какую роль играет блок питания в компьютере
Как работает блок питания компьютера
Содержание
Содержание
Большинство рассказов про блоки питания начинается с подчеркивания их важнейшей и чуть ли не главенствующей роли в составе компьютера. Это не так. БП — просто один из компонентов системы, без которого она не будет работать. Он обеспечивает преобразование переменного напряжения из сети в необходимые для работы ПК стабилизированные напряжения. Все блоки можно разделить на импульсные и линейные. Современные компьютерные блоки выполнены по импульсной схеме.
Линейные блоки питания
Сетевое напряжение поступает на первичную обмотку трансформатора, а со вторичной мы снимаем уже пониженное до нужных пределов переменное напряжение. Далее оно выпрямляется, следом стоит фильтр (в данном случае нарисован обычный электролитический конденсатор) и схема стабилизации. Схема стабилизации необходима, так как напряжение на вторичной обмотке напрямую зависит от входного напряжения, а оно только по ГОСТу может меняться в пределах ±10 %, а в реальности — и больше.
Основные достоинства линейных блоков питания — простая конструкция и низкий уровень помех (поэтому аудиофилы часто используют их в усилителях). Недостаток таких БП — габариты и невысокий КПД. Собрать БП мощностью 400 и более Вт по такой схеме возможно, но он будет иметь устрашающие размеры, вес и стоимость (медь нынче дорогая).
Импульсные блоки питания
Далее в тексте сократим название «импульсный источник питания» до ИИП. Такие блоки питания более сложны, но гораздо более компактны. Для примера на фото ниже показана пара трансформаторов.
Слева — отечественный сетевой с номинальной мощностью 17 Вт, справа — выпаянный из компьютерного БП мощностью 450 Вт. Кстати, отечественный еще и весит раз в 5 больше.
В ИИП сетевое напряжение сначала выпрямляется и сглаживается фильтром, а потом опять преобразуется в переменное, но уже гораздо более высокой частоты (несколько десятков килогерц). А затем оно понижается трансформатором.
Так выглядит плата вживую:
Фильтр
Фильтр в блоке питания двунаправленный: он поглощает разного рода помехи: как созданные самим БП, так и приходящие из сети. В самых бюджетных БП предприимчивые китайцы вместо дросселей распаивали перемычки (или, как их называют ремонтники, «пофигисторы»), а конденсаторы не ставили вообще. Чем это плохо: помехи будут влиять на другую аппаратуру, подключенную к данной сети, а напряжение на выходе получится с «мусором». Сейчас таких блоков уже немного. Встречается также экономия на размерах: фильтр как бы есть, но работать он будет кое-как.
Фильтр работает эффективнее, когда он находится как можно ближе к источнику помех. Поэтому часть фильтра зачастую располагают прямо на сетевой розетке.
На картинке изображен фильтр в минимальной комплектации. F1 — предохранитель, VDR1 — варистор, N1 — термистор, Х2 — Х-конденсатор, Y1 — Y-конденсаторы, L1 — синфазный дроссель. Резистор R1 служит для разряда конденсатора Х2.
Еще одна опасная для жизни пользователей экономия — когда вместо специальных Х- и Y-конденсаторов ставят обычные. Впрочем, встречается она редко. Автор видел такое всего один раз и очень давно. Экономия очень незначительна, а риск для пользователей очень велик, так как, например, Y-конденсаторы подключаются одной «ногой» на фазу, а другой — на корпус. В случае пробоя конденсатора можно получить опасное для жизни напряжение на корпусе.
Корректор коэффициента мощности
Не будем вдаваться в подробности, поскольку статьи на эту тему уже были: раз и два. Скажем только, что корректор коэффициента мощности должен быть во всех компьютерных БП, желательно активного типа (A-PFC).
Плюсы корректора:
1) Снижается нагрузка на сеть.
2) Повышенный диапазон входного напряжения (чаще всего, но не всегда).
3) Улучшение работы инвертора.
Минусы:
1) Увеличивается сложность конструкции, соответственно, снижается надежность.
2) Возможны проблемы при работе с UPS.
Преобразователь
Обычно используется мостовая или полумостовая схема. Чаще всего встречается полумост. На картинке ниже он изображен в упрощенном виде.
Как видно по схеме, транзисторы открываются поочередно с небольшой задержкой, чтобы не случилось ситуации, когда оба окажутся открыты. В таком случае получаем на первичной обмотке переменный ток высокой частоты, а на вторичной — уже пониженный до нужной величины.
В топовых блоках применяются резонансные преобразователи (LLC), которые имеют более высокий КПД, но они технически сложнее.
Выпрямление и стабилизация выходных напряжений
По способу выпрямления и стабилизации блоки можно поделить на четыре группы:
1) Выпрямление с помощью диодов Шоттки (полупроводниковый прибор, у которого при прямом включении падение напряжения будет в три-четыре раза меньше, чем у обычных кремниевых), групповая стабилизация.
Второй имеет меньший размер. Это отдельная стабилизация канала 3,3 В. Сейчас такие БП часто встречаются в основном в бюджетном сегменте. Например:
Вот, например, фото такого блока. Очень бюджетно:
2) Выпрямление с помощью диодов Шоттки, раздельная стабилизация на магнитных усилителях. Внешне их можно отличить по наличию в выходных цепях трех крупных дросселей. Данная схема в современных БП не используется: ее вытеснили более производительные решения. Пик такой схемотехники — начало 2000-х годов.
3) Выпрямление канала 12 В с помощью диодов Шоттки. Напряжения 5 В и 3,3 В получают из 12 В с помощью преобразователей DC-DC. Развитие электроники позволило производить недорогие и эффективные преобразователи такого рода. БП будет ненамного эффективнее обычных с групповой стабилизацией (так как нагрузка на низковольтные каналы небольшая), но стабильность напряжений выше.
4) Канал 12 В — синхронный выпрямитель на MOSFET (полевой транзистор с изолированным затвором), остальные напряжения получают при помощи преобразователей DC-DC.
Это наиболее эффективная и точная, но и более сложная схемотехника. В соответствии с ней делают все топовые блоки питания. Отклонения выходных напряжений у таких блоков укладываются в один-два процента при допустимых 5 %.
Дежурный источник питания
Представляет из себя маломощный ИИП с напряжением на выходе 5 В. Он работает все время, пока БП подключен к сети. Обеспечивает питание микросхем внутри блока и питание логики на материнской плате, а также подает питание на порты USB при выключенном компьютере.
Супервизор
Микросхема обеспечивает функционирование основных защит в блоке (превышения выходных напряжений, превышение выходного тока и прочее), управляет включением и выключением блока по сигналам с материнской платы.
Теперь вы представляете, как обстоит дело со схемотехникой в наши дни. А что нас ждет в будущем? В мае 2020 года компания Интел выпустила новый ATX12VO (12 V Only) Desktop Power Supply Disign Guide в котором описывает совершенно новые БП: у блока осталось только одно напряжение — 12 В. Нужные напряжения будет преобразовывать материнская плата. Дежурный источник питания с напряжения 5 В перейдет на 12 В. При этом размеры блоков АТХ остаются такими же. Это сделано для того, чтобы сохранить совместимость со старыми корпусами. Правда, пока производители не торопятся переходить на этот формфактор.
Приветствую, уважаемые читатели. Столкнулся с такой проблемой: с недавнего времени мой компьютер стал тормозить. И это совпало как раз с понижением напряжения в электрической сети. А заметил я это по накалу ламп освещения. Так что все подозрения на вирусы и прочие неполадки я сразу отбросил.
Просто мой старенький блок питания не стал справляться, ему не хватало сил вытянуть напряжения до нужного уровня. Вот отсюда и пошли проблемы с системой. И в этой статье я поделюсь с вами некоторыми мыслями о блоках питания в компьютере.
Казалось бы, маленький компонент системного блока (это же не видеокарта), зачем ему уделять целую статью? Все просто: очень многие не относятся с должным «уважением» к источнику питания своего ПК, что приводит к неприятным последствиям. Поэтому давайте разбираться, зачем нужен блок питания в компьютере и как правильно его выбрать.
Что собой представляет блок питания и для чего служит
Блок питания (он же БП) – источник питания в системном блоке, который отвечает за обеспечение энергией остальных компонентов. От БП во многом зависит долговечность и стабильность работы всей системы. Помимо этого, компьютерный блок питания препятствует потере информации с персонального компьютера, предотвращая скачки энергии.
Уверен, известно каждому человеку мало-мальски знакомому с техникой, что персональный компьютер работает от розетки. Однако далеко не каждый пользователь в курсе, что компоненты системы не могут получать энергию напрямую.
Вот так плавно мы подошли к самому интересному: для чего нужен блок питания в ПК. По двум причинам:
Выбираем блок питания для компьютера
Конечно, куда интереснее выбирать для своего «товарища» дорогую видеокарту или внешний жёсткий диск, чем БП. Поэтому этот компонент часто покупается не в первую очередь, и так сказать, на последние деньги. Однако следует понимать: модель, у которой низкая мощность, может не потянуть современную видеокарту. Но не расстраивайтесь – БП не так уж много стоит. Итак, я расскажу вам, на что обратить внимание при покупке, а вы уже решите, какой выбрать.
Мощность
Как узнать, какая нужна мощность? К счастью пользователей, сегодня в интернете полно сервисов, которые помогут сделать расчёт, чтобы определить необходимую мощность для ваших компонентов. Рассчитать можно и самостоятельно, не так уж это и сложно. Достаточно сложить мощность всех компонентов вашей системы: материнская плата (50-100 Ватт); процессор (65-125 Ватт); видеокарта (50-200 Ватт); жёсткий диск (12-25 Ватт); ОЗУ (2-5 Ватт). Рекомендуется к получившемуся числу добавить 30% на случай перегрузок. Дерзайте!
Этому очень важному моменту частенько пользователи-новички не уделяют внимание. А надо бы. От коэффициента полезного действия зависит долговечность блока питания, а также расход электроэнергии. Дело в том, что БП принимает определённое количество энергии, но отдаёт уже меньшее, теряя часть. Производители решили эту проблему, разделив модели по классам: дорогие – более эффективные, дешёвые – будьте добры мириться с потерей энергии. Такая классификация осуществляется при помощи специальных наклеек: Bronze, Silver, Gold, Platinum (от лучшего к худшему).
Разъёмы
Итак, до подключения БП ещё далеко – определяемся с разъёмами. Здесь советов быть не может, особенно если вы уже выбрали основные компоненты для системы. Выбирайте набор разъёмов, отталкиваясь остального «железа». Если вы решили уделить блоку больше внимания, купив его в первую очередь, то присмотритесь к последним моделям, которые получили современные порты. Конечно, если финансы позволяют.
Стандартный набор разъёмов сегодня выглядит следующим образом: разъем для подключения материнской платы (24-пиновый), питание процессора (4-пиновый), оптические приводы и жёсткие диски (15-контактные SATA), питание видеокарты (хотя бы один 6-пиновый). Учтите, что если у вас очень старая система, то этот набор разъёмов может не подойти. Да и найти БП для устаревших компонентов очень проблематично.
Защита
Сталкиваясь с различными сбоями и проблемами, производители постепенно наделяли свой продукт всевозможной защитой от неблагоприятных воздействий. Сегодня список таких функций включает десятки наименований. Найдите на коробке или в приложенной инструкции, от чего защищена модель (скачки напряжения, сбои и так далее). Больше функций – лучше.
Шум и охлаждение
Да-да, эти характеристики взаимосвязаны. Маломощный БП греется не сильно, поэтому и система охлаждения у него состоит из небольшого вентилятора. Покупая модель для игровой системы, можете быть уверены, что нагреваться он будет не хуже печки (исключение – дорогие блоки известных производителей). Никуда не денешься и от шума, который издаёт мощный БП вкупе с остальными компонентами.
Современные производители предлагают модели с вентиляторами разного размера, самый распространённый – 120 мм. Есть ещё блоки на 80 мм и 140 мм. В первом варианте – сильный шум и слабое охлаждение, во втором – сложная замена вентилятора в случае выхода из строя.
Сегодня производители предлагают огромное количество блоков питания по самым разным ценам. Хотите сэкономить? Не вопрос, модели для офисной системы можно купить в районе 25-35 долларов. Добавляем ещё 25 долларов и у нас неплохой БП на 700 Ватт. Модели для мощных игровых систем могут стоить 250 долларов и выше.
Подключаем
Купить – купили, но ведь не для того, чтобы на полке лежал. Теперь его необходимо подключить. Самый простой вариант, если вы совсем не разбираетесь в компьютерах – друг, который сделает все за несколько минут. А если вы сами хотите собрать свою систему, то ждите новую статью, в которой мы подробно разберём подключение блока питания. На самом деле, сложного ничего нет. Главное – не пытайтесь впихнуть кабель в разъем, если он не хочет влезать.
Читайте другие интересные статьи в блоге, делитесь с друзьями. Удачи!
Дорогой читатель! Вы посмотрели статью до конца. Получили вы ответ на свой вопрос? Напишите в комментариях пару слов. Если ответа не нашли, укажите что искали или откройте содержание блога.
Из чего состоит блок питания компьютера — его функции и напряжение
При сборке компьютера блоку питания зачастую отводится минимум внимания. Он выбирается и финансируется по остаточному принципу. Этот подход в корне неверный. От источника питающих напряжений зависит очень многое. Чтобы подход к его подбору был осознанным, надо знать его назначение, и принцип работы составных частей устройства.
Что такое компьютерный блок питания и за он что отвечает
Компоненты компьютера не потребляют переменный ток из сети 220 вольт. Для питания им нужно постоянное напряжение разных уровней (от 3,3 вольта до 12 вольт), этот уровень должен быть стабильным, без перепадов. Также им нужна защита от сверхтока при неисправности. Все эти функции выполняет блок питания. Его основное назначение:
Также блок питания обеспечивает функции управления:
БП является важным компонентом компьютера или сервера. Если без некоторых составляющих вычислительная система может работать и, хотя бы в урезанном режиме, функционировать (без CD-ROM привода, без сетевой или звуковой плат, даже в отсутствие клавиатуры или мыши), то без блока питания она даже не запустится.
Какие разновидности ставят в ПК
Все компьютерные блоки питания строятся в соответствии со стандартом ATX. Предыдущий стандарт AT отжил свое еще в 90-е годы прошлого столетия. Основное отличие устройства импульсного блока питания компьютера ATX – наличие дежурного напряжения, которое позволяет включить компьютер без коммутации силовых цепей БП.
Строение импульсных источников питания (ИИП), описание схемотехнических решений будет дано ниже, а чтобы изначально сориентироваться в разновидностях БП, надо знать общие принципы классификации устройств.
В первую очередь ИИП для компьютеров делят по мощности, причем параллельно с развитием ПК этот параметр постоянно растет. Если 20 лет назад блока питания мощностью в 250 ватт было достаточно, чтобы закрыть любые потребности, то на текущий момент не всегда достаточно и 550 ватт.
Также многие обращают внимание на наличие сертификата 80PLUS, означающего повышенный КПД блока питания. С технической точки зрения это важно, но с экономической надо понимать, что разница в стоимости компенсирует выигрыш в электроэнергии не раньше, чем за несколько десятков лет. Хотя имеется еще один момент – БП, сертифицированные по высшим категориям 80+ (Gold, Titanium и т.п.), не имеют вентилятора, а это означает практическую бесшумность в работе. Обратной стороной медали является то, что безвентиляторные БП часто выполняются с внешним радиатором, который выступает за габариты корпуса ПК. Это может привести к проблемам с установкой компьютера.
Функции и принцип работы основных узлов
Блоки питания в компьютерах выполняются по импульсным схемам. Их основное достоинство – небольшие габариты и вес при высокой мощности. Недостатки тоже известны – сложная схемотехника и, как следствие, пониженная надежность. В целом такие источники ремонтопригодны, но для восстановления требуется повышенная квалификация мастера и наличие приборов.
При построении блоков питания каждый производитель применяет свои схемотехнические решения, но в основе всех ИИП лежит единый принцип работы:
Несмотря на различие схем, большинство источников питающих напряжений построено по стандартной блок-схеме и содержит одни и те же структурные элементы. Рассмотреть их можно на примере принципиальной схемы блока Power Master LP-8 мощностью 230 ватт.
Входной фильтр
Входной фильтр не является критически важным участком схемы импульсного источника питания – все будет работать без него. Но обойтись без фильтрующих цепей нельзя – ИИП будет генерировать помехи в питающую сеть, и работа других устройств на микроконтроллерах, питающихся от этой же сети, станет непредсказуемой. Входные цепи содержат элементы защиты от синфазных (несимметричных) помех и дифференциальных – симметричных. От первых защищает дроссель LF1 и конденсаторы Cy. Для защиты от вторых установлен конденсатор Cx.
Также входные цепи содержат термистор RTH1 – в холодном состоянии он имеет высокое сопротивление и ограничивает ток заряда конденсаторов высоковольтного выпрямителя. После прогрева его сопротивление падает и он не оказывает влияния на работу.
В схеме присутствует предохранитель F1, защищающий БП от коротких замыканий. Такое включение плавкой вставки не оптимально – элементы RTH1, Cx2, LF1 оказываются незащищенными. Лучше выглядит другая схема входных цепей.
Здесь присутствует еще один элемент – варистор. В обычном состоянии его сопротивление велико, он не влияет на работу БП. Но при выбросах напряжения сети он открывается, его сопротивление падает, и ток через него способствует перегоранию предохранителя.
Высоковольтный выпрямитель и сглаживающий фильтр
Схема формирования постоянного напряжения особенностей не содержит. Она состоит из двухполупериодного мостового выпрямителя на диодной сборке и сглаживающего фильтра. Конденсаторы соединены последовательно – так выполнен делитель для получения половины напряжения питания, необходимой для работы полумостового инвертора.
Генератор импульсов
Генератор импульсов, управляющих инвертором, выполнен на микросхеме TL494 в стандартном включении. Она представляет собой контроллер широтно-импульсной модуляции (ШИМ). Управление средним временем открытого состояния инверторов (следовательно, напряжением на выходах) ведется с помощью регулирования длительности импульсов, следующих с одинаковой частотой. Она задается резистором R53 и конденсатором C27.
На вывод 4 подается напряжение от схемы обработки сигнала PS_ON (Power_ON). Если на этом выводе низкое напряжение, микросхема начинает генерировать импульсы и БП стартует.
Обратная связь по выходным напряжениям организована через вывод 1 – если напряжения блока питания компьютера уменьшаются, ширина импульсов увеличивается и наоборот (все каналы регулируются одновременно). ОС по току в данной схеме не используется, поэтому защиты от перегрузки у данного источника нет. На вывод 13, подан высокий уровень с вывода 14, так определяется режим работы микросхемы – двухтактный. Сформированные импульсы снимаются с выходных транзисторов – выводы 8,9 и 11,10.
Инвертор
Задача инвертора – сделать из выпрямленного постоянного напряжения однополярное импульсное, пригодное для трансформации (подобно двуполярному переменному). Транзисторы по очереди открываются и закрываются, прикладывая к первичной обмотке трансформатора напряжение около 300 вольт.
В данном случае инвертор собран по полумостовой схеме – компромисс между мостовой и пушпульной. Такая схемотехника применяется в большинстве БП для компьютеров. Так как для открывания ключевых транзисторов Q1, Q2 требуются мощные импульсы тока с хорошей прямоугольностью, они управляются не напрямую от выводов микросхемы, а через предварительный усилитель (драйвер). Он собран на транзисторах Q7, Q8, подключен к оконечному каскаду через трансформатор T2. В этом источнике в качестве ключей применены биполярные транзисторы, в других (особенно мощностью 400+ ватт) могут быть использованы полевые или IGBT, сочетающие достоинства биполярных элементов и MOSFET.
Схема управления и формирования служебных сигналов
Эта схема обычно состоит из нескольких независимых участков. Формирование напряжения Stand By выполнено на отдельном генераторе, питающемся от выпрямленного сетевого напряжения. Генератор нагружен на первичную обмотку трансформатора. С первой вторичной обмотки (1-2) снимается, выпрямляется, стабилизируется линейным регулятором L7805 собственно дежурное питание. Со второй (3-4) снимается напряжение собственных нужд – запитка микросхемы ШИМ, а также драйвера ключей. После запуска ИИП напряжение +12 вольт от соответствующего выходного канала через диод D12 запирает диод D18, а дальнейшее энергоснабжение этих цепей происходит от выходного напряжения.
Сигнал PG (Power Good) формируется указанным участком схемы при наличии всех питающих напряжений. Если все в порядке, на материнскую плату выдается высокий уровень. В случае исчезновения какого-то канала, напряжение на выходе формирователя снижается до нуля, что служит командой на выключение компьютера.
Сигнал PS_ON выдает материнская плата, замыкая зеленый провод БП на общую шину. При этом на эмиттере транзистора Q13 появляется низкий уровень, который через диод D26 разрешает работу микросхемы формирователя ШИМ.
Импульсный трансформатор, выпрямители вторичных напряжений и фильтры
Какое выходное напряжение БП компьютера: вольтаж и сила тока
Основную мощность компьютер потребляет по трем каналам.
Канал напряжения | Цветовая маркировка изоляции проводников |
---|---|
+12 | Желтый |
+5 | Красный |
+3,3 | Оранжевый |
На эти три напряжения приходится 90+ процентов потребляемой ПК мощности. Максимальный ток выдает канал + 5 вольт. Однако из-за более высокого вольтажа наибольшая мощность передается по шине +12 вольт. Это выгодно – сечение проводов выбирается по амперам, а чем толще провод, тем он дороже. К тому же тонкий проводник более гибкий, с ним работать удобнее. С этой же целью напряжение каждого канала делится на несколько жгутов с отдельными разъемами. Нулевые проводники GND (гальванически объединенные для всех каналов) всегда окрашены в черный цвет.
В качестве примера на фото приведен шильдик, на котором указана общая мощность блока питания и ее распределение по каналам. Простым подсчетом выясняется, что суммарная мощность основных каналов составляет 485 ватт при общей заявленной мощности 450 ватт. Это указывает на наличие маркетологической составляющей в указании технических характеристик, поэтому к задекларированным параметрам надо относиться осторожно. Они могут быть завышены.
Также блок питания выдает напряжения:
Мощность, передаваемая по этим каналам, составляет совсем небольшой процент от общей мощности источника.
Отдельного упоминания заслуживает дежурное напряжение Stand By. Его уровень +5 вольт, окраска изоляции – фиолетовая. Оно необходимо для включения ПК и присутствует всегда, когда источник питания включен в питающую сеть 220 вольт. Эта линия может обеспечить ток около 2 А.
Также у блока питания есть два управляющих сигнала:
Ток, потребляемый по линиям этих сигналов, очень мал.
Для наглядности рекомендуем серию тематических видеороликов.
Знание, как устроен блок питания ПК, для большинства пользователей не так важно. Но для тех, кто хочет повысить свой уровень квалификации и заниматься ремонтом и апгрейдом компьютеров, эти сведения, как минимум, лишними не будут.