какую температуру выдерживает пвх изоляция
Какая температура размягчения и плавления поливинилхлорида (ПВХ)?
При какой температуре происходит стеклование, размягчение и плавление поливинилхлорида (ПВХ)?
Стеклование: от 75-85 по Цельсию (для RPVC) до 105 по Цельсию (для FPVC).
Плавление: от 150 до 220 по Цельсию.
Разложение с визуальным изменением структуры и выделением HCl: от 100 до 120 по Цельсию.
Спад прочности ПВХ фиксируется с температуры 40 по Цельсию, точка размягчения в районе 80 градусов.
Поливинилхлорид (ПВХ) изготавливается по разной технологии с применением различных добавок, которые в свою очередь влияют на различные характеристики материала.
То есть нет определённой точки (цифры), для всего ПВХ.
Из общего можно отметить следующее, при высоких температурах ПВХ, начинается разрушение материала с выделением вредных веществ (свинец, канцерогены и.т.д).
Температура плавления (это средняя цифра) в районе 150-и градусов (+-), но уже при 65-и, 70-и градусах (это к вопросу о температуре размягчения), ПВХ начинает деформироваться.
Получается что максимальная температура (при длительной эксплуатации) не должна быть выше + 60-и градусов Цельсия).
То есть нельзя использовать такой материал если есть постоянный и длительный контакт с горячей поверхностью (или возле).
Становится понятным, вред ПВХ начинает нести окружающим задолго до достижения температуры плавления.
Более конкретная информация, у производителя, который просто обязан указать все характеристики ПВХ, включая температуру размягчения.
Кабели и провода с поливинилхлоридной изоляцией ПВХ. Обзор технологий прокладки и защиты кабеля.
Одними из источников возникновения пожаров в жилищно-коммунальном хозяйстве и культурно-просветительных, офисных и административных зданиях являются электрические сети.
В настоящее время наиболее распространенные в жилищно-коммунальном секторе для электроснабжения потребителей получили марки электропроводов и кабелей с поливинилхлоридной изоляцией ПВХ (табл.1)
Краткая характеристика физико-механических свойств поливинилхлорида
Поливинилхлорид (ПВХ) представляет собой твердый при обычной температуре термопластичный полимер аморфной, т.е. бесформенной структуры, в котором его свойства (механические, электрические и др.) в естественных условиях одинаковы по всем направлениям.
Электроизоляционные свойства ПВХ сравнительно невысоки (26. 28 МВ/м). Однако вследствие ряда положительных характеристик (устойчивость к действию кислот, щелочей и растворов солей) ПВХ нашел широкое применение как изолятор, в частности, при изоляции электропроводов и кабелей.
Заметное ухудшение свойств ПВХ наблюдается при световом воздействии, в основном за счет ультрафиолетовых излучений. Для защиты ПВХ от светового воздействия в него добавляют разного рода пигменты (сажа, двуокись титана и др.), которые, являясь экраном, поглощают ультрафиолетовые излучения.
Основные причины повреждения изоляции из ПВХ
За последние годы при скрытой прокладке электропроводки в жилых домах силовые кабели прокладывают в специальных гибких гофрированных трубах, обладающих высоким уровнем сопротивления изоляции (не менее 100 МОм и 500 В в течение 1 мин) и огнестойкостью (способность загораться при температуре не менее чем 650°С). К сожалению, некоторые украинские производители сознательно идут на нарушение технологии производства указанной продукции, изготовляя трубы из вторичного сырья, изменяя физические характеристики продукции. По данным, это приводит к повышенной ломкости материала и потере прочности при температурных изменениях, что, разумеется, отрицательно влияет на долговечность и безопасную эксплуатацию электросетей.
Механические повреждения изоляции происходят в основном при транспортировке и халатном хранении кабельной продукции и монтаже электропроводок (особенно на изгибах при прокладке через стены и межкомнатные перегородки).
Старение изоляции в процессе длительной эксплуатации, на наш взгляд является основной причиной возникновения пожаров. Поданным, процессом, приводящим к старению изоляции, является естественное удаление (потеря) пластификатора из ПВХ пластиката. Именно от этого зависит дальнейшая работоспособность изоляции электропровода.
В процессе старения изоляции из ПВХ наблюдается уменьшение холодостойкости кабелей и проводов, что может стать показателем отказа их работы. При механических воздействиях на электропроводку или кабель при низких температурах (-1 5°С и менее) наблюдается растрескивание изоляции. Кроме того, при длительной эксплуатации электропроводов наблюдается изменение геометрических размеров изоляции, в основном уменьшение наружного диаметра. Произведенные исследования показали, что происходящая при старении изоляции из ПВХ потеря пластификатора сопровождается увеличением плотности и усадкой изоляции. Очевидно, что измерение наружного диаметра электропроводки в процессе эксплуатации в определенных условиях может служить показателем для диагностики изоляции из ПВХ.
Токовая перегрузка в проводах электрической сети может наступить в основном в двух возможных часто встречающихся случаях: при коротком замыкании вследствие плотного контакта фазного и нулевого оголенных по какой-либо причине проводов и при механических, даже незначительных повреждениях изоляции или по причине ее старения.
В первом случае в результате прямого короткого замыкания электрическая сеть защищается устройством защитного отключения (разумеется, при его надежной работе). Возможность возникновения пожаров в таких случаях, как правило, маловероятна (разумеется, если в месте возникновения короткого замыкания отсутствует легковоспламеняющиеся предметы). Во втором случае процесс развития токовой перегрузки происходит постепенно. И это является очень опасным, так как устройство защитного отключения не сразу может среагировать (или даже совсем не успеть это сделать) на токовую перегрузку.
Примечание. Предусматривается допустимое нагревание проводника не более 55°С. В случаях активных нагрузок предусматривается применение нулевой жилы одинакового сечения или симметричный 4-проводный кабель.
Табл.2
Наблюдениями установлено, что даже микроскопические повреждения изоляции вызывают точечный ток утечки и местный нагрев изоляции. Со временем между жилами, имеющими механические повреждения изоляции, накапливаются пыль и прочие виды грязи, поселяются в утепленное место от токов утечки насекомые. Все это при увлажнении становится электропроводной средой. В последующей эксплуатации электропроводки между фазовым и нулевым проводами возникает электрическая цепь: сначала обугливается изоляция в месте повреждения ее, ток утечки и температура цепи увеличиваются, что в конечном итоге приводит сначала к местному возгоранию изоляции, появлению устойчивой дуги и пожару.
Нельзя не отметить в этой связи случаи возникновения пожаров, когда электрическая сеть перегружается из-за того, что вместо калиброванных плавких вставок в предохранителях устанавливаются печально известные «жучки» с сечениями, значительно превышающими сечения калиброванных вставок. В этом случае при перегрузке электросети изоляция воспламеняется, и пожар становится неизбежным. Экспериментальным путем установлено, что ток в 300 мА выделяет энергию, недостаточную для возгорания стандартных строительных материалов. Поэтому устройство защитного отключения с таким номинальным током утечки является эффективным средством защиты от пожара, особенно в местах хранения легковоспламеняющихся материалов.
Автор рекомендует выбирать марки проводов для питания потребителей той или иной мощности (таблица 2).
Температура плавления и размягчения пластиков, температура эксплуатации пластмасс
В последнее время пластмассы и пластики находят широкое применение в промышленности и быту. Поэтому часто возникает проблема выбора конкретного пластика под заданные температурные условия его эксплуатации. При выборе пластика необходимо учитывать диапазон его рабочей температуры или температуру начала размягчения и плавления пластика. Приведенная ниже таблица содержит все необходимые для этого данные.
В таблице представлены значения плотности ρ, температуры плавления пластика t пл , температуры размягчения по Вика t разм , температуры хрупкости t хр , а также интервал рабочей температуры t раб при которой допускается эксплуатация пластмасс.
Значения в таблице даны для более 270 наименований пластика. Для каждого пластика указана как минимум одна температура, позволяющая оценить допустимые температурные условия его эксплуатации. Рассмотрены следующие типы пластика и пластмасс: полиолефины, полистиролы, фторопласты, ПВХ, полиакрилаты, фенопласты, пенопласты, АБС-пластики, полиуретаны, смолы и компаунды, антифрикционные самосмазывающиеся пластики, стеклопластики и др.
К пластикам с высокой температурой плавления можно отнести фторопласты и полиамиды, а также термостойкий пластик ниплон. Например, температура плавления фторопласта составляет 327°С (для фторопласта-4 и 4Д). Полиамиды (капролон, капролит) имеют температуру размягчения 190-200°С, а температура плавления такой пластмассы составляет величину 215-220°С. Стекло- и углепластик ниплон имеет температуру плавления выше 300°С.
Из всего многообразия полимеров для эксплуатации при высоких температурах подойдут пластики на основе кремнийорганических смол. Максимальная температура эксплуатации такого пластика может достигать 700°С.
Примечание: * — морозостойкость, ** — теплостойкость на воздухе, температура размягчения пластиков дана в воздушной среде.
Какую температуру выдерживает пвх изоляция
Под термином «допустимая температура нагрева кабеля»чаще всего понимается параметр, определяющий температурный режим эксплуатации кабеля, при котором изоляция сохраняет свою долговечность и практические качества. Однако при выборе кабеля стоит использовать более широкий подход, то есть учесть также температуру нагрева жил.
В первом случае подразумевается температура окружающей среды, во втором – нагрев самого кабеля, вызванный электрическим сопротивлением токоведущих жил.
Допустимая температура нагрева изоляции кабеля
Допустимая температура нагрева изоляции жил кабеля
Допустимая температура нагрева жил кабеля также зависит от материала изоляции, а в некоторых случаях – от рабочего напряжения. Длительно допустимая температура нагрева изоляции жил кабелей в зависимости от типа изоляции составляет:
• бумажная:
◦ до 3 кВ включительно – 80°C;
◦ 6 кВ – 65°C;
◦ 10 кВ – 60°C;
◦ 20-35 кВ – 50°C.
• бумажная обеднённо-пропитанная:
◦ 1 кВ – 80°C;
◦ 6 кВ –75°C.
• резиновая – 65°C;
• сшитый полиэтилен (СПЭ) и этиленпропиленовая резина (ЭПР) – 90°C;
• ПВХ пластикат и полимерная композиция – 70°C;
• маслонаполненные – 70-80°C в зависимости от типа прокладки.
Одними из источников возникновения пожаров в жилищно-коммунальном хозяйстве и культурно-просветительных, офисных и административных зданиях являются электрические сети.
В настоящее время наиболее распространенные в жилищно-коммунальном секторе для электроснабжения потребителей получили марки электропроводов и кабелей с поливинилхлоридной изоляцией ПВХ (табл.1)
Краткая характеристика физико-механических свойств поливинилхлорида
Поливинилхлорид (ПВХ) представляет собой твердый при обычной температуре термопластичный полимер аморфной, т.е. бесформенной структуры, в котором его свойства (механические, электрические и др.) в естественных условиях одинаковы по всем направлениям.
Электроизоляционные свойства ПВХ сравнительно невысоки (26…28 МВ/м). Однако вследствие ряда положительных характеристик (устойчивость к действию кислот, щелочей и растворов солей) ПВХ нашел широкое применение как изолятор, в частности, при изоляции электропроводов и кабелей.
Длительная рабочая температура ПВХ составляет 80…90°С Выше 1 40°С ПВХ начинает разлагаться с выделением хлористого водорода. При этом физико-механические свойства ПВХ ухудшаются: снижаются объемное электрическое сопротивление и механическая прочность (уменьшается величина относительного удлинения при разрыве, возрастает хрупкость). Выделяющийся хлористый водород вредно действует на человека (особенно при пожарах) и вызывает коррозию расположенных вблизи материалов. При повышенной температуре ПВХ горит, но не поддерживает горения. Температура самовоспламенения ПВХ 454…495°С. При горении ПВХ образуется густой и плотный дым и выделяется большое количество тепла. Теплотворная способность изоляции из ПВХ составляет 5949 ккал/кг. Для сравнения можно привести данные о теплотворной способности древесины, в частности дуба, – 2500 ккал/кг. Это означает, что при сгорании 1 кг изоляции из ПВХ выделяется тепла в 2,4 раза больше, чем из высококалорийной древесины.
Заметное ухудшение свойств ПВХ наблюдается при световом воздействии, в основном за счет ультрафиолетовых излучений. Для защиты ПВХ от светового воздействия в него добавляют разного рода пигменты (сажа, двуокись титана и др.), которые, являясь экраном, поглощают ультрафиолетовые излучения.
Основные причины повреждения изоляции из ПВХ
За последние годы при скрытой прокладке электропроводки в жилых домах силовые кабели прокладывают в специальных гибких гофрированных трубах, обладающих высоким уровнем сопротивления изоляции (не менее 100 МОм и 500 В в течение 1 мин) и огнестойкостью (способность загораться при температуре не менее чем 650°С). К сожалению, некоторые украинские производители сознательно идут на нарушение технологии производства указанной продукции, изготовляя трубы из вторичного сырья, изменяя физические характеристики продукции. По данным, это приводит к повышенной ломкости материала и потере прочности при температурных изменениях, что, разумеется, отрицательно влияет на долговечность и безопасную эксплуатацию электросетей.
Механические повреждения изоляции происходят в основном при транспортировке и халатном хранении кабельной продукции и монтаже электропроводок (особенно на изгибах при прокладке через стены и межкомнатные перегородки).
Старение изоляции в процессе длительной эксплуатации, на наш взгляд является основной причиной возникновения пожаров. Поданным, процессом, приводящим к старению изоляции, является естественное удаление (потеря) пластификатора из ПВХ пластиката. Именно от этого зависит дальнейшая работоспособность изоляции электропровода.
В процессе старения изоляции из ПВХ наблюдается уменьшение холодостойкости кабелей и проводов, что может стать показателем отказа их работы. При механических воздействиях на электропроводку или кабель при низких температурах (-1 5°С и менее) наблюдается растрескивание изоляции. Кроме того, при длительной эксплуатации электропроводов наблюдается изменение геометрических размеров изоляции, в основном уменьшение наружного диаметра. Произведенные исследования показали, что происходящая при старении изоляции из ПВХ потеря пластификатора сопровождается увеличением плотности и усадкой изоляции. Очевидно, что измерение наружного диаметра электропроводки в процессе эксплуатации в определенных условиях может служить показателем для диагностики изоляции из ПВХ.
Световое воздействие на изоляцию можно объяснить за счет проникновения ультрафиолетовых лучей в толщу термопластичного полимера ПВХ. Исследования автора показывают, что при отсутствии светового воздействия на электропровода относительное удлинение и прочность изоляции из ПВХ снижаются незначительно. Заметной разницы в механических характеристиках изоляции, пигментированной различными цветами, не имеется. Наиболее эффективным с точки зрения оптической стойкости является синий цвет, наименее – красный и натуральный. Пигментация изоляции различными цветами, подвергаемых атмосферному старению (на открытом воздухе), защищает ее от разрушительного старения не более 2…2,5 лет. При атмосферном воздействии трещинообразование в микроструктуре материала идет интенсивно. Растет не только число трещин, но и их размеры. Интенсивность солнечной радиации убывает от наружной поверхности к внутренней. Все это ведет к снижению как механических, так и электрических характеристик изоляции. Таким образом, можно сделать вывод что прокладка электропроводок открыто на воздухе нежелательна. А если этого избежать нельзя, то электропроводку и силовые кабели следует прокладывать в трубах (металлических, гладких или гофрированных из пластификатора).
Токовая перегрузка в проводах электрической сети может наступить в основном в двух возможных часто встречающихся случаях: при коротком замыкании вследствие плотного контакта фазного и нулевого оголенных по какой-либо причине проводов и при механических, даже незначительных повреждениях изоляции или по причине ее старения.
В первом случае в результате прямого короткого замыкания электрическая сеть защищается устройством защитного отключения (разумеется, при его надежной работе). Возможность возникновения пожаров в таких случаях, как правило, маловероятна (разумеется, если в месте возникновения короткого замыкания отсутствует легковоспламеняющиеся предметы). Во втором случае процесс развития токовой перегрузки происходит постепенно. И это является очень опасным, так как устройство защитного отключения не сразу может среагировать (или даже совсем не успеть это сделать) на токовую перегрузку.
Примечание. Предусматривается допустимое нагревание проводника не более 55°С. В случаях активных нагрузок предусматривается применение нулевой жилы одинакового сечения или симметричный 4-проводный кабель.
Табл.2
Наблюдениями установлено, что даже микроскопические повреждения изоляции вызывают точечный ток утечки и местный нагрев изоляции. Со временем между жилами, имеющими механические повреждения изоляции, накапливаются пыль и прочие виды грязи, поселяются в утепленное место от токов утечки насекомые. Все это при увлажнении становится электропроводной средой. В последующей эксплуатации электропроводки между фазовым и нулевым проводами возникает электрическая цепь: сначала обугливается изоляция в месте повреждения ее, ток утечки и температура цепи увеличиваются, что в конечном итоге приводит сначала к местному возгоранию изоляции, появлению устойчивой дуги и пожару.
Нельзя не отметить в этой связи случаи возникновения пожаров, когда электрическая сеть перегружается из-за того, что вместо калиброванных плавких вставок в предохранителях устанавливаются печально известные «жучки» с сечениями, значительно превышающими сечения калиброванных вставок. В этом случае при перегрузке электросети изоляция воспламеняется, и пожар становится неизбежным. Экспериментальным путем установлено, что ток в 300 мА выделяет энергию, недостаточную для возгорания стандартных строительных материалов. Поэтому устройство защитного отключения с таким номинальным током утечки является эффективным средством защиты от пожара, особенно в местах хранения легковоспламеняющихся материалов.
Автор рекомендует выбирать марки проводов для питания потребителей той или иной мощности (таблица 2).
Руководство по материалам электротехники для всех. Часть 9
Продолжение руководства по материалам электротехники. В этой части по прежнему разбираем пластики: политетрафторэтилен, поливинилхлорид, полиэтилентерефталат и силиконы.
Добро пожаловать под кат (ТРАФИК)
Фторопласт-4 (политетрафторэтилен PTFE)
Уникальный по своим свойствам пластик. Чаще всего молочно белый скользкий пластик.
Чистый фторопласт-4 мягкий — царапается ногтем.
«Клей для фторопласта» стоит на одной полке с философским камнем, святым граалем
и другими фантастическими артефактами. Фторопласт настолько химически инертен, что
ни в чем не растворяется, даже не набухает. Золото хоть в царской водке растворяется, а
фторопласту глубоко плевать на все эти растворители. Как итог — ничем не красится, ничем
не клеится. (Если честно, способ склейки фторопласта существует, но он явно не для каждой мастерской. Подробнее описано тут.)
Фторопласт — термостойкий полимер, легко выдерживает температуру +250°С. При температурах выше 415°С разлагается. При этом нагреванием фторопласта его можно размягчить, но в вязкотекучее состояние он не переходит, начиная разлагаться, поэтому изделия из фторопласта получают прессованием мелкодисперсного порошка с последующим спеканием.
В быту чаще всего вы сталкиваетесь с фторопластами под торговой маркой «тефлон» покрытие сковородок антипригарным слоем — это всё фторопласт (или близкие по свойствам фторполимеры). (В силу химической инертности фторопласта такие сковороды абсолютно безопасны… если их не перегревать. При перегреве покрытие начинает разрушаться с выделением вредных веществ. Вcе остальные страшилки про PFOA (PFOA — Perfluorooctanoic acid, перфтороктановая кислота, едкая, токсичная, иногда используется в процессе нанесения покрытий из тефлона, разрушается при последующем отжиге изделий. Скандал был связан с отравлением окружающей среды заводом, который сбрасывал PFOA в сточные воды. Следовые количества PFOA в готовых изделиях не наносят сколько-нибудь значимого вреда здоровью.) актуальны для работников производств, а не потребителей продукции).
Фторопласт имеет очень низкое сопротивление скольжения, поэтому фторопласт-4 — хороший
материал для подшипников скольжения. Но в чистом виде проявляет склонность к ползучести — под нагрузкой постепенно течет, впрочем, этого недостатка лишены другие фторполимеры.
Отдельно хочется упомянуть монтажный провод во фторопластовой изоляции — МГТФ (МГТФ — Монтажный Гибкий Теплостойкий изоляция из Фторопласта.), белый провод, который можно часто найти внутри военной аппаратуре. У нас его несложно купить, стоит дешево. Если же поискать на ebay «teflon insulated wire» то стоит раза в 3 дороже минимум. Он гибкий, сохраняет гибкость в широком диапазоне температур, не боится кратковременных перегрузок — изоляция не стекает. При пайке изоляция у него не «ползет» от нагрева, что позволяет зачистить кончик в 0,5 мм и припаять к ножке микросхемы в TQFP (TQFP — Thin Quad Flat Pack, разновидность корпусов микросхем) корпусе без лишних неудобств. К сожалению, в силу особенностей производства изоляции (навивка тонкой пленки фторопласта на жилу) такой провод не подходит для работы во влажной среде.
Вот пост в популярном паблике ВК с видео на 1:12, вся суть которого была передана предложением выше. Я не знаю как назвать тенденцию, когда вместо абзаца текста и двух картинок записывается видеоролик на десяток минут. Меня просто переполняет негодование от тенденции ютубизации всего, про что видео не сняли того и знать не нужно.
Примеры применения
Лента ФУМ (Фторопластовый Уплотнительный Материал) в сантехнике для герметизации резьбовых соединений. Также используется как уплотнительные прокладки шара в шаровых кранах.
Высокочастотные разъемы. Изолятор левого изготовлен из полиэтилена, правого — из фторопласта. Корпуса разъемов посеребрены.
Диэлектрик в высокочастотных разъемах. Фторопласт удерживает центральный электрод разъема, в отличии от полиэтилена позволяет не беспокоиться при пайке, что изолятор поплывет от нагрева.
Изоляция термостойких проводов. Провод МГТФ — монтажный провод в устройствах авиационного назначения.
Моток провода МГТФ сечением 0,35 мм2. Характерный розоватый оттенок — медь просвечивает через фторопласт.
Источники
Фторопласт продается множеством фирм в виде прутков, трубочек (электроизоляционных, поэтому тонкостенных), листов. В крепежных магазинах бывает в виде втулок, шайб.
Фторопластовая пневматическая трубка пригодна не только как трубка для пневмоустройств в агрессивных средах, но и как вставка в экструдеры 3Д принтеров, термостойкость и скользкость фторопласта там подходит идеально.
Стеклохолст пропитанный фторопластом — продается в хозяйственных магазинах как мат для выпечки, выглядит как тонкий лист ткани желтоватого цвета. (Не путать с силиконовым матом который выглядит как тонкая резина. О писании на коробке должен быть указан политетрафторэтилен (PTFE) или тефлон.) Таким материалом закрыты например нагреватели у запайщиков пакетов — именно благодаря ему пленка не прилипает.
Поливинилхлорид — ПВХ
Сам по себе ПВХ жёсткий пластик, но введением в состав пластификатора можно сделать его гибким. Часто в обиходе используется название «Винил». Винипласт — название материала из ПВХ без пластификатора (жёсткий). Выпускается в том числе в виде листов, пленок.
Тройник, уголок, крепежные скобы для гофроканала, герметичный кабельный ввод — изготовлены из не пластифицированного ПВХ.
Примеры применения
Изоляция проводов — достаточно трудно в быту найти провод с изоляцией не из ПВХ.
Изолента — всем известная синяя изолента это ПВХ Серая гофра для укладки проводов в строительстве — ПВХ. (чёрная гофра — полиэтиленовая) Различные надувные игрушки — ПВХ.
Плюшки
Неплохо склеивается, как специальными клеями для ПВХ, так и цианоакрилатными,
полиуретановыми. (Свищ в надувной игрушке из ПВХ неплохо заклеивается полиуретановым
клеем).
Минусы
Не светостойкий. ПВХ на солнце разрушается, становится хрупким. Поэтому на улице используются полиэтиленовые (чёрные) гофроканалы, а не ПВХ (серые)
Оболочка коаксиального кабеля с изоляцией из ПВХ. Кабель для внутренней проводки провисел на улице несколько лет. Изоляция полностью разрушилась.
При нагревании выделяет едкий ядовитый дым, содержащий в том числе HCl. Этот дым раъедает оптику, поэтому ПВХ практически не режут на станках лазерного раскроя. Использование ПВХ панелей в отделке катастрофически увеличивает токсичность дыма при пожаре.
Миграция пластификатора. У пластифицированного (мягкого) ПВХ пластификатор не вступает в прочную химическую связь с полимером, поэтому со временем пластификатор может мигрировать, испаряться из изделия, особенно из приповерхностных слоев. Нагрев, контакт с некоторыми горюче-смазочными веществами и растворителями может ускорять этот процесс. Итогом такой метаморфозы является «дубение» изделия, появление трещин. Если планируется длительная работа изделия, и требуется эластичность, то стоит посмотреть в сторону эластомеров. (Относительно недавно был скандал как раз связанный с выделением пластификатора из кабеля. Спустя некоторое время кабель начинал плакать маслом, но это не чудо, а выделение пластификатора из заполнителя кабеля. Гуглить по ключевым словам «кабель NYM потёк».)
Полиэтилентерефталат (ПЭТФ)
Другие название этого полимера — полиэстер, ПЭТ, майлар (Под майларом чаще всего имеют ввиду ПЭТ пленку), лавсан (ЛАВСАН-Лаборатория Высокомолекулярных Соединений Академии Наук) С этим полимером вы сталкиваетесь каждый день — бутылки для воды и напитков получают из него. Волокно из полиэтилентерефталата идет на изготовление флисовой ткани. Это удивительно, но толстовка из флиса и бутылка из под газировки сделаны из одного и того же полимера. Шуршащая прозрачная упаковочная пленка, часто ошибочно называемая целлофаном — это ПЭТФ.
ПЭТФ обычно прозрачный (Прозрачный в аморфном и белый в кристаллическом, состояние зависит от скорости охлаждения.) пластик, выпускается в виде листов, преформ для изготовления бутылок, в виде пленки.
Отличить ПЭТФ от полиэтилена, полипропилена несложно — температура плавления ПЭТФ
порядка 250°С, поэтому паяльник разогретый до 200°С не должен вызывать плавления материала. Впрочем, уже при температуре 100°С тару их ПЭТФ может довольно сильно деформировать из-за внутренних напряжений без плавления.
Примеры применения
Помимо применений описанных выше используется в качестве диэлектрика в пленочных кон-
денсаторах. «Майларовые» или полиэтилентерефталатные конденсаторы обычно отдельный
раздел каталога радиодеталей. Есть довольно интересный старый рекламный фильм компании DuPont о майларе.
Фольговый пленочный конденсатор с изоляцией из полиэтилентерефталатной пленки.
Пленочные электрические конденсаторы, слева — полипропиленовые, справа — полиэтилентерефталатные. Отличить конденсаторы можно только по маркировке.
Полиэтилентерефталат иногда используется как материал одноразовых печатных плат, например для RFID (RFID — Radio Frequency IDentification, радиочастотная идентификация. RFID метка — это устройство, которое при облучении радиоволнами излучает в радиоэфир сигнал, с закодированной в ней информацией. Магазинные противокражные метки — частный случай RFID меток.) меток.
RFID метки, материал основы — полиэтилентерефталат, проводники антенны выполнены в виде алюминиевого напыления. В центре — микросхема.
Источники
В зависимости от потребной толщины пленку из ПЭТФ можно получить:
0,2-0,4 мм — стенки бутылок из под воды, газировки
0,1 мм — пленка для печати на лазерном принтере (используется для проведения презентаций
с обычным проектором)
0,015 мм — кулинарные пакеты для запекания
0,012 мм — с металлизацией — «спасательное одеяло» полотно из ПЭТФ пленки с металлизацией
для отражения световых и ИК лучей, входит в состав аптечек.
0,125 — 0,08 мм — конверты для ламинирования документов, но имеют нанесенный по всей
поверхности клеевой слой.
Силиконы
Управляя химическим составом и степенью полимеризации при производстве получают силиконы с различными свойствами — от жидких смазок и жидкостей, заканчивая эластомерами и смолами. Несмотря на это, у силиконов прослеживаются общие свойства.
Силиконы химически инертны. Не настолько, как политетрафторэтилен, но достаточно, чтобы делать из него имплантаты, лить в бытовую химию, добавлять в пищу (Например пищевая добавка Е900 — Диметилполисилоксан, пеногаситель.). Из пищевого силикона делаются формочки для выпечки, коврики для выпекания, различную посуду.
Низкая адгезия ко многим материалам. Следствие химической инертности — к силиконам практически ничего не липнет. Это хорошо, если вы в нем готовите, но плохо, если вам нужно приклеить отвалившуюся силиконовую ножку от ноутбука (Из бытовых клеев хоть как то прилипает к силикону цианоакрилатный (суперклей, жидкий, который мгновенно склеивает пальцы), но всё равно держит плохо.). Из-за химического сродства хорошо липнет к стеклу.
Высокая температурная стабильность. Силиконовые эластомеры остаются гибкими на лютом морозе и не оплывают при высокой температуре. Некоторые силиконы выдерживают температуру +300°С.
Силиконовую резину от других видов резин можно отличить если ее сжечь, силикон оставляет белый пепел из диоксида кремния, обычная резина — чёрный пепел из углерода.
Примеры применения
Изоляция проводов. Как только изоляция из ПВХ вызывает сомнения по нагревостойкости её заменяют на силиконовую. Провода в силиконовой изоляции используются как выводы мощных аккумуляторов с большими пиковыми токами, для подключения ксеноновых ламп, галогеновых ламп. Так получилось, что на постсоветском пространстве, если вам нужен термостойкий тонкий монтажный провод — то проще купить провод МГТФ с фторопластовой
изоляцией, чем с силиконовой. Силовые же провода в силиконовой изоляции купить проще,
чем монтажные.
Эластичные элементы. Трубки, демпферы, прокладки, уплотнители и т. п.
Источники
Силиконовые герметики, в том числе и термостойкие — в строительных магазинах, в автомобильных магазинах. Силиконовый мат для выпекания — отличный материал для вырезания прокладок, мембран. Двухкомпонентные силиконовые литьевые составы — пригодны для отливки изделий из силикона, в т.ч. пищевого назначения — в магазинах для творчества. Силиконовые трубочки можно купить в магазинах самогоноварения.