какую температура может нагнать азот
Свойства жидкого азота
Марка азота / состав | ||||||
Особой чистоты (ОСЧ) | Повышенной чистоты | Технический | ||||
1-й сорт | 2-й сорт | 1-й сорт | 2-й сорт | 1-й сорт | 2-й сорт | |
Объемная доля азота, %, не менее | 99,999 | 99,996 | 99,99 | 99,95 | 99,6 | 99,0 |
Объемная доля кислорода, %, не более | 0,0005 | 0,001 | 0,001 | 0,05 | 0,4 | 1,0 |
Таблица 2. Давление насыщенных паров азота при температурах 20-126К
Таблица 3. Плотность жидкого азота в диапазоне температур 63-126К
Т, К | ρ, кг/м3 |
63,15 | 868,1 |
70 | 839,6 |
77,35 | 807,8 |
80 | 795,5 |
90 | 746,3 |
100 | 690,6 |
110 | 622,7 |
120 | 524,1 |
126,25 | 295,2 |
Таблица 4. Приблизительный расход жидкого азота на охлаждение некоторых металлов
Хладагент | Температурный интервал охлаждения металла, К | Расход хладагента, л на 1 кг металла | ||
Алюминий | Нержавеющая сталь | Медь | ||
При использовании теплоты парообразования | ||||
Жидкий азот | 300 до 77 | 1,0 | 0,53 | 0,46 |
При использовании теплоты парообразования и теплоемкости пара | ||||
Жидкий азот | 300 до 77 | 0,64 | 0,34 | 0,29 |
Таблица 5. Основные физические свойства жидкого азота
125367, г.Москва,
Полесский проезд, д. 14а
Плотность азота, свойства жидкого и газообразного N2
Плотность азота N2 и его теплофизические свойства
В таблице указана плотность азота и его теплофизические свойства в газообразном состоянии в зависимости от температуры и давления. Теплофизические свойства азота даны при температуре от 0 до 1000°С и давлении от 1 до 100 атмосфер.
В таблице даны следующие свойства азота:
Плотность диссоциированного азота при высоких температурах.
Теплопроводность азота в жидком и газообразном состояниях
Теплопроводность диссоциированного азота при высоких температурах.
В таблице даны значения теплопроводности диссоциированного азота при давлении от 0,001 до 100 атмосфер и высоких температурах.
Теплопроводность азота в газообразном состоянии приведена в диапазоне температур 2000…6000 К в размерности Вт/(м·град).
Значение коэффициента теплопроводности азота увеличивается с ростом его температуры и в основном уменьшается при увеличении давления этого газа. Теплопроводность диссоциированного азота в рассмотренных в таблице условиях изменяется в пределах от 0,126 до 6,142 Вт/(м·град).
Теплопроводность жидкого азота на линии насыщения.
В таблице представлены значения коэффициента теплопроводности жидкого азота на линии насыщения при низких температурах.
Теплопроводность жидкого азота указана при температурах 90…120 К (-183…-153°С).
По данным таблицы видно, что теплопроводность азота в жидком состоянии уменьшается с ростом его температуры.
Динамическая вязкость азота в зависимости от температуры и давления
В таблице даны значения коэффициента динамической вязкости азота в зависимости от температуры и давления.
Динамическая вязкость азота (размерность Па·с) указана в диапазоне температуры от 80 до 6000 К и давлении от 1 до 400 атмосфер и от 0,001 до 100 атмосфер.
При температуре азота от 3600 К он начинает частично диссоциировать. С ростом температуры газообразного азоат его динамическая вязкость возрастает. При повышении температуры жидкого азота, значение его динамической вязкости также увеличивается.
Как получают жидкий азот?
Для того чтобы понимать основные критерии оценки качества жидкого азота, нужно хорошо знать, как его получают. Рассмотрим особенности производства, а также методы хранения.
Особенности получения азота
Азот всегда присутствует вокруг нас. Так в земной атмосфере этого газа не менее 75 %, он необходим организму человека для выполнения множества обменных процессов. Высокий процент этого вещества есть в белках, аминокислотах, гемоглобине.
В эпоху активного развития промышленности, азот получали из чилийской селитры. Но с уменьшением количества этого полезного ископаемого человечество использует неисчерпаемые атмосферные запасы.
В одной молекуле газа есть два атома. При этом они очень прочно соединены между собой. Нельзя получить соединение с другими элементами, пока атомная связь не разорвана. Сегодня вы можете купить жидкий азот, который получен из воздуха, доведен до жидкого или газообразного состояния.
Основные области использования азота
Азот очень востребован в промышленности. Он применяется для различных задач — от обработки металлов при высоких температурах до бурения скважин.
Ведется поставка для пищевой промышленности, в которой он применяется для упаковки. Активными заказчиками являются производители систем для пожаротушения, горнодобывающие компании.
Состояния вещества
Прежде чем переходить к рассмотрению того, как производится жидкий азот, нужно уточнить характеристики вещества. Если в процессе изготовления не было допущено нарушения, эти параметры будут соответствовать ГОСТ, а продукт можно будет эффективно использовать для всех поставленных целей.
Состояние для азота при нормальном атмосферном давлении газообразное:
Покупатели используют газ для разных целей. Чаще всего встречается его соединение с водородом, которое помогает выработать аммиак. Он востребован во многих отраслях промышленности — от производства хладагента до изготовления удобрений.
Чтобы азот стал жидким, его нужно довести до температуры −195,8 °С. Важно учитывать особенность поведения азотно-кислородной смеси во время сильного прогрева. Именно второй элемент начинает быстрее испаряться.
На производстве часто чередуются циклы вскипания и последующего сжижения. Это помогает влиять на состав газов, получать смесь с необходимыми эксплуатационными качествами.
Также применяется свойство перехода газа между состояниями. Если нагреть один литр вещества в жидкой форме, то на выходе можно получить до 700 литров в газообразном варианте. Потому важно обеспечивать правильное хранение в герметичных баллонах без риска нагрева, с изоляцией.
Иногда может потребоваться также переход вещества в твердое состояние. Кристаллизация начинается при охлаждении до −209,86 °С. Полученные кристаллы начинают плавиться при контакте с кислородом.
Как делают жидкий азот
Процесс получения такого вещества в жидком состоянии хорошо отработан и помогает выработать нужный продукт. Рассмотрим основные подходы.
Криогенный метод
Использует в работе атмосферный воздух. В основе подхода лежит его сжижение. Процедура состоит из нескольких 3 этапов:
Разница в температурах позволяет разделить кислород и азот. Для достижения нужной чистоты вещества такую процедуру нужно повторять несколько раз.
Обычно криогенный метод используется, когда нужно получить большой объем продукции. Установки для разделения дорогие, имеют большие размеры. Чтобы разместить их, нужно отыскать большую площадь и подвести коммуникации.
Преимущество технологии заключается в чистоте получаемого вещества. В нем будет минимум примесей. При помощи установок можно также получать кислород и аргон в нужном объеме. Состояния разные — жидкое, газообразное.
Мембранный метод
Достаточно старая, хорошо зарекомендовавшая себя технология. Названа так благодаря использованию специальной мембраны с очень небольшими порами. Когда на нее подается воздух, то он свободно проходит через такую преграду, в то время как азот остается и поступает в накопитель.
У метода есть несколько важных преимуществ:
Установки можно легко разместить на предприятии, они не занимают много места. При этом при изготовлении больших объемов подход обычно оказывается нерентабельным.
Адсорбционный метод
Применение адсорбентов для создания газовых смесей также практикуется многими изготовителями. Подход дает возможность получать большие объемы готового продукта достаточно быстро.
Установка представляет собой две колонны. Вещество, применяемое в работе, есть в каждой их них. Воздух забирается напрямую из атмосферы и сжимается в компрессоре. Давление при этом стабилизируется до нужных показателей в ресивере.
Важно также обеспечить правильную фильтрацию. Она гарантирует, что в готовом продукте не будет различных примесей и загрязнений — от пыли и двуокиси углерода до паров воды, ацетилена, иных веществ, рассеянных в городской воздушной среде.
Когда смесь полностью очищена, наступает процесс адсорбционного разделения. Для этого воздух пропускается через колонну, внутри которой установлены углеродные молекулярные сита. Далее смесь поступает во вторую колонную, где происходит накопление азота в ресивере.
Среди важных преимуществ подобной технологии следующие:
В процессе большое значение имеет расчет уровня рентабельности. Нужно определить, подойдет ли для вас технология.
Важные характеристики готовой смеси
После того как азот был произведен, остается только охладить его до нужного уровня превращения в жидкость. Далее происходит перекачивание в герметичный баллон, отправка заказчикам.
Главной характеристикой готового продукта является степень чистоты. Она указывает на то, в какой области можно использовать такую смесь, не возникнет ли каких-либо непредвиденных проблем и химических реакций при нагреве, контакте с атмосферным воздухом и различными соединениями.
Хранение жидкого азота и техника безопасности
Хорошо понимая, как образуется жидкий азот, можно сделать выводы о его правильной перевозке, хранении и использовании. Важным требованием является поддержание герметичности тары. Потому баллоны, в которые закачивается смесь, должны регулярно проходить проверку, текущий ремонт и обслуживание.
Наша компания не только занимается продажей, но и проверяет баллоны, обеспечивает быструю перевозку продукции. Для транспортировки используется автотранспорт, в который помещаются цистерны, криогенные сосуды.
Чтобы обеспечить сохранность произведенного вещества, его нужно держать в вакууме. Используется закачивание в сосуды Дьюара с двойными стенками. Внутренняя поверхность проходит серебрение до зеркального состояния — это помогает значительно уменьшить теплопередачу.
Готовый продукт нужно использовать со строгим соблюдением техники безопасности. Лучше не допускать долговременного контакта вещества с незащищенной кожей. Если он все-таки произошел, нужно как можно быстрее промыть пораженную область.
При утечках азот начинает накапливаться на уровне пола. При этом он быстро испаряется, в помещении становится меньше кислорода. Потому если протечка сосуда все-таки произошла, нужно как можно быстрее обеспечить правильное проветривание.
«Тантал-Д» — производитель качественного жидкого азота
Наша компания поставляет большое количество газовых смесей. Вы можете заказать азот любого типа с быстрой доставкой.
Также проверяем баллоны, организуем постоянное снабжение, даем официальные гарантии. Чтобы узнать больше про представленные смеси, условия работы и доставки, оставьте заявку на сайте или звоните.
Азот. Химия азота и его соединений
Положение в периодической системе химических элементов
Азот расположен в главной подгруппе V группы (или в 15 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.
Электронное строение азота
Электронная конфигурация азота в основном состоянии :
Атом азота содержит на внешнем энергетическом уровне 3 неспаренных электрона и одну неподеленную электронную пару в основном энергетическом состоянии. Следовательно, атом азота может образовать 3 связи по обменному механизму и 1 связь по донорно-акцепторному механизму. Таким образом, максимальная валентность азота в соединениях равна IV. Также характерная валентность азота в соединениях — III.
Физические свойства и нахождение в природе
Азот в природе существует в виде простого вещества газа N2. Нет цвета, запаха и вкуса. Молекула N2 неполярная, следовательно, в воде азот практически нерастворим.
Азот – это основной компонент воздуха (79% по массе). В земной коре азот встречается в основном в виде нитратов. Входит в состав белков, аминокислот и нуклеиновых кислот в живых организмах.
Строение молекулы
Связь между атомами в молекуле азота – тройная, т.к. у каждого атома в молекуле по 3 неспаренных электрона. Одна σ-связь (сигма-связь) и две — π-связи.
Структурная формула молекулы азота:
Структурно-графическая формула молекулы азота: N≡N.
Схема перекрывания электронных облаков при образовании молекулы азота:
Соединения азота
Типичные соединения азота:
Степень окисления | Типичные соединения |
+5 | оксид азота (V) N2O5 азотная кислота HNO3 нитраты MeNO3 |
+4 | оксид азота (IV) NO2 |
+3 | оксид азота (III) нитриты MeNO2 |
+2 | оксид азота (II) NO |
+1 | оксид азота (I) |
-3 | аммиак NH3 нитриды металлов MeN бинарные соединения азота с неметаллами |
Способы получения азота
1. Азот в лаборатории получают при взаимодействии насыщенных растворов хлорида аммония и нитрита натрия. Образующийся в результате реакции обмена нитрит аммония легко разлагается с образованием азота и воды. В колбу наливают раствор хлорида аммония, а капельную воронку раствор нитрита натрия. При приливании нитрита натрия в колбу начинается выделение азота. Собирают выделяющийся азот в цилиндр. Горящая лучинка в атмосфере азота гаснет.
Суммарное уравнение процесса:
Видеоопыт взаимодействия нитрита натрия с хлоридом аммония можно посмотреть здесь.
Азот также образуется при горении аммиака:
2. Наиболее чистый азот получают разложением азидов щелочных металлов.
3. Еще один лабораторный способ получения азота — восстановление оксида меди (II) аммиаком при температуре
3CuO + 2NH3 → 3Cu + N2 + 3H2O
В промышленности азот получают, буквально, из воздуха. При промышленном производстве очень важно, чтобы сырье было дешевым и доступным. Воздуха много и он пока бесплатный.
Используются различные способы выделения азота из воздуха — адсорбционная технология, мембранная и криогенная технологии.
Адсорбционные методы разделения воздуха на компоненты основаны на разделения газовых сред в азотных установках лежит явление связывания твёрдым веществом, называемым адсорбентом, отдельных компонентов газовой смеси.
Основным принципом работы мембранных систем является разница в скорости проникновения компонентов газа через вещество мембраны. Движущей силой разделения газов является разница парциальных давлений на различных сторонах мембраны.
В основе работы криогенных установок разделения воздуха лежит метод разделения газовых смеси, основанный на разности температур кипения компонентов воздуха и различии составов находящихся в равновесии жидких и паровых смесей.
Химические свойства азота
При нормальных условиях азот химически малоактивен.
1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000 о С), на электрической дуге (в природе – во время грозы) :
Процесс эндотермический, т.е. протекает с поглощением теплоты.
2С + N2 → N≡C–C≡N
Этот процесс экзотермический, т.е. протекает с выделением теплоты.
1.4. Азот реагирует с активными металлами : с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-нитриды.
2. Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.
Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.
Аммиак
Строение молекулы и физические свойства
В молекуле аммиака NH3 атом азота соединен тремя одинарными ковалентными полярными связями с атомами водорода:
Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3 о :
Аммиак – бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи. При этом аммиак очень хорошо растворим в воде, т.к. молекулы аммиака образуют водородные связи с молекулами воды.
Способы получения аммиака
В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск
ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.
Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.
Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.
Еще один лабораторный способ получения аммиака – гидролиз нитридов.
В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.
Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.
Более подробно про технологию производства аммиака можно прочитать здесь.
Химические свойства аммиака
1. В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:
Видеоопыт растворения аммиака в воде можно посмотреть здесь.
2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.
Еще один пример : аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:
Видеоопыт взаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть здесь.
В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония.
NH3 + HCl → NH4Cl
Видеоопыт взаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.
4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – амминокомплексы.
Гидроксид меди (II) растворяется в избытке аммиака:
Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:
Также возможно образование Na2NH, Na3N.
При взаимодействии аммиака с алюминием образуется нитрид алюминия:
2NH3 + 2Al → 2AlN + 3H2
Пероксид водорода также окисляет аммиак до азота:
2NH3 + 3CuO → 3Cu + N2 + 3H2O
Соли аммония
Способы получения солей аммония
2. Соли аммония также получают в обменных реакциях между солями аммония и другими солями.
Химические свойства солей аммония
NH4Cl ⇄ NH4 + + Cl –
Соли аммония реагируют с щелочами с образованием аммиака.
NH4Cl + KOH → KCl + NH3 + H2O
Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.
Если соль содержит анион-окислитель, то разложение сопровождается изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:
При температуре 250 – 300°C:
При температуре выше 300°C:
Разложение бихромата аммония («вулканчик»). Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):
Окислитель – хром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду. Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив. Температура плавления – почти 2300 градусов. Оксид хрома – очень устойчивое вещество, не растворяется даже в кислотах. Благодаря устойчивости и интенсивной окраске окись хрома используется при изготовлении масляных красок.
Видеоопыт разложения дихромата аммония можно посмотреть здесь.
Оксиды азота
Оксиды азота | Цвет | Фаза | Характер оксида |
N2O Оксид азота (I), закись азота, «веселящий газ» | бесцветный | газ | несолеобразующий |
NO Оксид азота (II), закись азота, «веселящий газ» | бесцветный | газ | несолеобразующий |
N2O3 Оксид азота (III), азотистый ангидрид | синий | жидкость | кислотный |
NO2 Оксид азота (IV), диоксид азота, «лисий хвост» | бурый | газ | кислотный (соответствуют две кислоты) |
N2O5 Оксид азота (V), азотный ангидрид | бесцветный | твердый | кислотный |
Оксид азота (I)
Строение молекулы оксида азота (I) нельзя описать методом валентных связей. Так как оксид азота (I) состоит из двух, так называемых резонансных структур, которые переходят одна в другую:
Общую формулу в таком случае можно задать, обозначая изменяющиеся связи в резонансных структурах пунктиром:
Получить оксид азота (I) в лаборатории можно разложением нитрата аммония:
Химические свойства оксида азота (I):
N2O + Mg → N2 + MgO
Еще пример : оксид азота (I) окисляет углерод и фосфор при нагревании:
2. При взаимодействии с сильными окислителями N2O может проявлять свойства восстановителя.
Оксид азота (II)
Оксид азота (II) – это несолеобразующий оксид. В нормальных условиях это бесцветный ядовитый газ, плохо растворимый в воде. На воздухе коричневеет из-за окисления до диоксида азота. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.
Способы получения.
1. В лаборатории оксид азота (II) получают действием разбавленной азотной кислоты (30%) на неактивные металлы.
Также NO можно получить при окислении хлорида железа (II) или иодоводорода азотной кислотой:
3FeCl2 + NaNO3 + 4HCl → 3FeCl3 + NaCl + NO + 2H2O
2HNO3 + 6HI → 2NO + I2 + 4H2O
2. В природе оксид азота (II) образуется из азота и кислорода под действием электрического разряда, например, во время грозы:
3. В промышленности оксид азота (II) получают каталитическим окислением аммиака :
Химические свойства.
Оксид азота (II) легко окисляется под действием хлора или озона:
2NO + Cl2 → 2NOCl
Оксид азота (III)
Способы получения: м ожно получить при низкой температуре из оксидов азота:
Химические свойства:
1. Оксид азота (III) взаимодействует с водой с образованием азотистой кислоты:
2. Оксид азота (III) взаимодействует с основаниями и основными оксидами :
Оксид азота (IV)
Оксид азота (IV) — бурый газ. Очень ядовит! Для NO2 характерна высокая химическая активность.
Способы получения.
1. Оксид азота (IV) образуется при окислении оксида азота (I) и оксида азота (II) кислородом или озоном:
2. Оксид азота (IV) образуется при действии концентрированной азотной кислоты на неактивные металлы.
3. Оксид азота (IV) образуется также при разложении нитратов металлов, которые в ряду электрохимической активности расположены правее магния (включая магний) и при разложении нитрата лития.
Химические свойства.
1. Оксид азота (IV) реагирует с водой с образованием двух кислот — азотной и азотистой:
Поскольку азотистая кислота неустойчива, то при растворении NO2 в теплой воде образуются HNO3 и NO:
2. При растворении оксида азота (IV) в щелочах образуются нитраты и нитриты:
В присутствии кислорода образуются только нитраты:
4. Оксид азота (IV) димеризуется :
Оксид азота (V)
N2O5 – оксид азота (V), ангидрид азотной кислоты – кислотный оксид.
Получение оксида азота (V).
1. Получить оксид азота (V) можно окислением диоксида азота :
2. Еще один способ получения оксида азота (V) – обезвоживание азотной кислоты сильным водоотнимающим веществом, оксидом фосфора (V) :
Химические свойства оксида азота (V).
1. При растворении в воде оксид азота (V) образует азотную кислоту:
2. Оксид азота (V), как типичный кислотный оксид, взаимодействует с основаниями и основными оксидами с образованием солей-нитратов.
Еще пример : оксид азота (V) реагирует с оксидом кальция:
4. Оксид азота (V) легко разлагается при нагревании (со взрывом):
Азотная кислота
Строение молекулы и физические свойства
Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.
Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.
Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:
Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:
Способы получения
В лаборатории азотную кислоту можно получить разными способами:
1. Азотная кислота образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.
1 стадия. Каталитическое окисление аммиака.
2 стадия. Окисление оксида азота (II) до оксида азота (IV) кислородом воздуха.
3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.
Химические свойства
1. Азотная кислота практически полностью диссоциирует в водном растворе.
Еще пример : азотная кислота реагирует с гидроксидом натрия:
3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов).
4. Азотная кислота частично разлагается при кипении или под действием света:
металл + HNO3 → нитрат металла + вода + газ (или соль аммония)
С алюминием, хромом и железом на холоду концентрированная HNO3 не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:
Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 : 3 (по объему):
HNO3 + 3HCl + Au → AuCl3 + NO + 2H2O
Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:
С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):
Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).
С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:
При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):
Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:
Азотная кислота | ||||
Концентрированная | Разбавленная | |||
с Fe, Al, Cr | с неактивными металлами и металлами средней активности (после Al) | с щелочными и щелочноземельными металлами | с неактивными металлами и металлами средней активности (после Al) | с металлами до Al в ряду активности, Sn, Fe |
пассивация при низкой Т | образуется NO2 | образуется N2O | образуется NO | образуется N2 |
6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3 обычно восстанавливается до NO или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).
Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.
Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.
7. Концентрированная а зотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.
Еще пример : азотная кислота окисляет йодоводород:
Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.
3С + 4HNO3 → 3СО2 + 4NO + 2H2O
При нагревании до серной кислоты:
Соединения железа (II) азотная кислота окисляет до соединений железа (III):
8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция»).
Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.
Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.
Азотистая кислота
Азотистая кислота HNO2 — слабая, одноосновная, химически неустойчивая кислота.
Получение азотистой кислоты.
Азотистую кислоту легко получить вытеснением из нитритов более сильной кислотой.
AgNO2 + HCl → HNO2 + AgCl
Химические свойства.
1. Азотистая кислота HNO 2 существует только в разбавленных растворах, при нагревании она разлагается :
без нагревания азотистая кислота также разлагается :
2HNO2 + 2HI → 2NO + I2 + 2H2O
Азотистая кислота также окисляет иодиды в кислой среде:
Азотистая кислота окисляет соединения железа (II):
Кислород и пероксид водорода также окисляют азотистую кислоту:
Соединения марганца (VII) окисляют HNO2:
Соли азотной кислоты — нитраты
Нитраты металлов — это твердые кристаллические вещества. Большинство очень хорошо растворимы в воде.
Видеоопыт разложения нитрата калия можно посмотреть здесь.
Исключения:
Нитрит железа (II) разлагается до оксида железа (III):
Нитрат марганца (II) разлагается до оксида марганца (IV):
Соли азотистой кислоты — нитриты
Соли азотистой кислоты устойчивее самой кислоты, и все они ядовиты. Поскольку степень окисления азота в нитритах равна +3, то они проявляют как окислительные свойства, так и восстановительные.
Кислород, галогены и пероксид водорода окисляют нитриты до нитратов:
При окислении йодидов или соединений железа (II) нитриты восстанавливаются до оксида азота (II):
При взаимодействии с очень сильными восстановителями ( алюминий или цинк в щелочной среде) нитриты восстанавливаются максимально – до аммиака: