению питанием каждого узла схемы расписано ниже.

Каждая из трёх фаз поступает на стабилитроны VD4, VD5 и VD6 соответственно, затем на балластовые RC цепи R1C1, R2C2 и R3C3, затем – на стабилитроны VD1, VD2 и VD3, которые соединены своими анодами с нулём. С первых трёх стабилитронов снимается напряжение питания для каждого модуля U3, U2 и U1 соответственно, выпрямляется диодами VD10, VD11 и VD12. Микросхемы-регуляторы D1-D3 служат для получения напряжения питания 5В. Со стабилитронов VD1-VD3 снимается напряжение питания общей схемы, выпрямляется диодами VD7-VD9, собирается в одну точку и поступает на регулятор D4, откуда снимается 5В.

Общую схему составляет микроконтроллер (МК) D5 PIC16F720. Очевидно, он служит для сбора и обработки информации о текущей потребляемой мощности, поступающей с каждого модуля в виде импульсов. Эти сигналы поступают с модулей U3, U2 и U1 на пины МК RA2, RA4 и RA5 через оптические развязки V1, V2 и V3 соответственно. В результате на пинах RC1 и RC2 МК формирует импульсы для механического счётного устройства M1. Оно аналогично устройству, рассматриваемому ранее, и также имеет соотношение 200:1. Сопротивление катушки высокое и составляет порядка 500 Ом, что позволяет подключать её непосредственно к МК без дополнительных транзисторных цепей. На пине RC0 МК формирует импульсы для светодиодного индикатора HL2 и для внешнего импульсного выхода на разъёме XT1. Последний реализуется через оптическую развязку V4 и транзистор VT1. В данной модели счётчика соотношение составляет 400 импульсов на 1 кВт*ч. На практике при испытании данного счётчика (после небольшого ремонта) было замечено, что электромагнитная катушка счётного механизма срабатывает синхронно со вспышкой светодиода HL2, но через раз (в два раза реже). Это подтверждает соответствие соотношений 400:1 для индикатора и 200:1 для счётного механизма, о чём говорилось ранее.

Слева на плате расположено место для 10-пинового разъёма XS1, который служит для перепрошивки, а также, для UART интерфейса МК.

Таким образом, трёхфазный счётчик «Энергомера ЦЭ6803В Р32» состоит из трёх однофазных измерительных микросхем и микроконтроллера, обрабатывающий информацию с них.

В заключение стоит отметить, что существует ряд моделей счётчиков куда более сложней по своей функциональности. К примеру, счётчики с удалённым контролем показаний по электролинии, или даже через модуль мобильной связи. В данной статье я рассмотрел только простейшие модели и основные принципы построения их электрических схем. Заранее приношу извинения за возможно неправильную терминологию в тексте, ибо я старался излагать простым языком.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *