какую энергию называют потенциальной приведите примеры тел обладающих
15 лучших примеров потенциальной энергии
Термин «потенциальная энергия» был придуман шотландским инженером-механиком Уильямом Рэнкином в 19 веке. Вскоре она стала одной из самых влиятельных переменных в формулах, описывающих нашу известную вселенную.
Что такое Потенциальная Энергия?
В качестве альтернативы, вы можете представить ее как энергию, которая имеет «потенциал» для работы. При изменении состояния, расположения или положения объекта накопленная энергия высвобождается.
В то время как потенциальную энергию можно определить как скрытую энергию, накопленную в веществе в состоянии покоя, другая ее форма, называемая кинетической энергией, выражается веществом, находящимся в движении.
Типы потенциальной энергии
Существуют различные типы потенциальной энергии, каждый из которых связан с определенным типом силы.
Четыре основных типа:
Каждый из них измеряется по-разному. Например, потенциальная энергия гравитации (PE) пропорциональна массе (m) объекта, силе тяжести (g) и высоте (h), на которой удерживается объект.
Чем больше масса объекта и чем выше он удерживается, тем больше будет его потенциальная энергия. Как и все другие формы энергии, потенциальная энергия измеряется в килограммах-метрах в квадрате за секунду в квадрате (кг м2 / С2 ) или Джоуле (Дж).
Чтобы лучше объяснить этот феномен, мы собрали несколько интересных примеров потенциальной энергии, которую вы видите в своей повседневной жизни.
1. Маятник
Тип: Гравитационная потенциальная энергия
В простом маятнике, груз прикреплен к концу почти безмассовой нити, которая качается вокруг оси. Когда маятник качается назад и вперед, энергия превращается между потенциальной энергией и кинетической энергией.
Груз несет на одном конце максимальную потенциальную энергию. По мере того как он под действием силы тяжести качается в самую нижнюю точку, его потенциальная энергия начинает преобразовываться в кинетическую энергию.
Потенциальная энергия груза достигает нуля (а кинетическая энергия достигает максимума) в самой нижней точке. К тому времени, когда он достигает другого конца, его кинетическая энергия полностью преобразуется в потенциальную энергию.
Процесс повторяется несколько раз, пока маятник не остановится. Поскольку часть энергии теряется в тепле и трении, вам нужна внешняя энергия, чтобы поддерживать движение маятника.
2. Камень на краю скалы
Тип: Гравитационная потенциальная энергия
Камень, расположенный на краю скалы, обладает потенциальной энергией, которая пропорциональна массе камня и высоте скалы. Если вы столкнете его с утеса, та же самая потенциальная энергия будет преобразована в кинетическую энергию.
Как вы можете видеть на изображении, тяжелый валун из песчаника опасно лежит на крутом склоне. Он обладает потенциальной энергией относительно склона, так как кажется, что он готов упасть в любой момент и скатиться на несколько метров в долину внизу.
3. Вода за плотинами
Тип: Гравитационная потенциальная энергия
Вода за плотиной гидроэлектростанции хранит огромную потенциальную энергию, так как она находится на гораздо более высоком уровне, чем вода с другой стороны плотины. Когда ворота таких плотин открываются, вода начинает падать, и накопленная потенциальная энергия преобразуется в кинетическую энергию, которая превращает турбины для производства электроэнергии.
Помимо производства электричества, водные плотины также строятся с целью контроля речного стока и регулирования наводнений.
4. Ветви деревьев
Тип: Гравитационная потенциальная энергия
Ветви деревьев обладают потенциальной энергией, потому что они могут упасть на землю. Чем тяжелее ветка и чем выше она находится к земле, тем больше потенциальной энергии она имеет.
Аналогичным образом, плод, свисающий с верхней ветви, также обладает некоторой потенциальной энергией. Когда плод падает, его энергия положения (потенциальная энергия) преобразуется в энергию движения (кинетическую энергию). И когда он ударяется о землю, кинетическая энергия преобразуется в тепловую энергию.
5. Американские горки
Тип: Гравитационная потенциальная энергия
Большинство американских горок используют гравитацию для перемещения вагонов по трассе. Большая цепь (прицепленная к нижней части вагонов) тянет вагоны на вершину первого холма, который является самой высокой точкой на американских горках. Как только вагоны достигают вершины холма, они освобождаются от цепи.
В американских горках работают две формы энергии: потенциальная энергия и кинетическая энергия. Одна из них преобразуется в другую на протяжении всей поездки, в то время как значительное количество энергии теряется из-за сопротивления воздуха и трения.
Потенциальная гравитационная энергия вагонов наименьшая в самой низкой точке американских горок и наибольшая в самой высокой точке.
6. Пружина
Тип: Эластичная потенциальная энергия
Энергия, накопленная в сжимаемых/растягивающихся объектах, называется эластичной потенциальной энергией. Чем больше объект может сжиматься/растягиваться, тем более упругая потенциальная энергия (U) у него есть. Она пропорциональна константе силы пружины (k) и длине струны сжатия/растяжения (x) в метрах.
Когда пружина растягивается или сжимается, она получает определенное количество потенциальной энергии. Это равно кинетической энергии, которая использовалась для растяжения или сжатия пружины.
Как только пружина высвобождается, потенциальная энергия снова преобразуется в кинетическую энергию. Однако процесс преобразования энергии не является полностью эффективным, так как значительная часть энергии теряется при нагревании и трении.
7. Лук и стрелы
Тип: Эластичная потенциальная энергия
Лучник использует свои мышцы для приложения силы к струне, сгибая конечности назад. Сила, которую он оказывает на струну, известна как «вытягивание веса». Упругая энергия теперь является потенциальной энергией, которая может быть использована для запуска стрелки (путем освобождения струны).
Чем больше вы деформируете конечности, оттягивая их назад, тем больше вы увеличиваете накопленную потенциальную энергию. Очевидно, есть предел тому, сколько силы вы можете приложить, чтобы натянуть лук и сколько силы лук может выдержать без трещин.
8. Растянутые резинки
Тип: Эластичная потенциальная энергия
В тебя когда-нибудь стреляли из резинки? Если да, то вы знаете, что она содержит достаточно энергии, чтобы ударить в руку и вызвать боль.
Когда вы натягиваете резинку, вы вводите в нее определенное количество потенциальной энергии. А когда вы его высвобождаете, эта потенциальная энергия быстро преобразуется в кинетическую (двигательную) энергию.
9. Электрическая цепь
Тип: Электрическая потенциальная энергия
Когда мы соединяем электричество с электрическими цепями и устройствами, мы преобразуем энергию из одной формы в другую. Электронные схемы хранят (потенциальную) энергию и передают ее в другие формы, такие как свет, тепло или движение.
Подобно тому, как объекты под действием силы тяжести обладают гравитационной потенциальной энергией, заряды в электрическом поле обладают электрической потенциальной энергией.
Электрическая потенциальная энергия заряда показывает, сколько энергии он содержит. При приведении в движение электростатической силой эта накопленная энергия становится кинетической, и заряд действительно работает (что измеряется в джоулях).
Для любого заряда в электрическом поле его электрическая потенциальная энергия зависит от типа (отрицательного или положительного), количества заряда и его положения в поле.
10. Пища, которую мы едим
Тип: Химическая потенциальная энергия
Пища, которую мы едим, накапливает потенциальную химическую энергию. Когда она достигает нашего желудка, та же самая энергия превращается в другие формы, которые использует наше тело.
По мере того как связи между атомами в пище разрываются или ослабевают, происходит химическая реакция, образующая новые соединения. Энергия, генерируемая этой реакцией, поддерживает наше тепло, помогает нам двигаться и расти. Различные продукты питания содержат разное количество энергии.
11. Сухая древесина
Тип: Потенциальная химическая энергия
12. Батареи АА
Тип: Химическая потенциальная энергия
Обычные батареи, такие как набор батарей типа АА, обладают потенциальной химической энергией, которая может быть преобразована в электрическую энергию.
Каждая батарея состоит из двух электродов (один катод и один анод). Между этими электродами находится гелеобразное вещество, называемое электролитом. Он состоит из заряженных частиц или ионов, которые соединяются с материалами электрода, вызывая химические реакции, которые позволяют батарее производить электрический ток.
Различные электроды и электролиты создают разные химические реакции, которые определяют эффективность батареи (сколько энергии она может хранить и ее напряжение).
13. Динамит
Тип: Химическая потенциальная энергия
Динамит является еще одним ярким примером химической потенциальной энергии. Он состоит из нитроглицерина (очень нестабильного вещества), сорбентов (таких, как порошкообразные оболочки или глина) и стабилизаторов.
При воспламенении нитроглицерин в динамите быстро взрывается, выделяя огромное количество азота и других газов вместе с теплом.
14. Бензин
Тип: Химическая потенциальная энергия
Когда вы заправляете свой автомобиль бензином, вы снабжаете его химической потенциальной энергией. Эта энергия содержится в различных химических веществах (в основном, органических соединениях, полученных путем фракционной перегонки нефти), которые составляют бензин.
Энергия высвобождается, когда бензин сжигается контролируемым образом в двигателе транспортного средства. Это потенциальное выделение энергии делает две вещи: часть энергии преобразуется в работу, которая используется для движения транспортного средства, а часть преобразуется в тепло, что делает двигатель автомобиля очень горячим.
15. Атомные электростанции
Когда два или более атомных ядра объединяются, чтобы сформировать большое ядро (ядерный синтез), высвобождается огромное количество энергии. Точно так же, когда одно ядро распадается на два меньших ядра (деление ядер), оно высвобождает большое количество энергии.
По сравнению с другими источниками энергии атомные электростанции используют меньшее количество сырья, имеют нулевой выброс, являются более мощными и эффективными.
Потенциальная энергия, ее определение, виды и формулы
Определение потенциальной энергии
Энергия, говоря простым языком, это возможность что-либо сделать, возможность совершить работу. То есть, если какое-либо тело может совершить какую-либо работу, то про это тело можно сказать, что оно обладает энергией. По сути, энергия — это мера различных форм движения и взаимодействия материи, а её изменение происходит при совершении некоторой работы. Таким образом, совершённая работа всегда равна изменению какой-либо энергии. А значит, рассматривая вопрос о совершённой телом работе, мы неизбежно приходим к изменению какого-либо вида энергии. Вспомним также и тот факт, что работа совершается только в том случае, когда тело под действием некоторой силы движется, и при этом сама работа определяется как скалярное произведение вектора этой силы и вектора перемещения, то есть А = F*s*cosa, где а — угол между вектором силы и вектором перемещения. Это нам пригодится в дальнейшем для вывода формул различных видов энергии.
Энергию, связанную с взаимодействием тел, называют ПОТЕНЦИАЛЬНОЙ ЭНЕРГИЕЙ. Иначе говоря, если тело за счёт взаимодействия с другим телом может совершить некоторую работу, то оно будет обладать потенциальной энергией, и при совершении работы будет происходить изменение этой энергии. Обозначают механическую потенциальную энергию чаще всего — Еп.
Виды потенциальной энергии
Существуют различные виды потенциальной энергии. К примеру, любое тело на Земле находится в гравитационном взаимодействии с Землёй, а значит обладает потенциальной энергией гравитационного взаимодействия. И ещё пример — витки растянутой или сжатой пружины находятся в упругом взаимодействии друг с другом, а значит сжатая или растянутая пружина будет обладать потенциальной энергией упругого взаимодействия.
Далее мы рассмотрим только виды механической потенциальной энергии и формулы, по которым их можно рассчитать. Но в дальнейшем вы узнаете и о других видах потенциальной энергии — к примеру, о потенциальной энергии электрического взаимодействия заряженных тел, о потенциальной энергии взаимодействия электрона с атомным ядром.
Формулы потенциальной энергии
Перед тем как приступить к выводу формул потенциальной энергии, ещё раз вспомним, что совершённая телом или над телом работа равна изменению его энергии. При этом, если само тело совершает работу, то его энергия уменьшается, а если над телом совершают работу, то его энергия увеличивается. К примеру, если спортсмен поднимает штангу, то он сообщает ей потенциальную энергию гравитационного взаимодействия, а если он отпускает штангу и она падает, то потенциальная энергия гравитационного взаимодействия штанги с Землёй уменьшается. Также, если вы открываете дверь, растягивая пружину, то вы сообщаете пружине потенциальную энергию упругого взаимодействия, но если потом дверь закрывается, благодаря сжатию пружины в начальное состояние, то и энергия упругой деформации пружины уменьшается до нуля.
А) Чтобы вывести формулу потенциальной энергии гравитационного взаимодействия, рассмотрим, какую работу совершает тело, двигаясь под действием силы тяжести:
А = F*s = mg*s = mg*(h1 — h2) = mgh1 — mgh2 = Eп1 — Еп2, то есть, мы получили, что потенциальная энергия гравитационного взаимодействия тела с Землёй может быть вычислена по формуле: Еп = mgh.
Здесь важно отметить, что поверхность Земли принимается за начало отсчёта высоты, то есть для тела, находящегося на поверхности Земли Еп = 0, для тела, поднятого над Землёй Еп > 0, а для тела, находящегося в яме глубиной h, Еп 2 /2 = 0 — kх 2 /2 = Еп1 — Еп2.
В итоге, мы получили формулу потенциальной энергии упругой деформации: Еп = kx 2 /2.
Методические советы учителям
1) Обязательно обратите внимание учащихся на связь энергии и работы.
2) Не давайте учащимся формулы потенциальной энергии без вывода.
3) Обратите внимание учащихся на то, что оба вида потенциальной энергии зависят от выбора начальной точки, то есть от системы координат.
4) При выводе формул потенциальной энергии обязательно поясните учащимся почему отсутствует cosa в формуле работы.
5) Отметьте, что и работа силы тяжести, и работа силы упругости не зависят от формы траектории и, следовательно равны нулю на замкнутой траектории — это общее и важное свойство всех потенциальных сил.
§ 67. Потенциальная и кинетическая энергия
Потенциальной энергией, например, обладает тело, поднятое относительно поверхности Земли, потому что энергия тела зависит от взаимного положения его и Земли и их взаимного притяжения. Если считать потенциальную энергию тела, лежащего на Земле, равной нулю, то потенциальная энергия тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Обозначим потенциальную энергию тела Еп. Поскольку Еп = А, а работа, как мы знаем, равна произведению силы на путь, то
где F — сила тяжести.
Значит, в этом случае и потенциальная энергия Еп равна
где g — ускорение свободного падения, m — масса тела, h — высота, на которую поднято тело.
Огромной потенциальной энергией обладает вода в реках, удерживаемая плотинами. Падая вниз, вода совершает работу, приводя в движение мощные турбины электростанций.
Потенциальную энергию молота копра (рис. 194) используют в строительстве для совершения работы по забиванию свай.
Открывая дверь с пружиной, совершают работу по растяжению (или сжатию) пружины. За счёт приобретённой энергии пружина, сокращаясь (или распрямляясь), совершает работу, закрывая дверь.
Энергию сжатых и закрученных пружин используют, например, в механических часах, некоторых заводных игрушках и пр.
Кинетическая энергия тела обозначается буквой Ек.
Движущаяся вода, приводя во вращение колесо водяной мельницы, расходует свою кинетическую энергию и совершает работу. Кинетической энергией обладает и движущийся воздух — ветер, который заставляет вращаться флюгера на крышах.
От чего зависит кинетическая энергия? Обратимся к опыту (см. рис. 193). Если скатывать шарик А с разных высот, то можно заметить, что чем с большей высоты скатывается шарик, тем больше его скорость и тем дальше он передвигает брусок, т. е. совершает большую работу. Значит, кинетическая энергия тела зависит от его скорости.
За счёт того, что скорость летящей пули велика, она обладает большой кинетической энергией.
Кинетическая энергия тела зависит и от его массы. Ещё раз обратимся к опыту (см. рис. 193), но будем скатывать с наклонной плоскости другой шарик — большей массы. Брусок В передвинется дальше, т. е. будет совершена большая работа. Значит, и кинетическая энергия второго шарика больше, чем первого.
Чем больше масса тела и скорость, с которой оно движется, тем больше его кинетическая энергия.
Для того чтобы определить кинетическую энергию тела, применяют формулу
где m — масса тела, — скорость движения тела.
Кинетическую энергию тел используют в технике. Например, на мощных гидроэлектростанциях за счёт кинетической энергии воды получают электрическую энергию. Удерживаемая плотиной вода обладает, как было уже сказано, большой потенциальной энергией. При падении с плотины вода движется и имеет такую же большую кинетическую энергию. Она приводит в движение турбину, соединённую с генератором электрического тока.
Падающая вода является экологически чистым источником энергии в отличие от различных видов топлива.
Все тела в природе обладают либо потенциальной, либо кинетической энергией, а иногда той и другой вместе. Например, летящий самолёт обладает и кинетической, и потенциальной энергией.
Мы познакомились с двумя видами механической энергии. Иные виды энергии (электрическая, внутренняя и др.) будут рассмотрены в других разделах курса физики.
Вопросы
1. Какую энергию называют потенциальной?
2. Приведите примеры тел, обладающих потенциальной энергией.
3. Как показать, что деформированная пружина обладает потенциальной энергией?
4. Какую энергию называют кинетической? От каких величин она зависит?
5. В каком случае кинетическую энергию тела считают равной нулю?
6. Назовите случаи, когда тела обладают кинетической энергией.
7. Где используют кинетическую энергию текущей воды?
Упражнение 34
1. Какой потенциальной энергией относительно Земли обладает тело массой 100 кг на высоте 10 м?
2. В каких местах реки — у истоков или в устье — каждый кубический метр воды обладает большей потенциальной энергией? Ответ обоснуйте.
3. В какой реке — горной или равнинной — каждый кубический метр текущей воды обладает большей кинетической энергией? Почему?
4. Определите, какой кинетической энергией будет обладать пуля, вылетевшая из ружья. Скорость её при вылете из ружья равна 600 м/с, а масса — 7,5 г.
Все виды энергии кратко и с примерами
Энергия — это способность выполнять работу, и как таковая, она проявляется по-разному. В этом смысле существует два основных типа энергии: энергия положения или состояния, также называемая потенциальной энергией, а другая — это энергия в действии или движении и называемая кинетической энергией.
Оба типа энергии могут преобразовывать друг друга и являются частью других форм энергии. В зависимости от источника, откуда они берутся, мы можем говорить об электрической, ядерной, химической, излучающей или магнитной энергии.
Кинетическая энергия
Кинетическая энергия шара для боулинга опрокидывает кегли.
Кинетическая энергия — это энергия в действии, энергия движения. Зависит от количества массы тела, а также от скорости. Таким образом, шар для боулинга выбьет больше кеглей, потому что он имеет большую массу. Более быстрый шар для боулинга будет более эффективным, чем медленный.
Человек может использовать в своих интересах кинетическую энергию многих природных ресурсов. Например, ветер движется воздухом, и ветрогенераторы используют это для производства электроэнергии.
Потенциальная энергия
Потенциальная энергия тела также зависит от массы объекта.
Потенциальная энергия является другим основным типом энергии и связана с положением или состоянием объекта по отношению к другому.
Потенциальная энергия увеличивается, когда притягиваемые тела отделяются или когда отбрасываемые или отталкиваемые тела объединяются. Область, в которой объекты притягиваются или отталкиваются, называется силовым полем. Примерами силовых полей могут быть, например, гравитационное силовое поле Земли или магнитное силовое поле.
Потенциальная и кинетическая энергия
Потенциальная энергия преобразуется в кинетическую энергию, а также может быть найдена в других видах энергии, таких как потенциальная гравитационная энергия или упругая потенциальная энергия.
Гравитационная потенциальная энергия
В тот момент, когда спортсмен достигает высшей точки, он обладает большей потенциальной энергией.
Когда потенциальная энергия связана с гравитационной силой, она называется потенциальной гравитационной энергией. Гравитационное силовое поле вокруг нашей планеты притягивает объекты к ее центру. Когда мы поднимаем объекты, отделяя их от Земли, мы увеличиваем их гравитационную потенциальную энергию.
Существует потенциальная гравитационная энергия между Солнцем и планетами, а также между Луной и Землей. Фактически, приливы являются результатом притяжения, которое Луна создает на земных водоемах.
Упругая потенциальная энергия
Когда мы растягиваем пружину, энергия, чтобы вернуться к своей первоначальной форме, сохраняется как потенциальная энергия.
Другой формой потенциальной энергии является энергия, которую содержит пружина, когда мы растягиваем или сжимаем её. Эта энергия называется упругой потенциальной энергией: это энергия материалов, когда они растягиваются или скручиваются. Когда мы сжимаем пружину, мы увеличиваем ее потенциальную энергию.
Эластичная потенциальная энергия — это то, что движет в пружине. Также в прыжках с шестом в легкой атлетике у нас есть пример того, как упругая потенциальная энергия превращается в гравитационную потенциальную энергию.
Механическая энергия
Механическая энергия — это сумма энергии положения и движения.
Механическая энергия тела охватывает движение и положение объекта, то есть это сумма кинетической и потенциальной энергии этого объекта.
Когда мы качаемся, мы превращаем кинетическую энергию в потенциал и наоборот, поэтому мы можем двигаться быстрее и выше.
Например, ребенок на скейтборде на предыдущем изображении обладает кинетической энергией, которая позволяет ему закрепиться на стене, набирая потенциальную энергию. Когда оно начинает падать, потенциальная энергия превращается в кинетическую энергию и набирает скорость.
Химическая энергия
Химическая энергия сохраняется в связях между атомами.
Химическая энергия — это форма потенциальной энергии, которая сохраняется в связях между атомами в результате сил притяжения между ними.
Во время химической реакции одно или несколько соединений, называемых реагентами, превращаются в другие соединения, называемые продуктами. Эти превращения происходят из-за разрыва или образования химических связей, которые вызывают изменения в химической энергии.
Энергия высвобождается, когда связи разрушаются во время химических реакций. Это то, что известно как экзотермическая реакция. Например, автомобили используют химическую энергию бензина для выработки тепловой энергии, которая используется для движения автомобиля. Точно так же пища хранит химическую энергию, которую мы используем живыми существами, чтобы функционировать.
Когда соединения образуются, требуется энергия; Это реакция эндотермического типа. Фотосинтез — это эндотермическая реакция, энергия которой исходит от Солнца.
Тепловая энергия
Тепловая энергия огня передается тепловой энергии горшка через тепло.
Тепловая энергия (внутренняя энергия) представляет собой тип кинетической энергии, являющейся продуктом движения или внутренней вибрации частиц в телах. Когда мы измеряем температуру с помощью термометра, мы измеряем то движение атомов и молекул, которые составляют тело. При более высокой температуре большее движение и, следовательно, большая тепловая энергия.
Кроме того, тепловая энергия перемещается между телами через тепло. Когда вы помещаете горячий предмет рядом с холодным, происходит передача энергии от самого горячего к самому холодному, до точки, где они имеют одинаковую температуру. Тепло также передается через инфракрасное излучение или движение горячих жидкостей или газов.
Электрическая мощность
Электрические батареи превращают химическую энергию в электрическую.
Электричество — это тип энергии, который зависит от притяжения или отталкивания электрических зарядов. Существует два вида электричества: статическое и текущее. Статическое электричество связано с наличием статических нагрузок, т.е. нагрузок, которые не двигаются. Электрический ток происходит из-за перемещение грузов.
Пример статического электричества — когда мы натираем воздушный шарик на волосы. Воздушный шар удерживает электроны от волос, заряжаясь отрицательно, в то время как волосы заряжены положительно. Если вы подойдете к воздушному шарику к своей голове, не касаясь его, вы увидите, как пряди волос тянутся к воздушному шарику.
Электрический ток — это поток зарядов из-за движения свободных электронов в проводнике. Это движение происходит в электрическом поле, то есть в области вокруг заряда, где действует сила. Электрические заряды легко переносятся такими материалами, как металлы, особенно серебро, медь и алюминий.
В батареях или электрических батареях происходит превращение химической энергии в электрическую энергию. Химическая энергия происходит в результате реакции между электродами и электролитом, когда положительный полюс соединен с отрицательным полюсом батареи. Вольт — это единица измерения потенциальной энергии на заряд в батарее.
Ядерная энергетика
Существует три типа ядерной реакции: радиоактивный распад, слияние и деление. При радиоактивном распаде ядро радиоактивного атома самопроизвольно выделяет энергию. При делении ядра ядро бомбардируется нейтроном, что приводит к образованию двух новых атомов. При ядерном синтезе легкие ядра объединяются в тяжелые ядра.
Использование ядерной энергии
Магнитная энергия
Магниты используются для захвата магнитных материалов, таких как гайки и болты.
Способность объекта выполнять работу из-за его положения в магнитном поле является потенциальной энергией магнитного поля. Магниты имеют магнитное поле и две области, называемые магнитными полюсами. Равные полюса отбрасываются, а разные полюса притягиваются. Наиболее используемые магнитные материалы — это железо и его сплавы.
Например, железный винт, который приближается к магниту, но не касается его, обладает потенциальной магнитной энергией. Объекты движутся в направлении, которое уменьшает их потенциальную магнитную энергию.
Микрофоны, например, хорошо работают благодаря магнитной энергии. Операция заключается в следующем: микрофон имеет мембрану, которая вибрирует со звуком. Эта вибрация передается на кабель, обмотанный вокруг магнита, который посылает электрический сигнал на усилитель, делая звук громче. В этом случае мы имеем преобразование звуковой энергии в магнитную энергию, затем электрическую энергию и затем звуковую энергию.
Железные дороги с электромагнитной подвеской — еще один пример того, как мы можем использовать магнитную энергию для выполнения работы. Железная дорога движется через магнитное поле, которое движется вдоль ферромагнитного пути.
Звуковая энергия
Колокол вибрирует от удара и производит звуковые волны, которые распространяются по воздуху.
Звуковая энергия — это механическая энергия частиц, которые вибрируют в форме волн через среду передачи. Средой, через которую проходят звуковые волны, может быть воздух, вода или другие материалы. Все, что вызывает шум, генерирует звуковую энергию.
Звук распространяется в твердых телах быстрее, чем в жидкостях, и быстрее в жидкостях, чем в газах. Поэтому если прислонить ухо к полу, можно слышать, потому что скорость звука на земле в четыре раза выше, чем в воздухе.
Именно благодаря звуковой энергии мы можем слышать. Когда звуковые волны в воздухе проникают в ваши уши, они стимулируют специальные клетки, которые посылают информацию в мозг. Чем больше энергии имеет звуковая волна, тем громче будет звук.
Карты морского дна выполнены с использованием звуковой системы. Гидролокатор посылает звуковые волны и рассчитывает пройденное расстояние, используя скорость звука в воде.
В медицине ультразвук используется для удаления камней в почках. Эхокардиограмма является еще одной технологией, которая использует звуковые волны, чтобы увидеть плод у беременных женщин.
Лучистая энергия
Свет — это лучистая энергия, которая распространяется волнами.
Энергия в форме света или тепла — это лучистая энергия, более известная как излучение. Излучение — это электромагнитные волны, которым не нужны средства для перемещения подобно звуковым волнам, чтобы они могли перемещаться в космическом пространстве. Источником электромагнитных волн являются электроны, которые вибрируют, создавая электрическое поле и магнитное поле.
Различные типы лучистой энергии или излучения (потоки) упорядочены по уровням энергии в электромагнитном спектре. Они путешествуют в космосе со скоростью 300 миллионов метров в секунду, то есть со скоростью света.
Рентгеновские и гамма-лучи — это невидимые излучения с большим количеством энергии. Оба имеют важные применения в медицине. Рентген используется для диагностики переломов костей, в то время как гамма-излучение используется для диагностики неврологических заболеваний, таких как болезнь Паркинсона и Альцгеймера, или при заболеваниях сердца.
Ультрафиолетовые (УФ) лучи представляют собой тип невидимого излучения, создаваемого Солнцем и некоторых специальных ламп. Эти лучи отвечают за загар, который мы приобретаем, когда подвергаем себя воздействию солнца. Однако чрезмерное воздействие ультрафиолетовых лучей может вызвать ожоги и рак кожи. Вот почему вы должны защищать свое тело, когда вы долго на солнце, особенно кожу (чтобы защититься от рака кожи) и глаза.
Видимый свет излучения — это то, что человеческий глаз может воспринимать. Обычно мы видим белый свет, который является не более чем смесью огней разных цветов. Свет находится в энергетических пакетах, называемых фотонами, которые не имеют массу.
Инфракрасное излучение, микроволна и радиоволны менее энергичное излучение электромагнитного спектра. Радиоволны и микроволны — это волны, используемые в коммуникациях для передачи звука и изображений.
Солнечная энергия
Солнце — самый важный источник энергии для жизни на Земле.
Солнечная энергия — это лучистая энергия солнца. Он путешествует в пространстве, пока не достигнет Земли в виде электромагнитных волн. Большая часть солнечного излучения, которое достигает атмосферы Земли, — это ультрафиолетовое излучение, видимый свет и инфракрасные лучи.
Солнце состоит из водорода и гелия. В этом случае энергия исходит от процесса ядерного синтеза: ядра водорода объединяются, образуя гелий и лучистую энергию.
Люди научились использовать солнечную энергию. Сегодня энергия солнечного света используется для отопления домов и зданий, увеличения их тепловой энергии. Видимый солнечный свет проходит через стекла окон и поглощается материалами внутри комнаты. Это заставляет материалы нагреваться.
Лучистая энергия Солнца ответственна за существование жизни на Земле. Растения собирают эту энергию для производства пищи, превращая ее в химическую энергию. Солнечная энергия управляет движением воздуха в атмосфере, вызывая ветры.
Возобновляемые и невозобновляемые источники энергии
Такие ресурсы, как солнце и ветер, являются возобновляемыми источниками энергии.
Закон сохранения энергии гласит, что энергия не может быть создана или уничтожена, может только быть преобразована. Это означает, что при подсчете количества энергии в системе это количество всегда будет одинаковым, хотя и по-разному.
Когда мы говорим о возобновляемых или невозобновляемых энергоресурсах, мы действительно имеем в виду источники или ресурсы, из которых люди извлекают энергию.
Уголь и нефть являются ископаемым топливом, в котором химическая энергия сохраняется в связях между атомами углерода. Ископаемое топливо не возобновимо, потому что оно было сформировано миллионы лет назад из доисторических организмов. Эти источники энергии, помимо ограниченного существования, наносят серьезный ущерб окружающей среде.
Наша цель должна заключаться в том, чтобы воспользоваться другими источниками энергии, такими как солнце, ветер, внутреннее земное тепло и океанские волны, которые являются возобновляемыми и не загрязняющими окружающую среду. Вода может использоваться снова и снова благодаря естественному процессу круговорота воды.
Другой аспект, который мы должны принять во внимание, это не тратить энергию. Электрическая энергия вашего дома имеет свою стоимость. Если у вас долгое время открыт холодильник или вы оставили лампы в своей комнате, особенно если вас там нет, вы увеличиваете потребление электроэнергии в своем доме, и это будет оплачиваться вашими родителями. Экономия энергии — это разумное и осознанное использование.