какую подстановку используют при решении уравнений бернулли
Дифференциальное уравнение Бернулли
Статья раскрывает методы решения дифференциального уравнения Бернулли. В заключении будут рассмотрены решения примеров с подробным объяснением.
Приведение к линейному уравнению 1 порядка
Отсюда вид уравнения Бернулли меняется:
Этот процесс вычисления и подстановки способствует приведению к линейному неоднородному дифференциальному уравнению первого порядка. В итоге проводим замену и получаем его решение.
Решение
Следует проводить решение при помощи метода вариации произвольной постоянной.
Проводим нахождение общего решения дифференциального уравнения вида:
Отсюда следует, что производится подстановка вида
С 3 принимает значение произвольной постоянной. Следовательно:
Ответ: это решение считается решением исходного дифференциального уравнения Бернулли.
Представление произведением функций u ( x ) и v ( x )
u ‘ · v + u · v ‘ + P ( x ) · u · v = Q ( x ) · u · v n u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x ) · u · v n
Решение
Перейдем к поиску общего решения.
y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 u ‘ · v + u · v ‘ + u · v x 2 + 1 = u · v 2 · a r c t g x x 2 + 1 u ‘ · v + u · v ‘ + v x 2 + 1 = u 2 · v 2 · a r c t g x x 2 + 1
Имеем, что u = 0 рассматривается как решение дифференциального уравнения. Далее необходимо решить каждый из полученных интегралов по отдельности.
Отсюда находим, что
На данном этапе следует переходить к поиску частного решения, которое удовлетворяет начальному условию. Получим, что
Дифференциальные уравнения Бернулли в примерах решений
Дифференциальным уравнением Бернулли называется уравнение вида
,
Таким образом, дифференциальное уравнение Бернулли обязательно содержит функцию y в степени, отличной от нуля и единицы.
Дифференциальное уравнение Бернулли можно решить двумя методами.
Переход от уравнения Бернулли к линейному уравнению.
Уравнение делим на :
,
.
Обозначим . Тогда , откуда . Переходя к новой переменной, получим уравнение
,
которое является линейным дифференциальным уравнение первого порядка. Его можно решить методом вариации константы Лагранжа или методом Бернулли.
Решение методом Бернулли.
.
Из слагаемых, содержащих функцию u в первой степени, вынесем её за скобки:
.
Приравняв выражение в скобках нулю, то есть
,
Функцию u следует находить из дифференциального уравнения
,
которое также является уравнение с разделяющимися переменными.
Пример 1. Решить дифференциальное уравнение Бернулли
.
Решение. Решим дифференциальное уравнение двумя методами.
1. Переход от уравнения Бернулли к линейному уравнению. Данное уравнение умножим на y³ :
.
Введём обозначение , тогда , и приходим к уравнению
.
,
.
Выражение в скобках приравняем нулю и решим полученное дифференциальное уравнение:
Полученную функцию v подставим в уравнение:
Выражение в скобках приравняем нулю и определим функцию v :
Полученную функцию v подставим в уравнение и определим функцию u :
И, наконец, найдём решение данного дифференциального уравнения:
Пример 2. Решить дифференциальное уравнение Бернулли
.
Выражение в скобках приравняем нулю и определим функцию v :
Полученную функцию v подставим в уравнение и определим функцию u :
Таким образом, получаем решение данного дифференциального уравнения:
.
Пример 3. Решить дифференциальное уравнение Бернулли
.
Приравняем нулю выражение в скобках и решим полученное уравнение с разделяющимися переменными:
Подставляем v в данное уравнение и решаем полученное уравнение:
и проинтегрируем обе части уравнения:
Далее используем подстановку
:
.
Таким образом, получаем функцию u :
.
и решение данного дифференциального уравнения:
Пример 4. Решить задачу Коши для дифференциального уравнения
при условии .
.
Выражение в скобках приравняем нулю и решим дифференциальное уравнение с разделяющимися переменными:
Подставим функцию v в данное уравнение и решим полученное дифференциальное уравнение:
Вычислим каждый интеграл отдельно. Первый:
.
Второй интеграл интегрируем по частям. Введём обозначения:
Приравниваем друг другу найденные значения интегралов и находим функцию u :
Таким образом, общее решение данного дифференциального уравнения:
.
Используем начальное условие, чтобы определить значение константы:
Ищем частное решение, удовлетворяющее начальному условию:
В результате получаем следующее частное решение данного дифференциального уравнения:
.
Пример 5. Решить дифференциальное уравнение Бернулли
.
.
Введём новую функцию . Тогда
.
Подставляя эти значения в уравнение, полученное на первом шаге, получим линейное уравнение:
.
Найдём его общий интеграл:
,
.
Подставляя эти значение в полученное линейное уравнение, получаем
.
Приравниваем нулю выражение в скобках:
Для определения функции u получаем уравнение
.
Интегрируем по частям:
Таким образом, общий интеграл данного уравнения
.
Дифференциальное уравнение Бернулли
Дифференциальное уравнение Бернулли — это уравнение вида
Это уравнение может быть преобразовано при помощи подстановки
в линейное уравнение
На практике дифференциальное уравнение Бернулли обычно не приводят к линейному, а сразу решают теми же методами, что и линейное уравнение — либо методом Бернулли, либо методом вариации произвольной постоянной.
Примеры. Решить уравнения:
1) y’x+y=-xy².
Это дифференциальное уравнение Бернулли. Приведем его к стандартному виду. Для этого поделим обе части на x: y’+y/x=-y². Здесь p(x)=1/x, q(x)=-1, n=2. Но для решения нам не нужен стандартный вид. Будем работать с той формой записи, которая дана в условии.
1) Замена y=uv, где u=u(x) и v=v(x) — некоторые новые функции от x. Тогда y’=(uv)’=u’v+v’u. Подставляем полученные выражения в условие: (u’v+v’u)x+uv=-xu²v².
2) Раскроем скобки: u’vx+v’ux+uv=-xu²v². Теперь сгруппируем слагаемые с v: [u’x+u]v+v’ux=-xu²v² (I) (слагаемое со степенью v, стоящее в правой части уравнения, не трогаем). Теперь требуем, чтобы выражение в скобках равнялось нулю: u’x+u=0. А это — уравнение с разделяющимися переменными u и x. Решив его, мы найдем u. Подставляем u=du/dx и разделяем переменные: x·du/dx=-u. Обе части уравнения умножаем на dx и делим на xu≠0:
(при нахождении u С берем равным нулю).
3) В уравнение (I) подставляем [u’x+u]=0 и найденную функцию u=1/x. Имеем уравнение: v’·(1/x)·x=-x·(1/x²)·v². После упрощения: v’=-(1/x)·v². Это уравнение с разделяющимися переменными v и x. Заменяем v’=dv/dx и разделяем переменные: dv/dx=-(1/x)·v². Умножаем обе части уравнения на dx и делим на v²≠0:
(можно было бы взять не С, а ln│C│ и в этом случае было бы v=1/ln│Cx│).
4) Так как y=uv, подставляем найденные функции u и v:
2) 2y’+2y=xy².
Убедимся в том, что это — уравнение Бернулли. Поделив на 2 обе части, получаем y’+y=(x/2) y². Здесь p(x)=1, q(x)=x/2, n=2. Решаем уравнение методом Бернулли.
1) Замена y=uv, y’=u’v+v’u. Подставляем эти выражения в первоначальное условие: 2(u’v+v’u)+2uv=xu²v².
2) Раскрываем скобки: 2u’v+2v’u+2uv=xu²v². Теперь сгруппируем слагаемые, содержащие v: [2u’+2u]+2v’u=xu²v² (II). Требуем, чтобы выражение в скобках равнялось нулю: 2u’+2u=0, отсюда u’+u=0. Это — уравнение с разделяющимися переменными относительно u и x. Решим его и найдем u. Подставляем u’=du/dx, откуда du/dx=-u. Умножив обе части уравнения на dx и поделив на u≠0, получаем: du/u=-dx. Интегрируем:
3) Подставляем во (II) [2u’+2u]=0 и
Теперь подставляем v’=dv/dx и разделяем переменные:
Левая часть равенства — табличный интеграл, интеграл в правой части находим по формуле интегрирования по частям:
Подставляем найденные v и du по формуле интегрирования по частям имеем:
4) Так как y=uv, подставляем найденные функции u и v:
3) Проинтегрировать уравнение x²(x-1)y’-y²-x(x-2)y=0.
Разделим на x²(x-1)≠0 обе части уравнения и слагаемое с y² перенесем в правую часть:
Это — уравнение Бернулли,
1) Замена y=uv, y’=u’v+v’u. Как обычно, эти выражения подставляем в первоначальное условие: x²(x-1)(u’v+v’u)-u²v²-x(x-2)uv=0.
2) Отсюда x²(x-1)u’v+x²(x-1)v’u-x(x-2)uv=u²v². Группируем слагаемые, содержащие v (v² — не трогаем):
[x²(x-1)u’-x(x-2)u]v+x²(x-1)v’u=u²v² (III). Теперь требуем равенства нулю выражения в скобках: x²(x-1)u’-x(x-2)u=0, отсюда x²(x-1)u’=x(x-2)u. В уравнении разделяем переменные u и x, u’=du/dx: x²(x-1)du/dx=x(x-2)u. Обе части уравнения умножаем на dx и делим на x²(x-1)u≠0:
В левой части уравнения — табличный интеграл. Рациональную дробь в правой части надо разложить на простейшие дроби:
При x=1: 1-2=A·0+B·1, откуда B=-1.
При x=0: 0-2=A(0-1)+B·0, откуда A=2.
ln│u│=2ln│x│-ln│x-1│. По свойствам логарифмов: ln│u│=ln│x²/(x-1)│, откуда u=x²/(x-1).
3) В равенство (III) подставляем [x²(x-1)u’-x(x-2)u]=0 и u=x²/(x-1). Получаем: 0+x²(x-1)v’u=u²v²,
вместо С возьмем — С, чтобы, умножив обе части на (-1), избавиться от минусов:
Теперь приведем выражения в правой части к общему знаменателю и найдем v:
4) Так как y=uv, подставляя найденные функции u и v, получаем:
Примеры для самопроверки:
1) Замена y=uv, откуда y’=u’v+v’u. Эти y и y’ подставляем в первоначальное условие:
2) Группируем слагаемые с v:
Теперь требуем, чтобы выражение в скобках равнялось нулю и находим из этого условия u:
Интегрируем обе части уравнения:
3) В уравнение (*) подставляем [xu’ + 2u]=0 и u=1/x²:
Интегрируем обе части получившегося уравнения:
Обозначим С=3С1, получаем
2) Поделим обе части данного уравнения на x: y’+y/x=(lnx/x)·y². Это — уравнение Бернулли. Здесь p(x)=1/x, q(x)=lnx/x, n=2.
1) Замена y=uv, откуда y’=u’v+v’u. Эти y и y’ подставляем в условие: x(u’v+v’u)+uv=u²v²lnx.
2) xu’v+xv’u+uv=u²v²lnx. Группируем слагаемые с v: [xu’+u]v+xv’u=u²v²lnx (**). Теперь требуем равенства нулю выражения, стоящего в скобках: xu’+u=0. Из этого уравнения ищем u: xdu/dx=-u, du/u=-dx/x. Теперь интегрируем:
3) Подставляем в (**) [xu’+u]=0 и u=1/x (сначала упростим): xv’u=u²v²lnx, отсюда xv’=uv²lnx, xv’=(1/x)v²lnx,
Интеграл в левой части — табличный. Интеграл, стоящий в правой части равенства, находим по формуле интегрирования по частям. u=lnx, du=(lnx)’dx=(1/x)dx, dv=(1/x²)dx,
Теперь подставляем u,v и du в формулу интегрирования по частям: