какую роль играет вода в жизнедеятельности организмов в формировании видового состава биоценозов
Воздействие воды на живые организмы
Возможность существования жизни на Земле возникла благодаря уникальной роли воды как универсального растворителя; вода достаточно хорошо растворяет как органические, так и неорганические вещества, что обеспечивает высокую скорость протекания биохимических реакций внутри живых организмов и химических реакций в окружающей среде. Уникальные свойства позволили воде играть в клетке роль не только растворителя, но и терморегулятора, а также поддерживать структуру клеток и осуществлять транспортировку веществ и т. д. У наземных животных содержание воды в организме составляет от 45 до 95%.
Роль воды в клеточных процессах
Вода участвует в реакции фотосинтеза – главного процесса, создавшего на Земле органическое вещество. В ходе фотосинтеза водород из состава воды входит в структуру органических веществ, а свободный кислород выделяется в атмосферу. Вода участвует в гидролизе – разрушении органических веществ с присоединением воды. Например, гидролиз жиров, белков и углеводов происходит при переваривании пищи, а при гидролизе АТФ (аденозинтрифосфат – вещество в ядре клетки, играющее исключительно важную роль в обмене энергии и веществ в организмах) выделяется энергия, обеспечивающая жизнедеятельность клеток
В жидком состоянии вода практически не сжимаема и поэтому служит гидростатическим скелетом клетки. За счёт осмоса вода создаёт избыточное давление внутри растительных клеток, обеспечивающее упругость клеточной стенки и поддержание её формы. У растений благодаря капиллярному эффекту, характерному для воды, осуществляется подъём по сосудам от корня к другим частям растворённых в воде минеральных солей. Выведение, перемещение продуктов обмена веществ в растворённом виде у животных также происходит благодаря свойствам воды.
Роль воды в терморегуляции
Вследствие своей большой теплоёмкости вода обеспечивает примерное постоянство температуры внутри клетки. Вода может переносить большое количество теплоты, отдавая её там, где температура тканей ниже, и забирая там, где температура более высокая. Также при испарении воды происходит значительное охлаждение из-за того, вода обладает высокой удельной теплотой испарения, на которое расходуется много энергии.
Вода – единственное вещество на Земле (кроме ртути), для которого зависимость удельной теплоёмкости от температуры имеет минимум около +37°С. Вследствие этого нормальная температура большинства теплокровных животных находится в диапазоне температур 32–39°С.
Вода как абиотический фактор
Абиотические факторы – это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы.
Наземные животные окружены воздухом, содержание воды в котором ниже, чем в их собственном теле; поэтому все они обычно теряют воду путём испарения, а также при выведении с водой конечных продуктов метаболизма. Дефицит влаги – одна из существенных особенностей наземно-воздушной среды. Вся эволюция наземных организмов происходила в условиях приспособления к добыванию и сохранению влаги.
Режимы влажности воздуха на суше очень разнообразны, велика также суточная и сезонная изменчивость содержания водяных паров в атмосфере. Режим выпадения осадков, наличие водоёмов, запасов почвенной влаги и т. п. – всё это привело к развитию у наземных организмов способности адаптироваться к различным режимам водообеспечения.
По отношению к воде (влажности) выделяют ряд экологических групп растений: гидатофиты (водные растения, целиком или почти целиком погруженные в воду); гидрофиты (наземно-водные растения, частично погруженные в воду); гигрофиты (наземные растения, живущие в условиях повышенной влажности воздуха); мезофиты (растения, живущие в условиях среднего увлажнения) и ксерофиты (растения, произрастающие в местах с недостаточным увлажнением).
Среди основных механизмов адаптаций растений к водному фактору можно выделить следующие: уменьшение потери воды (толстая восковая кутикула, опушённые листья, листья превращены в колючки или иглы, погруженные устьица, сбрасывание листьев); увеличение поглощения воды (длинные корни, обширная корневая система); запасание воды; переживание неблагоприятного периода (в виде семян, луковиц или клубней).
Животные получают воду при потреблении жидкости и сочной пищи и в результате метаболизма (окисление и расщепление жиров, белков и углеводов). Удаление (потери) воды происходит путём испарения также через покровы или со слизистых оболочек дыхательных путей, а также путем выведения с продуктами метаболизма. Величина испарения воды зависит от влажности воздуха. Многие животные могут совершенно обходиться без питьевой воды, получая влагу другими способами. К этой группе относятся, например, многие пустынные животные: антилопы, суслики, тушканчики, черепахи, различные насекомые – воду они получают, поедая зелёные растения.
По отношению к влаге также выделяют несколько экологических групп животных: гигрофилы (влаголюбивые виды); ксерофилы (сухолюбивые виды); мезофилы (виды, занимающие промежуточное положение).
Регулирование водного баланса осуществляется поведенческими, морфологическими и физиологическими адаптациями. В условиях недостатка влаги большое значение у животных имеет использование метаболической воды, образующейся в результате окисления жиров и некоторых других веществ. Экономия воды при выведении продуктов метаболизма достигается всасыванием как можно большего её количества в пищеварительной и выделительной системах (в зависимости от условий среды). Испарение воды (потоотделение через потовые железы или через слизистую), связанное с терморегуляцией, также обеспечивает регулирование водного обмена, но может быть причиной истощения водных ресурсов организма.
Биосфера обладает самым незначительным суммарным объёмом из всех видов воды, включенных в мировой водный запас. Биологическая вода содержится в тканях растений, животных, микроорганизмов, однако водообмен в биосфере происходит наиболее интенсивно, на порядки быстрее, чем в окружающей организмы среде.
Разнообразие организмов в водах. Бактериальные сообщества
Токсичность, биоиндикация, биотестирование
Под токсичностью понимают способность веществ вызывать нарушения физиологических функций организма, что в свою очередь приводит к нарушению метаболизма или, в тяжелых случаях, к гибели. Степень токсичности веществ принято характеризовать величиной токсической дозы – количеством вещества (отнесённым, как правило, к единице массы животного или человека), вызывающим определенный токсический эффект. Чем меньше токсическая доза, тем выше токсичность вещества. Различают средне смертельные (ЛД50), абсолютно смертельные (ЛД100), минимально смертельные (ЛД0-10) и другие дозы. Цифры в индексе отражают вероятность (%) летального исхода в группе подопытных организмов.
Существуют два принципиально разных направления изучения загрязнённости природных вод по их действию на живые организмы: биоиндикация и биотестирование. Биоиндикация – оценка качества воды по живущим в ней организмам (видовому составу, разнообразию, численности), биотестирование – оценка качества воды по реакции организма (организмов) в стандартизованных условиях лабораторного опыта (поведенческие реакции, выживаемость, плодовитость, продукция).
Биоиндикация осуществляется на различных уровнях организации биосферы: макромолекулы, клетки, органа, организма, популяции, биоценоза. Поиск обобщённых показателей оценки состояния природных объектов является одной из ведущих современных проблем. Однако к настоящему времени отсутствует единая, достаточно полная и сбалансированная комплексная методика оценки качества воды. На основе гидробиологических индексов созданы многие классификации качества вод.
В последние десятилетия для оценки состояния водных объектов всё шире применяется биотестирование.
Биотестирование представляет собой методический приём оценки качества окружающей среды по реакциям или характеристикам подопытных организмов с известными и поддающимися учёту характеристиками. Для целей биотестирования применяются биологические системы любого уровня сложности (биохимическая система, выделенный элемент клеточной структуры или орган, функциональные или структурные элементы целого организма, выборки, популяции и сообщества организмов). Показателем токсического действия служат степень изменения какого-либо из параметров, определенного биохимическими или биофизическими методами.
При проведении опытов по биотестированию необходимо иметь в виду, что отсутствие проявлений какого-либо эффекта токсичности при испытаниях проб не свидетельствует, однако, об отсутствии потенциально токсичных компонентов в их составе. В высокосапробных (содержащих большие концентрации органических веществ) водах присутствие токсикологически нейтральных органических соединений приводит к связыванию потенциальных токсикантов, например, тяжёлых металлов. В результате происходит известная в экотоксикологии «маскировка» токсичности. Это явление можно рассматривать в качестве врéменного благоприятного эффекта от смешения стоков разной химической природы. Однако не исключено, что может произойти разложение связывающих компонентов, что повысит биодоступность токсикантов с соответствующими биологическими и экологическими последствиями.
Влияние воды на биоценозы
Водные организмы, реагируя на поступление загрязняющих веществ извне, способны перестраивать свои биоценозы таким образом, чтобы снять эту нагрузку и привести качество воды в исходное состояние. Этот процесс, называемый самоочищением водных объектов, наблюдается повсеместно. Однако загрязнение не должно превышать некоего критического уровня, после достижения которого экосистема переходит в угнетённое состояние и частично или полностью утрачивает способность обеспечивать самоочищение водного объекта. Процессы, происходящие в природных системах, активно используются человеком в очистных сооружениях с блоками биологической очистки.
Время перестройки водных биоценозов может изменяться от суток (и даже часов) до десятилетий. Наиболее мобильной частью водных экосистем являются бактериальные сообщества, которые в течение часов могут изменить свою продукцию и видовую структуру, приспосабливаясь к новым условиям.
Так, загрязнение органическим веществом водного объекта приводит к уменьшению видового разнообразия гидробионтов, к возрастанию роли консументов 1-го порядка, среди которых преобладают глотатели и собиратели детрита, и снижению роли консументов 2-го порядка (хищного зообентоса). В целом, органическое загрязнение приводит к преобладанию детритных пищевых цепей, резкому увеличению скорости деструкции органического вещества, значительному отклонению её от равновесного состояния.
Изменения в структуре биоценозов в связи со сменой нагрузки могут происходить в течение различных периодов времени. Они происходят по разным причинам – как естественным (ураганы, бурные паводки, пожары в бассейне реки), так и антропогенным (загрязнение, подкисление водной среды и т.п.). Изменение всегда направлено на утилизацию поступившего «излишка» органики или на трансформацию органического токсиканта до соединений, безвредных для гидробионтов. При снижении действия дополнительного фактора нагрузки структура биоценозов может возвращаться к прежнему состоянию или стать стабильной, но качественно иной.
Какую важную роль играет вода в биосфере?
Что означает слово «экология»? Кто впервые предложил использовать понятие «экология»?
Экология – это слово, образованное от древнегреческого, в переводе обозначает жилище, обиталище. Экологией называют науку, изучающую взаимоотношения всех животных организмов между собой и окружающей их средой. Впервые этот термин был предложен в 1866 году немецким биологом Эрнстом Геккелем.
Что составляет предмет изучения биологической, глобальной, социальной экологии?
Биологическая экология рассматривает условия существования живых организмов и взаимосвязи между организмами и средой, в которой они обитают.
Глобальная экология призвана исследовать эволюцию биосферы в связи с влиянием на нее антропогенных, космических, геофизических и других воздействий.
Предметом исследования экологии человека являются вопросы сохранения и развития здоровья людей с учетом связей человека с окружающей его природной и социальной средой. Социальная экология изучает систему «природа — обществом, перспективы ее устойчивого развития, гармонизации.
Почему принято говорить о единстве организма и среды?
Каждый организм может существовать только при условии постоянной тесной связи со средой. Интенсивность метаболизма в экосистеме и его относительная стабильность определяются в значительной мере потоком солнечной энергии и перемещением химических веществ. Отдельные организмы не только приспособлены к физической среде, но и своим совместным действием в рамках экосистемы приспосабливают геохимическую среду к своим биологическим потребностям. Из простых веществ, содержащихся в море, в результате деятельности животных (кораллов и др.) и растений построены целые острова. Состав атмосферы также регулируется организмами.
Укажите формы приспособления растений к условиям освещения.
По требованию к условиям освещения принято делить растения на следующие экологические группы:
1) светолюбивые (световые), или гелиофиты, – растения открытых, постоянно хорошо освещаемых местообитаний;
2) тенелюбивые (теневые), или сциофиты, – растения нижних ярусов тенистых лесов, пещер и глубоководные растения; они плохо переносят сильное освещение прямыми солнечными лучами;
3) теневыносливые, или факультативные гелиофиты, – могут переносить большее или меньшее затенение, но хорошо растут и на свету; они легче других растений перестраиваются под влиянием изменяющихся условий освещения.
Какую важную роль играет вода в биосфере?
Вода имеет ключевое значение в создании и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды.Вода также является главным фактором, определяющим климат на поверхности Земли.Природные воды находятся в сложных обратимых взаимоотношениях с организмами, горными породами, атмосферой. Происходящий в природе круговорот самоочищающейся воды — вечное движение, обеспечивающее жизнь на Земле, — оценивают в 483 000 км/год. Присутствующий в атмосфере водяной пар играет роль фильтра для солнечной радиации, а вода на земной поверхности служит своего рода мощной буферной системой, смягчающей действие экстремальных температур.Главная роль воды состоит в том, что она является средой и источником водорода для жизненных процессов. Практически все органические вещества биосферы представляют собой продукт фотосинтеза, при котором растения используют световую энергию для соединения двуокиси углерода с водой. Без воды, как известно, фотосинтез не может происходить. Вода — единственный источник кислорода, выделяемый в атмосферу при фотосинтезе. Вода необходима для биохимических и биофизических процессов, обеспечивающих возможность жизни на Земле.Вода составляет 89— 90% массы растений и 75% массы животных. В составе человеческого тела воды 65%. Вода служит постоянным участником интенсивных биохимических процессов, происходящих в человеческом организме. Ни один жизненный процесс не совершается без нее. Нарушение водного баланса ведет к серьезным сдвигам в организме человека.
Биоценоз – характеристика, виды, организмы, примеры и значение
Биоценозом называют совокупность живых существ, которые населяют определенную территорию, отличающуюся от других по ряду показателей. Все организмы имеют одинаковые потребности в условиях окружающей среды. Жизнь биоценоза представляет собой иерархические отношения, в которых каждый из участников играет свою роль.
Видовое разнообразие биоценоза
Биологические единства формируются в процессе совместного существования организмов на протяжении долгого времени. Видовой состав каждого биоценоза уникален. Его разнообразие зависит от возраста: чем он моложе, тем меньше в нем видов организмов. Видовое разнообразие наблюдается в сложившихся и зрелых биоценозах.
Структура биоценоза
Видовая структура характеризует разнообразие и численность представителей разных групп в конкретном биологическом единстве. Различают богатые и бедные биоценозы. В любом из них есть доминанты, формирующие его внешний облик. Доминантные виды, без которых невозможно существование остальных организмов, называются эдификаторами. С их сокращением меняется сам биоценоз.
Пространственная структура
Пространственная структура характеризуется распределением растений. Ярусами называют вертикальную структуру сообщества, каждый из них обладает неповторимыми характеристиками. Древесный ярус представлен высокими деревьями. Их листва хорошо пропускает солнечные лучи, которые ловит второй ярус деревьев, подпологовый. В условиях затенения образуется ярус подлеска, представителями которого являются кустарники и низкорослые деревца. Ярус подроста представлен молодыми деревьями, которые в перспективе могут вырасти до первого яруса. Лесные травы и многолетние растения формируют травяно-кустарничковый ярус. Почву покрывает собой мохово-лишайниковй ярус. Пространственная структура растений влияет на видовой состав животных.
Экологическая структура
Экологическая структура выражена определенным соотношением экологических групп организмов, которые выполняют в биоценозе определенные функции. Количество всех живых существ зависит от неорганической среды.
Трофическая структура
Трофическая структура характеризуется пищевым взаимоотношением различных видов. Автотрофные организмы питаются органическими веществами, которые сами и создают. Гетеротрофы используют в качестве источника энергии готовые органические соединения животного и растительного происхождения.
Состав биоценоза
Биологическое единство формируется на основе взаимодействия фитоценоза, зооценоза и микробиоценоза. Фитоценоз представляет основу биоценоза, в нем протекают процессы создания и переработки органического вещества. От фитоценоза зависит облик, структура, климат и видовое разнообразие конкретного единства. В подобном единстве существуют положительные и отрицательные взаимодействия. Главным качеством фитоценоза является устойчивость во времени: он способен поддерживать собственное существования без постороннего вмешательства.
Совокупность различных видов живых существ, обитающих в одном биологическом сообществе, называют зооценозом. Ему тоже отведена важная экологическая роль. Зооценоз участвует в ускорении преобразования энергии, сохраняет структуру фитоценоза. У каждого вида животных есть определенная функция.
Под микробиоценозом подразумевают совокупность всех микроорганизмов, которые существуют в условиях одного сообщества. Сюда входят существа как растительного, так и животного происхождения.
Какие организмы входят в состав биоценоза
Фитоценоз чаще всего представлен как высшими, так и низшими растениями. Видовое богатство обуславливают климатические условия. Общее количество организмов зависит от внешних условий и возраста самого биоценоза. Все участники фитоценоза действуют друг на друга, поэтому совместная жизнь накладывает отпечаток на внешний облик единства.
Чем биоценоз отличается от агроценоза и экосистемы
Агроценоз — это система, которую создал человек для своих нужд. Видовой состав и отношения между организмами в биоценозе формируются на протяжении долгого времени. В агроценозе всегда господствует искусственный отбор. Люди создают искусственные единства для того, чтобы вырастить сельскохозяйственные культуры или животных. Биоценозы получают извне только солнечную энергию, продуктивность агроценоза всегда можно повысить за счет мелиорации, внесения удобрений.
Научная литература дает схожее объяснение терминам “биоценоз” и “экосистема”, поэтому их часто взаимозаменяют. Жизнедеятельность организмов в каждой экосистеме возможна при постоянной выработке энергии. Различают простые и сложные, искусственно созданные и природные экосистемы.
Примеры биоценоза
Возникший естественным путем луг отличается однородным рельефом. Доминирующими организмами в нем являются травы. Первый ярус представлен низкорослыми многолетниками, в том числе клевером, будрой, мышиным горошком. На втором ярусе растут злаковые культуры: мятлик, тимофеевка, тысячелистник, кострец безостый.
Большинство растений являются медоносами, поэтому на лугах летом много пчел, бабочек и шмелей. Зеленью питаются насекомые, в том числе гусеницы, кузнечики и жуки. Земноводные и пресмыкающиеся животные служат источником пищи для хищных птиц и крупных млекопитающих.
Роль биоценоза
Биологические сообщества благодаря постоянному превращению энергии обеспечивают круговорот веществ в природе. Крупные биоценозы являются источником кислорода, задерживают вредные газы и пыль. Биоценозы водоемов — это источники питьевой воды. Антропогенная деятельность приводит к разрушению естественных биологических единств. На их восстановления уходят века. Человек страдает от таких катастроф в первую очередь.
Смена биоценозов. Воздействие факторов среды на организмы
Вопрос 1. Какие признаки вы можете предложить для характеристики биогеоценоза?
Характеристика биогеоценоза:
1) видовой состав;
2) плотность популяции;
3) интенсивность воздействия абиотических и биотических факторов.
Вопрос 2. Как на жизнедеятельности организмов проявляется взаимодействие абиотических факторов среды?
По отношению к факторам среды различают виды теплолюбивые и холодоустойчивые, влаго- и сухолюбивые, приспособленные к высокой и низкой солености воды. Отклонение интенсивности одного какого либо фактора от оптимальной величины может сузить пределы выносливости к другому.
Правило Либиха
Фактор, находящийся в недостатке или избытке по сравнению с оптимальной величиной, называют ограничивающим, поскольку он делает невозможным процветание вида в данных условиях.
Например, низкая влажность делает экваториальные пустыни малонаселенными, хотя по остальным факторам (освещенность, температура, наличие микроэлементом) показатели удовлетворительны.
В опрос 3. В чем заключается негативное воздействие ионизирующего излучения на живые организмы?
Наиболее губительное действие ионизирующее излучение оказывает на более высокоразвитые и сложные организмы, причем человек отличается особой чувствительностью к воздействию. Большие дозы, получаемые организмом за короткое время (минуты, часы), называют острыми в противоположность хроническим дозам, которые организм мог бы выдержать на протяжении всего жизненного цикла. Любое превышение уровня излучения в среде над фоновым или даже естественный высокий фон может повысить частоту мутаций. У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра. У животных такой простой зависимости нет; для них наибольшее значение имеет чувствительность определенных органов и систем. Так, млекопитающие чувствительны даже к низким дозам вследствие легкой повреждаемости облучением костного мозга и эпителия кишечника. Радиоактивные вещества могут накапливаться в почве, воде, воздухе и в телах самих живых организмов. Передаваться и аккумулироваться при передаче по пищевой цепи.
Вопрос 4. Каково значение для устойчивости биоценоза его видового разнообразия?
Чем богаче видовой состав биоценоза, тем устойчивее сообщество в целом.
Вопрос 5. Что такое экологическая пирамида и каковы направления отбора на каждой ее ступени?
Правило экологической пирамиды
Масса каждого последующего звена в трофической цепи прогрессивно уменьшается.
Это происходит потому, что в каждом звене пищевой цепи при каждом переносе энергии 80—90% ее теряется, рассеиваясь в форме тепла. В среднем из 1 тыс. кг зелёных растений образуется 100 кг тела травоядных животных. Хищники могут поглотить из этого количества пищи только 10 кг своего тела. Соответственно и количество животных на каждой последующей ступени пирамиды меньше. Графически это правило нашло отражение в экологических пирамидах. Выделяют пирамиды численности, отражающие число особей на каждом этапе пищевой цепи, пирамиды биомассы, отражающие количество синтезированного на каждом уровне органического вещества, и пирамиды энергии, демонстрирующие количество энергии в пище на каждой ступени.
Вопрос 6. Назовите причины смены биоценозов?
В природе менее устойчивые биогеоценозы со временем сменяются более устойчивыми. Их смена определяется тремя факторами:
1) упорядоченным процессом развития сообщества — установлением в нем статичных взаимоотношений между видами;
2) изменением климатических условий;
3) изменением окружающей среды под влиянием жизнедеятельности организмов, составляющих сообщество.