какую степень окисления имеет no3

Степени окисления элементов. Как найти степени окисления?

3) Высшая степень окисления элемента, как правило, совпадает с номером группы, в которой находится данный элемент (например, фосфор находится в V группе, высшая с. о. фосфора равна +5). Важные исключения: F, O.

4) Поиск степеней окисления остальных элементов основан на простом правиле:

Несколько простых примеров на определение степеней окисления


Что делать, если неизвестны степени окисления двух элементов

А можно ли определить степени окисления сразу нескольких элементов, пользуясь похожим уравнением? Если рассматривать данную задачу с точки зрения математики, ответ будет отрицательным. Линейное уравнение с двумя переменными не может иметь однозначного решения. Но ведь мы решаем не просто уравнение!

Вывод: если в молекуле содержится несколько атомов с неизвестными степенями окисления, попробуйте «разделить» молекулу на несколько частей.

Как расставлять степени окисления в органических соединениях


Не смешивайте понятия «валентность» и «степень окисления»!

Степень окисления часто путают с валентностью. Не совершайте подобной ошибки. Перечислю основные отличия:

Небольшой тест на тему «Степень окисления»

Потратьте несколько минут, проверьте, как вы усвоили эту тему. Вам необходимо ответить на пять несложных вопросов. Успехов!

Для желающих еще немного потренироваться рекомендую соответствующий тематический тест.

Источник

1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов.

Электроотрицательность

Электроотрицательность — способность атома какого-либо химического элемента в соединении оттягивать на себя электроны связанных с ним атомов других химических элементов.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Степень окисления – условный заряд атома химического элемента в соединении, рассчитанный исходя из предположения, что все связи в его молекуле ионные, т.е. все связывающие электронные пары смещены к атомам с большей электроотрицательностью.

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

Элементы, проявляющие постоянную СО

Значение постоянной СО этого элемента

Щелочные металлы, т.е. все металлы
IA группы — Li, Na, K, Rb, Cs, Fr+1Все элементы II группы, кроме ртути:
Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd+2Алюминий Al+3Фтор F-1

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

Элемент

Степень окисления практически во всех соединениях

Исключения

водород H+1Гидриды щелочных и щелочно-земельных металлов, например:
какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.кислород O-2Пероксиды водорода и металлов:
какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.
Фторид кислорода — какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

Химический элемент

Номер группы

Высшая степень окисления

КислородVI+2 (в OF2)ФторVII0МедьI+2ЖелезоVIII +6 (например K2FeO4)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = №группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Обозначим степень окисления серы как x:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Т.е. мы получили следующее уравнение:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Т.е. мы получаем два независимых уравнения:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Решая которые, находим x и y:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Как определять степени окисления элементов в органических веществах можно почитать здесь.

Валентность

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

2) неподеленных электронных пар на орбиталях валентных уровней какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

3) пустых электронных орбиталей валентного уровня какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных ( какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.) орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Резюмируя информацию по валентным возможностям атома углерода:

1) Для углерода возможны валентности II, III, IV

2) Наиболее распространенная валентность углерода в соединениях IV

3) В молекуле угарного газа CO связь тройная (!), при этом одна из трех связей образована по донорно-акцепторному механизму

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH3), азотистой кислоты (HNO2), треххлористого азота (NCl3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но также и тогда, когда один атом, имеющий неподеленную пару электронов — донор( какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.) предоставляет ее другому атому с вакантной ( какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.) орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d-подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO3 или оксида азота N2O5? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

em>Резюмируя информацию по валентным возможностям атома азота:

1) Для азота возможны валентности I, II, III и IV

2) Валентности V у азота не бывает!

3) В молекулах азотной кислоты и оксида азота N2O5 азот имеет валентность IV, а степень окисления +5 (!).

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d-подуровень с 5-ю вакантными орбиталями.

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом кислорода не имеет на внешнем уровне d-подуровня, распаривание электронов s и p-орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Таким образом, кислород практически всегда имеет валентность, равную II, однако в некоторых частицах он трехвалентен, в частности, в молекуле угарного газа C≡O. В случае, когда кислород имеет валентность III, одна из ковалентных связей образована по донорно-акцепторному механизму.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода H2S.

Как мы видим, у атома серы на внешнем уровне появляется d-подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p-подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO2, SF4, SOCl2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s-подуровне, внешний энергетический уровень приобретает конфигурацию:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO3, H2SO4, SO2Cl2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Источник

Азот. Химия азота и его соединений

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Положение в периодической системе химических элементов

Азот расположен в главной подгруппе V группы (или в 15 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение азота

Электронная конфигурация азота в основном состоянии :

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Атом азота содержит на внешнем энергетическом уровне 3 неспаренных электрона и одну неподеленную электронную пару в основном энергетическом состоянии. Следовательно, атом азота может образовать 3 связи по обменному механизму и 1 связь по донорно-акцепторному механизму. Таким образом, максимальная валентность азота в соединениях равна IV. Также характерная валентность азота в соединениях — III.

Физические свойства и нахождение в природе

Азот в природе существует в виде простого вещества газа N2. Нет цвета, запаха и вкуса. Молекула N2 неполярная, следовательно, в воде азот практически нерастворим.

Азот – это основной компонент воздуха (79% по массе). В земной коре азот встречается в основном в виде нитратов. Входит в состав белков, аминокислот и нуклеиновых кислот в живых организмах.

Строение молекулы

Связь между атомами в молекуле азота – тройная, т.к. у каждого атома в молекуле по 3 неспаренных электрона. Одна σ-связь (сигма-связь) и две — π-связи.

Структурная формула молекулы азота:какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Структурно-графическая формула молекулы азота: N≡N.

Схема перекрывания электронных облаков при образовании молекулы азота:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Соединения азота

Типичные соединения азота:

Степень окисленияТипичные соединения
+5оксид азота (V) N2O5

азотная кислота HNO3

нитраты MeNO3

+4оксид азота (IV) NO2
+3оксид азота (III)

нитриты MeNO2

+2оксид азота (II) NO
+1оксид азота (I)
-3аммиак NH3

нитриды металлов MeN

бинарные соединения азота с неметаллами

Способы получения азота

1. Азот в лаборатории получают при взаимодействии насыщенных растворов хлорида аммония и нитрита натрия. Образующийся в результате реакции обмена нитрит аммония легко разлагается с образованием азота и воды. В колбу наливают раствор хлорида аммония, а капельную воронку раствор нитрита натрия. При приливании нитрита натрия в колбу начинается выделение азота. Собирают выделяющийся азот в цилиндр. Горящая лучинка в атмосфере азота гаснет.

Суммарное уравнение процесса:

Видеоопыт взаимодействия нитрита натрия с хлоридом аммония можно посмотреть здесь.

Азот также образуется при горении аммиака:

2. Наиболее чистый азот получают разложением азидов щелочных металлов.

3. Еще один лабораторный способ получения азота — восстановление оксида меди (II) аммиаком при температуре

3CuO + 2NH3 → 3Cu + N2 + 3H2O

В промышленности азот получают, буквально, из воздуха. При промышленном производстве очень важно, чтобы сырье было дешевым и доступным. Воздуха много и он пока бесплатный.

Используются различные способы выделения азота из воздуха — адсорбционная технология, мембранная и криогенная технологии.

Адсорбционные методы разделения воздуха на компоненты основаны на разделения газовых сред в азотных установках лежит явление связывания твёрдым веществом, называемым адсорбентом, отдельных компонентов газовой смеси.

Основным принципом работы мембранных систем является разница в скорости проникновения компонентов газа через вещество мембраны. Движущей силой разделения газов является разница парциальных давлений на различных сторонах мембраны.

В основе работы криогенных установок разделения воздуха лежит метод разделения газовых смеси, основанный на разности температур кипения компонентов воздуха и различии составов находящихся в равновесии жидких и паровых смесей.

Химические свойства азота

При нормальных условиях азот химически малоактивен.

1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000 о С), на электрической дуге (в природе – во время грозы) :

Процесс эндотермический, т.е. протекает с поглощением теплоты.

2С + N2 → N≡C–C≡N

Этот процесс экзотермический, т.е. протекает с выделением теплоты.

1.4. Азот реагирует с активными металлами : с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-нитриды.

2. Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.

Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.

Аммиак

Строение молекулы и физические свойства

В молекуле аммиака NH3 атом азота соединен тремя одинарными ковалентными полярными связями с атомами водорода:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3 о :

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Аммиак – бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи. При этом аммиак очень хорошо растворим в воде, т.к. молекулы аммиака образуют водородные связи с молекулами воды.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск

ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Химические свойства аммиака

1. В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Видеоопыт растворения аммиака в воде можно посмотреть здесь.

2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.

Еще один пример : аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:

Видеоопыт взаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть здесь.

В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония.

NH3 + HCl NH4Cl

Видеоопыт взаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.

4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – амминокомплексы.

Гидроксид меди (II) растворяется в избытке аммиака:

Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:

Также возможно образование Na2NH, Na3N.

При взаимодействии аммиака с алюминием образуется нитрид алюминия:

2NH3 + 2Al → 2AlN + 3H2

Пероксид водорода также окисляет аммиак до азота:

2NH3 + 3CuO → 3Cu + N2 + 3H2O

Соли аммония

Способы получения солей аммония

2. Соли аммония также получают в обменных реакциях между солями аммония и другими солями.

Химические свойства солей аммония

NH4Cl ⇄ NH4 + + Cl –

Соли аммония реагируют с щелочами с образованием аммиака.

NH4Cl + KOH → KCl + NH3 + H2O

Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.

Если соль содержит анион-окислитель, то разложение сопровождается изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:

При температуре 250 – 300°C:

При температуре выше 300°C:

Разложение бихромата аммония («вулканчик»). Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):

Окислительхром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду. Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив. Температура плавления – почти 2300 градусов. Оксид хрома – очень устойчивое вещество, не растворяется даже в кислотах. Благодаря устойчивости и интенсивной окраске окись хрома используется при изготовлении масляных красок.

Видеоопыт разложения дихромата аммония можно посмотреть здесь.

Оксиды азота

Оксиды азотаЦветФазаХарактер оксида
N2O Оксид азота (I), закись азота, «веселящий газ»бесцветныйгазнесолеобразующий
NO Оксид азота (II), закись азота, «веселящий газ»бесцветныйгазнесолеобразующий
N2O3 Оксид азота (III), азотистый ангидридсинийжидкостькислотный
NO2 Оксид азота (IV), диоксид азота, «лисий хвост»бурыйгазкислотный (соответствуют две кислоты)
N2O5 Оксид азота (V), азотный ангидридбесцветныйтвердыйкислотный

Оксид азота (I)

Строение молекулы оксида азота (I) нельзя описать методом валентных связей. Так как оксид азота (I) состоит из двух, так называемых резонансных структур, которые переходят одна в другую:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Общую формулу в таком случае можно задать, обозначая изменяющиеся связи в резонансных структурах пунктиром:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Получить оксид азота (I) в лаборатории можно разложением нитрата аммония:

Химические свойства оксида азота (I):

N2O + Mg → N2 + MgO

Еще пример : оксид азота (I) окисляет углерод и фосфор при нагревании:

2. При взаимодействии с сильными окислителями N2O может проявлять свойства восстановителя.

Оксид азота (II)

Оксид азота (II) – это несолеобразующий оксид. В нормальных условиях это бесцветный ядовитый газ, плохо растворимый в воде. На воздухе коричневеет из-за окисления до диоксида азота. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

Способы получения.

1. В лаборатории оксид азота (II) получают действием разбавленной азотной кислоты (30%) на неактивные металлы.

Также NO можно получить при окислении хлорида железа (II) или иодоводорода азотной кислотой:

3FeCl2 + NaNO3 + 4HCl → 3FeCl3 + NaCl + NO + 2H2O

2HNO3 + 6HI → 2NO + I2 + 4H2O

2. В природе оксид азота (II) образуется из азота и кислорода под действием электрического разряда, например, во время грозы:

3. В промышленности оксид азота (II) получают каталитическим окислением аммиака :

Химические свойства.

Оксид азота (II) легко окисляется под действием хлора или озона:

2NO + Cl2 → 2NOCl

Оксид азота (III)

Способы получения: м ожно получить при низкой температуре из оксидов азота:

Химические свойства:

1. Оксид азота (III) взаимодействует с водой с образованием азотистой кислоты:

2. Оксид азота (III) взаимодействует с основаниями и основными оксидами :

Оксид азота (IV)

Оксид азота (IV) — бурый газ. Очень ядовит! Для NO2 характерна высокая химическая активность.

Способы получения.

1. Оксид азота (IV) образуется при окислении оксида азота (I) и оксида азота (II) кислородом или озоном:

2. Оксид азота (IV) образуется при действии концентрированной азотной кислоты на неактивные металлы.

3. Оксид азота (IV) образуется также при разложении нитратов металлов, которые в ряду электрохимической активности расположены правее магния (включая магний) и при разложении нитрата лития.

Химические свойства.

1. Оксид азота (IV) реагирует с водой с образованием двух кислот — азотной и азотистой:

Поскольку азотистая кислота неустойчива, то при растворении NO2 в теплой воде образуются HNO3 и NO:

2. При растворении оксида азота (IV) в щелочах образуются нитраты и нитриты:

В присутствии кислорода образуются только нитраты:

4. Оксид азота (IV) димеризуется :

Оксид азота (V)

N2O5 – оксид азота (V), ангидрид азотной кислоты – кислотный оксид.

Получение оксида азота (V).

1. Получить оксид азота (V) можно окислением диоксида азота :

2. Еще один способ получения оксида азота (V) – обезвоживание азотной кислоты сильным водоотнимающим веществом, оксидом фосфора (V) :

Химические свойства оксида азота (V).

1. При растворении в воде оксид азота (V) образует азотную кислоту:

2. Оксид азота (V), как типичный кислотный оксид, взаимодействует с основаниями и основными оксидами с образованием солей-нитратов.

Еще пример : оксид азота (V) реагирует с оксидом кальция:

4. Оксид азота (V) легко разлагается при нагревании (со взрывом):

Азотная кислота

Строение молекулы и физические свойства

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Способы получения

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

1 стадия. Каталитическое окисление аммиака.

2 стадия. Окисление оксида азота (II) до оксида азота (IV) кислородом воздуха.

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

Химические свойства

1. Азотная кислота практически полностью диссоциирует в водном растворе.

Еще пример : азотная кислота реагирует с гидроксидом натрия:

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов).

4. Азотная кислота частично разлагается при кипении или под действием света:

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

С алюминием, хромом и железом на холоду концентрированная HNO3 не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 : 3 (по объему):

HNO3 + 3HCl + Au → AuCl3 + NO + 2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

Азотная кислота
КонцентрированнаяРазбавленная
с Fe, Al, Crс неактивными металлами и металлами средней активности (после Al)с щелочными и щелочноземельными металлами с неактивными металлами и металлами средней активности (после Al)с металлами до Al в ряду активности, Sn, Fe
пассивация при низкой Тобразуется NO2образуется N2O образуется NO образуется N2

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3 обычно восстанавливается до NO или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

7. Концентрированная а зотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Еще пример : азотная кислота окисляет йодоводород:

Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.

3С + 4HNO3 → 3СО2 + 4NO + 2H2O

При нагревании до серной кислоты:

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция»).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Азотистая кислота

Азотистая кислота HNO2 — слабая, одноосновная, химически неустойчивая кислота.

Получение азотистой кислоты.

Азотистую кислоту легко получить вытеснением из нитритов более сильной кислотой.

AgNO2 + HCl → HNO2 + AgCl

Химические свойства.

1. Азотистая кислота HNO 2 существует только в разбавленных растворах, при нагревании она разлагается :

без нагревания азотистая кислота также разлагается :

2HNO2 + 2HI → 2NO + I2 + 2H2O

Азотистая кислота также окисляет иодиды в кислой среде:

Азотистая кислота окисляет соединения железа (II):

Кислород и пероксид водорода также окисляют азотистую кислоту:

Соединения марганца (VII) окисляют HNO2:

Соли азотной кислоты — нитраты

Нитраты металлов — это твердые кристаллические вещества. Большинство очень хорошо растворимы в воде.

Видеоопыт разложения нитрата калия можно посмотреть здесь.

какую степень окисления имеет no3. картинка какую степень окисления имеет no3. какую степень окисления имеет no3 фото. какую степень окисления имеет no3 видео. какую степень окисления имеет no3 смотреть картинку онлайн. смотреть картинку какую степень окисления имеет no3.

Исключения:

Нитрит железа (II) разлагается до оксида железа (III):

Нитрат марганца (II) разлагается до оксида марганца (IV):

Соли азотистой кислоты — нитриты

Соли азотистой кислоты устойчивее самой кислоты, и все они ядовиты. Поскольку степень окисления азота в нитритах равна +3, то они проявляют как окислительные свойства, так и восстановительные.

Кислород, галогены и пероксид водорода окисляют нитриты до нитратов:

При окислении йодидов или соединений железа (II) нитриты восстанавливаются до оксида азота (II):

При взаимодействии с очень сильными восстановителями ( алюминий или цинк в щелочной среде) нитриты восстанавливаются максимально – до аммиака:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *