какую полуокружность называют единичной вопросы

Единичная окружность

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Единичная окружность в тригонометрии

Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.

Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.

Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.

Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.

Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Поясним, как единичная окружность связана с тригонометрией.

В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.

Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.

Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.

Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:

Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Радиан — одна из мер для определения величины угла.

Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.

Число радиан для полной окружности — 360 градусов.

Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.

Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.

Уравнение единичной окружности

При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:

Источник

Презентация по теме :»Синус,косинус и тангенс угла», 9-й класс.

Содержимое разработки

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Синус, косинус и тангенс для угла от 0° до 180°

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Не стыдно чего-нибудь не знать, но стыдно не хотеть учиться. (Сократ)

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Какую полуокружность называют единичной?

Радиус равен 1,центр в начале координат, расположена в 1 и 2 координатной четверти.

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Что называют синусом угла α, где 0°≤α≤180°

Синусом угла называется ордината точки

Что называют косинусом угла α, где 0°≤α≤180°

Косинусом угла называется абсцисса точки

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

В каких пределах находится значение синуса, косинуса?

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.0 для острого угла Cos α» width=»640″

Каким числом положительным или отрицательным является косинус острого угла? тупого угла?

Каким числом положительным или отрицательным является синус острого угла? тупого угла?

Cos α 0 для острого угла

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Какой формулой связаны синус и косинус одного и того же угла?

Основное тригонометрическое тождество

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Что называют тангенсом угла α, где 0°≤α≤180 °

Тангенс – это отношение синуса к косинусу этого же угла(α≠90°)

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Почему тангенс не определен для угла 90°?

х = cosα ≠ 0 значит α≠ 90°

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Какое общее название имеют функции f(α) = sinα, g(α) = cosα, h(α) = tgα

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

Леонард Эйлер ввел и само понятие функции и принятую в наши дни символику.

Он придал всей тригонометрии ее современный вид.

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

какую полуокружность называют единичной вопросы. картинка какую полуокружность называют единичной вопросы. какую полуокружность называют единичной вопросы фото. какую полуокружность называют единичной вопросы видео. какую полуокружность называют единичной вопросы смотреть картинку онлайн. смотреть картинку какую полуокружность называют единичной вопросы.

В треугольнике АВС угол С равен 90°. ВС = 2

Источник

Геометрия

А Вы уже инвестируете?
Слышали про акцию в подарок?

Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб

План урока:

Тригонометрические функции тупых углов

Впервые с тригонометрическими функциями мы познакомились в 8 классе. Определить их значение можно было с помощью прямоугольного треугольника, рассматривая отношения его сторон (катетов и гипотенуз). Но такой способ определения тригонометрических функций подходит только для острых углов, попадающих в интервал от 0 до 90°. Оказывается, есть способ для вычисления значений тригонометрических функций и от больших углов.

Построим на координатной плоскости полуокружность, центр которой располагается в начале координат, а радиус равен единице. Ее называют единичной полуокружностью. Проведем из точки (0; 0) луч под некоторым углом α, который пересечет полуокружность в некоторой точке М с координатами (х; у). Заметим, что каждому значению α соответствует своя точка М на единичной полуокружности:

Опустим из М перпендикуляр на ось Ох в некоторую точку D. Тогда, если угол α острый,получается прямоугольный треугольник МOD, длины сторон которого можно определить так:

Получается, что координаты точки M как раз и являются синусом и косинусом угла α. Логично считать, что если α – не острый угол, то всё равно координаты точки M будут определять синус и косинус угла α.

Видно, что при тупом угле α точка М оказывается левее оси Оу, поэтому ее абсцисса становится отрицательной. Получается, что косинус может принимать отрицательные значения.

С помощью единичной полуокружности несложно выяснить значения синусов и косинусов для углов 0°, 90° и 180°. Они соответствуют координатам точек А, В и С на рисунке:

Так как эти точки имеют координаты (1; 0), (0; 1) и (– 1; 0), то можно записать следующее:

Используя это определение, найдем тангенс для углов 0° и 180°:

Заметим, что для 90° использовать эту формулу не удастся, так как это приведет к делению на ноль. Поэтому считается, что для 90° значение тангенса не определено, то есть его нельзя вычислить.

Единичная полуокружность является дугой окружности, чей радиус равен единице, а центр находится в начале координат. То есть она может быть задана уравнением

Тем самым мы доказали, что это тождество, которое показывает связь тригонометрических функций друг с другом, выполняется не только для острых углов, но и для всех углов из диапазона 0° ≤α ≤ 180°.

Для вычисления значений тригонометрических углов тупых углов удобно пользоваться так называемыми формулами приведения. Их довольно много, и изучаются они в основном в 10 классе, нам же хватит всего двух формул:

Например, пусть надо вычислить синус для угла 120°. Для этого мы представляем угол в виде разности, где в качестве уменьшаемого используется угол 180°:

Убедиться в справедливости этих двух формул приведения можно с помощью такого построения:

Точка М соответствует углу α, а точка K – углу (180° – α). Опустим из этих точек перпендикуляры МС и KD. Так как

Получается, что ∆OKD и ∆ОМС – прямоугольные, у них есть одинаковый острый угол α, и их гипотенузы ОК и ОМ также одинаковы как радиусы одной окружности. Тогда эти треугольники равны, и поэтому

Знак минус в первом из этих равенств показывает, что точки K отрицательная абсцисса. В итоге мы доказали две формулы приведения.

Задание. Вычислите sin 150°.

Решение. Представим угол 150° в виде разности:

Вычисление координат точки

Пусть есть некоторая точка А(х;у) с неотрицательной ординатой. Соединим ее с началом координат прямой, которая образует угол α с осью Ох. Посмотрим, как связаны координаты А со значением α.

Пусть луч ОА пересечет единичную окружность в точке М. Опустим из М и А перпендикуляры на Ох, в точки Н и С соответственно. Теперь сравним ∆ОМН и ∆ОАС. Они прямоугольные, и у них есть одинаковый угол α, следовательно, они подобны. Коэффициент подобия можно найти, поделив ОА на ОМ, при этом учтем, что ОМ = 1, так как М лежит на единичной полуокружности:

Примечание. Данное доказательство не рассматривает частные случаи, когда точка А лежит непосредственно на осях Ох и Оу, и тогда подобные треугольники ∆ОМН и ∆ОАС построить не удается. Эти случаи можно рассмотреть отдельно и показать, что для них выведенные формулы также справедливы.

Задание. Точка А находится на расстоянии 3 от начала координат (точки О), причем луч ОА образует с осью Ох угол 135°. Найдите координаты точки А.

Решение. Используя выведенные формулы, мы можем записать:

Вычисление площади треугольника

В 8 классе мы уже познакомились с одной из формул для определения площади треугольника. Однако на практике возникают ситуации, когда удобнее использовать другие формулы, одну из которых мы сейчас выведем.

Пусть в произвольном ∆АВС известны две стороны, например, ВС (обозначим ее буквой а) и АС (ее обозначим как b). Также известна величина угла между ними:

Разместим этот треугольник в системе координат так, чтобы точка С совпала с началом координат, в находилась на оси Ох и имела положительную абсциссу, А располагалась в первой четверти:

В этом случае координаты А будут определяться формулами:

Найдите площадь МКН.

Решение. Подставляя числа в формулу, получаем:

Задание. Диагонали прямоугольника пересекаются под углом 30°, причем они равны 10 см. Вычислите площадь этого прямоугольника.

Заметим, что диагонали прямоугольника при пересечении образуют не один, а два угла. Пусть в прямоугольнике АВСD диагонали пересекаются в точке О, и ∠АОВ = 30°. Тогда можно найти ∠ВОС, ведь он смежный с ∠АОВ:

Чтобы найти площадь прямоугольника, мы можем найти площади 4 треугольников, из которых он состоит, и потом сложить их. Для каждого из этих треугольников нам известны две стороны (они составляют по 5 см) и угол между ними:

Площадь параллелограмма

Из выведенной нами формулы площади треугольника вытекает и новая формула для площади параллелограмма. Пусть в параллелограмме нам известны смежные и угол между ними:

На рисунке смежные стороны АВ и AD обозначены буквами a и b, а угол между ними обозначен как α. Проведем диагональ BD. Площадь ∆ABD можно вычислить:

Задание. Стороны параллелограмма имеют длины 8 и 11 см, а один из углов параллелограмма равен 30°. Какова площадь этого параллелограмма?

Решение. Просто подставляем данные в формулу

Задание. Известна площадь параллелограмма MNEF, одна из его сторон и угол:

Так как противоположные стороны в параллелограмме одинаковы, то MF также имеет длину 5:

Запишем формулу для площади и подставим в нее известные данные:

Теорема синусов

Пусть есть некоторый ∆АВС, в котором стороны мы обозначим буквами:

Посчитаем его площадь, используя стороны b и c:

Также площадь треугольника можно выразить через а и с:

Полученная формула показывает, что в каждом треугольнике отношение стороны к синусу противолежащего угла – это константа, не зависящая от выбора стороны. Другими словами,в любом треугольнике стороны пропорциональны синусам углов, которые лежат против них. Это утверждение именуют теоремой синусов.

В большинстве задач достаточно выведенной формулы

Однако можно дополнить теорему синусов, выяснив, чему же именно равны все эти три отношения. Для этого впишем треугольник в окружность, после чего построим диаметр BD:

Пусть радиус этой окружности равен R, тогда диаметр BD будет вдвое больше:

Теперь рассмотрим ∆ВСD. ∠С здесь – прямой, ведь это вписанный угол, опирающийся на полуокружность, то есть дугу в 180°. По определению синуса, которое мы давали ещё в 8 классе, можно записать:

C учетом уже выведенного равенства (6) теорема синусов примет вид:

С помощью теоремы синусов у любого треугольника можно найти две неизвестные стороны, если известны третья сторона и два угла. Процесс нахождение неизвестных элементов треугольника по уже известным элементам именуется решением треугольника. Всего у треугольника 6 элементов – три стороны и три угла. Для нахождения всех элементов в общем случае достаточно знать только 3 из них, а остальные можно найти, используя теорему синусов или иные геометрические соображения.

Задание. Решите треугольник, если одна из его сторон равна 14, а прилегающие к ней углы имеют величину 60° и 40°.

Обозначим описанный в условии треугольник как ∆МВК. Пусть МК = 14, ∠М = 60° и∠К = 40°. Тогда нам надо найти ∠В, МВ и ВК. Проще всего найти∠В, ведь в любом треугольнике все углы в сумме дают 180°:

Обратите внимание, что так как углы 40° и 80° не являются табличными, то их значения надо вычислять на калькуляторе, а результат вычисления получается приближенным. В данном случае мы округлили его до сотых.

Осталось найти сторону ВК, это также делается с помощью теоремы синусов:

Задание. В SRTS = 30°, R = 45°, а высота RM, опущенная на сторону TS, имеет длину 6. Решите SRT.

Теперь надо найти какую-нибудь сторону в ∆SRT. Для этого рассмотрим ∆RMS. Он прямоугольный, а потому для него можно записать:

Для нахождения двух оставшихся сторон можно использовать теорему синусов:

Задание. В параллелограмме MNEFMFE составляет 120°, а диагональ NF равна 24 и образует со стороной NE угол 40°. Найдите длину МN и MF.

Далее заметим, что ∠FNE и ∠MFN одинаковы, ведь они накрест лежащие при параллельных отрезках NE и MF и секущей NF:

Теперь в ∆MNF известна сторона NF и все три угла. Это позволяет с помощью теоремы синусов найти и остальные две стороны:

Задание. В окружности радиусом 5 построен вписанный угол величиной 30°. Определите длину хорды, на которую он опирается.

Решение. По теореме синусов мы можем записать, что

Теорема косинусов

Теорема синусов помогает решать треугольники, в которых известны хотя бы два угла, а также одна из сторон. Но что делать в случае, если наоборот, даны две стороны, но только один угол? Здесь необходима другая теорема, которую именуют теоремой косинусов.

Возьмем произвольный треугольник со сторонами а, b и c и поместим его на координатной плоскости так, как показано на рисунке:

Обозначим угол между а и b как α. Тогда координаты А будут определяться так:

Точка В в свою очередь будет иметь координаты (а; 0). Зная координаты А и В, мы можем найти квадрат расстояния между ними, то есть величину с 2 :

Полученное соотношение как раз и является теоремой косинусов.

Данная формула позволяет находить третью сторону треугольника, если известны две другие, а также угол между ними. Однако ее можно переписать так, чтобы с ее помощью можно было вычислять косинус угла, зная все три стороны треугольника:

Это позволяет решать те треугольники, для которых теоремы синусов недостаточно.

Легко заметить, что теорема косинусов похожа на теорему Пифагора. Более того, если угол α = 90°, то формула теоремы косинусов превращается в теорему Пифагора, которая, таким образом, является ее частным случаем. По этой причине иногда теорему косинусов именуют обобщенной теоремой Пифагора.

Задание. Решите MNE, если

Решение. По теореме косинусов находим сторону NE:

Осталось найти ∠N и ∠Е. Для этого запишем теорему косинусов так, чтобы в ней фигурировал ∠N:

Мы нашли cosN. Чтобы вычислить сам ∠N, следует использовать особую функцию на калькуляторе или компьютере, которая называется арккосинусом и является обратной для операции «извлечение косинуса». Более подробно она изучается уже в 10 классе. С ее помощью мы узнаем, что

Обратите внимание, что обычно калькулятор выдает результат, показывая десятые и сотые доли градусы, не переводя их в минуты и секунды. Можно оставить ответ и в таком виде. При желании перевести сотые доли в минуты следует дробную часть умножить на 60:

Задание. На различных сторонах угла∠А, равного 45°, отложены точки В и С так что

Задание. Решите треугольник, если его стороны имеют длину 14, 18 и 20.

Решение. Здесь надо дважды применить теорему косинусов, чтобы найти какие-нибудь два угла в ∆АВС:

∠C также можно найти через теорему косинусов, но проще просто вычесть из 180° два уже вычисленных угла:

Во всех рассмотренных задачах на решение треугольника мы знали три элемента треугольника и по ним однозначно вычисляли три других элемента. Однако иногда это невозможно. Так, если в задаче помимо двух сторон указан угол, который НЕ лежит между ними, то в итоге задача может иметь два решения.

Задание. В MNE M составляет 60°, а стороны МЕ и NE имеют длины 10 и 9 соответственно. Какова длина MN?

Решение. Теорему синусов здесь применить не удастся, так как для нее необходимо знать хотя бы два угла. Поэтому остается только записать теорему косинусов так, чтобы в ней использовался ∠M:

Получили квадратное уравнение, решить его можно через дискриминант:

В рамках данного урока мы узнали про теоремы синусов и косинусов и научились использовать их для решения треугольников. Также мы познакомились с новыми формулами для вычисления площадей треугольника и параллелограмма.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *