какую нагрузку держит уголок 63
Пример расчета уголка, швеллера и двутавра на прогиб и изгиб. Расчет нагрузки на уголок
Стальной уголок – наиболее востребованный вид фасонного проката. По способу производства он разделяется на горячекатаный и гнутый. Исходные материалы: углеродистые стали обыкновенного качества Ст3 пс/сп (для рядового применения), качественные, низколегированные 09Г2С, 17Г1С, 10ХСНД, 15 ХСНД (для изделий, используемых при повышенных нагрузках, в сложных температурных условиях, при контакте с агрессивными средами).
Пример расчета уголка, швеллера и двутавра на прогиб и изгиб
На данной странице представлен пример расчета швеллера. Что касается расчетов уголка и двутавра, то они производится аналогичным образом. Другими словами, данный пример является полезным для следующих калькуляторов:
В примере будут описаны несколько действий, которые должны выполняться последовательно.
Район строительства — Нижний Новгород.
Расчетная схема — Тип 1.
Необходимо подобрать швеллер, который будет воспринимать нагрузку от снега.
Действие 1. Внесение исходных данных.
Расчетная нагрузка = 240 кг/м2 — так как город Н.Новгород находится в IV снеговом районе (в соответствии с табл. 10.1 и картой 1 СП 20.13330.2011 «Нагрузки и воздействия» [1]).
Fmax = 1/200 — так как пролет балки равен 5 м (пункт 2 табл. E1 [1]).
Расположение — по оси Х (швеллер воспринимает нагрузку вертикально).
Расчетное сопротивление Ry=210 МПа — берется как наихудший вариант для стали.
Действие 2. Выбор предполагающих номеров профилей.
Предположим, что мы рассматриваем два вида профилей: с параллельными гранями и с уклоном полок. Поэтому для первоначального расчета выбираются швеллеры размером 8П И 8У.
После произведенного расчета видно, что в графе «Запас» в том и другом случае стоят отрицательные значения. Это означает, что выбранные швеллеры не способны воспринимать приложенную на них нагрузку. Следовательно, необходимо выбирать профили большего размера.
Действие 3. Корректирующий расчет.
При увеличении профилей до 10П и 10У ситуация аналогичная. Но после того, как профили были увеличены до 12П и 12У в графах «Запас» появились положительные значения. Следовательно, в качестве балки перекрытия можно принять тот или иной профиль (имеется в виду 12П или 12У).
Расчет отгибов при действии поперечных сил.
Расчет наклонных сечений при комбинированном поперечном армировании (отгибы и хомуты). При армировании балок каркасами отогнутые стержни (отгибы) применяют сравнительно редко. Условие прочности элемента при комбинированном поперечном армировании было дано выше (формула 4.37):
Таким образом, отгибы воспринимают избыток поперечной силы Q. Расчет по поперечной силе следует производить для наклонных сечений, проходящих через следующие точки: 1 — грань опоры, 2 — начало расположенных в растянутой зоне отгибов; 3 точка изменения шага хомутов (рис. 4.8). В соответствии с этим величина Q в формуле (4.49) равна, для первой от опоры плоскости отгибов — поперечной силе Q у грани опоры; для второй от опоры плоскости отгибов — значению поперечной силы Q у нижней точки первой плоскости отгибов и т.д.
Конструктивные требования при армировании изгибаемых элементов отгибами и хомутами заключаются в следующем. Отгибы стержней осуществляют по дуге радиуса не менее 10 d, а на концах отогнутых стержней следует устраивать прямые участки, принимаемые не менее 20 d в растянутой и 10 d в сжатой зоне. Начало отгиба в растянутой зоне должно отстоять от нормального сечения, в котором отгибаемый стержень используется по расчету, не менее чем на 0,5 h0, а конец отгиба должен быть расположен не ближе того нормального сечения, в котором отгиб не требуется по расчету. Все приведенные выше формулы справедливы для расчета как прямоугольных, так и тавровых сечений.
Перед тем, как приступать к расчету, необходимо выбрать тип поперечного армирования (отгибы, наклонные пучки, преднапряженные хомуты, хомуты без преднапряжения), назначить диаметры арматуры, состав наклонных пучков и размещение поперечной арматуры. В простейших случаях необходимая интенсивность поперечного армирования может быть получена по расчету (см. формулы 17.10 и 17.11). В сложных случаях приходится задаваться поперечным армированием на основании предшествующего опыта, уточняя его по результатам расчета.
После конструирования поперечной арматуры делают расчет на прочность по наклонным сечениям
При нагрузках, близких к предельным, в элементах появляются наклонные трещины в бетоне, вызываемые главными растягивающими напряжениями. При повышении нагрузок может произойти разрушение элемента по сечениям, совпадающим с этими трещинами. Достаточная гарантия против разрушения обеспечивается расчетом элемента на прочность по наклонным сечениям.
В расчетной модели рассматриваемого вида разрушения элемента предполагается, что вся растянутая зона бетона пересечена наклонной трещиной. Вся арматура, пересекающая трещину, работает при напряжениях, равных расчетным сопротивлениям, что соответствует предположению, что в ней появилась текучесть. Учитывают силу сопротивления сжатой зоны бетона срезу Qб.
Отбросив отсеченную часть балки, можно составить уравнения статики. При этом сумма проекций внешних сил на ось, нормальную к оси балки, численно равна поперечной силе в поперечном сечении, совпадающем со сжатой зоной, а момент внешних сил относительно центра сжатой зоны численно равен изгибающему моменту в том же поперечном сечении. При расчете определяют независимо друг от друга предельные величины поперечной силы и изгибающего момента. Усилия в наклонных и вертикальных элементах арматуры входят в оба уравнения; условно расчет ведут раздельно для поперечной силы и изгибающего момента, но к расчетным сопротивлениям наклонной и поперечной арматуры вводят понижающие коэффициенты условий работы.
Все вышеперечисленные условности и допущения обоснованы обширными экспериментальными исследованиями.
Предельную поперечную силу определяют (рис. 17.12) по формуле
где Ra, Rн, Rax, Rн.х – расчетные сопротивления металла соответственно для наклонных стержней ненапрягаемой арматуры, элементов напрягаемой арматуры, ненапрягаемых и преднапряжениых хомутов, ∑Fa0sin αi, ∑Fн0sin αi – суммы произведений площадей наклонных ненапрягаемых и напряженных элементов арматуры на синусы углов наклона их к горизонту; ∑Faх, ∑Fн.х – суммы площадей ненапрягаемых и напряженных хомутов, пересеченных трещинами; m, mн – коэффициенты условий работы; m = 0,8; mн = 0,8 для стержневой и mн = 0,7 для проволочной арматуры; Qб – сопротивление срезу сжатой зоны бетона;
но не более 0,3Q, где Rp – расчетное сопротивление бетона растяжению; b – наименьшая толщина элемента, пересеченная трещиной (для тавровых сечений – толщина стенки); h0 – рабочая высота сечения; c – длина горизонтальной проекции трещины.
Рис. 17.12 – Схема к расчету на прочность наклонного сечения по поперечной силе
Формула (17.7) получена из условия равенства нулю проекций на вертикальную ось всех сил, приложенных к левой части элемента. Первый член отражает сопротивление наклонных ненапрягаемых стержней (например, отгибов); второй член – то же, для напрягаемых наклонных элементов арматуры; третий и четвертый члены – сопротивление ненапрягаемых и преднапряженных хомутов; пятый член – сопротивление срезу сжатой зоны бетона. Формула приведена в общем виде; в реальной конструкции некоторые виды арматуры и соответственно некоторые члены уравнения могут отсутствовать, в частности на рисунке нет отгибов ненапрягаемой арматуры (Fа0 = 0).
Условие прочности наклонного сечения по поперечной силе
Здесь Q – расчетная поперечная сила, определяемая для поперечного сечения, совпадающего с концом наклонной трещины в сжатой зоне.
Расчёт на обрыв.
Отрыв возникает, когда нагрузка приложена к нижней грани элемента или в пределах высоты его сечения. Например, отрыв части бетона балки может вызвать нагрузка от оборудования, подвешенного к ней через отверстия в стенке; отрыв бетона в главной балке монолитного ребристого перекрытия могут вызвать опорные реакции второстепенных балок. Механизм отрыва очень похож на механизм продавливания – разрушение бетона тоже происходит от среза и тоже под углом 450.
Однако в расчете на отрыв сопротивление бетона срезу по поверхности отрыва учитывают косвенно, корректируя величину отрывающей силы F. Ее сравнивают с несущей способностью дополнительной поперечной арматуры, устанавливаемой в обязательном порядке по длине зоны отрыва a (рис. 74). Тогда условие прочности имеет вид: F(1– hs/h0) ≤ SRswAsw, где SRswAsw – сумма поперечных усилий, воспринимаемых хомутами (поперечными стержнями) по длине зоны a. Разумеется, хомуты должны быть надежно заанкерены по обе стороны от поверхности отрыва.
Расчет стального уголка | Характеристики гнутого металлического уголка
Стальной уголок – наиболее востребованный вид фасонного проката. По способу производства он разделяется на горячекатаный и гнутый. Исходные материалы: углеродистые стали обыкновенного качества Ст3 пс/сп (для рядового применения), качественные, низколегированные 09Г2С, 17Г1С, 10ХСНД, 15 ХСНД (для изделий, используемых при повышенных нагрузках, в сложных температурных условиях, при контакте с агрессивными средами).
Характеристики горячекатаного металлического уголка
Равнополочный горячекатаный стальной уголок производят в соответствии с ГОСТом 8509-93 из квадрата, являющегося исходной заготовкой. Наиболее массово используется угловой профиль обычной точности «В», для ответственных конструкций – продукция высокой точности «А». Размеры полки, согласно стандарту, – от 20 до 250 мм.
Сортамент неравнополочных уголков определяется ГОСТом 8510-86. Наименьшие размеры полок – 16 и 25 мм, максимальные – 125 и 200 мм. Эта продукция применяется при создании конструкций сложной формы, например, арок.
Горячекатаную продукцию поставляют партиями, размер которых обычно не превышает 70 тонн. Каждая партия имеет сертификат соответствия требованиям нормативной документации.
Расчет количества стального равнополочного уголка
При определении массы партии проката углового профиля необходимо знать массу погонного метра, которую вы можете определить по таблице, и общий метраж.
Таблица весов равнополочного стального горячекатаного уголка наиболее распространенных размеров
Размер полки, мм | Толщина стенки, мм | Масса 1 м, кг | Размер полки, мм | Толщина стенки, мм | Масса 1 м, кг | Размер полки, мм | Толщина стенки, мм | Масса 1 м, кг |
20 | 3 | 0,89 | 35 | 4 | 2,1 | 50 | 4 | 3,05 |
4 | 1,15 | 5 | 2,58 | 5 | 3,77 | |||
25 | 3 | 1,12 | 40 | 3 | 1,85 | 6 | 4,47 | |
4 | 1,46 | 4 | 2,42 | 63 | 4 | 3,9 | ||
30 | 3 | 1,36 | 5 | 2,98 | 5 | 4,81 | ||
4 | 1,78 | 45 | 3 | 2,08 | 6 | 5,72 | ||
32 | 3 | 1,46 | 4 | 2,73 | 70 | 5 | 5,38 | |
4 | 1,91 | 5 | 3,37 | 6 | 6,39 | |||
35 | 3 | 1,6 | 50 | 3 | 2,32 | 7 | 7,39 |
Характеристики гнутого стального уголка
Эту продукцию получают на профилегибочных станках из горяче- или холоднокатаного листового проката. Процесс проходит без нагрева. В холодногнутой продукции сохраняются остаточные напряжения, ухудшающие рабочие свойства. Для устранения остаточных явлений применяют отпуск – нагрев до определенной температуры с последующим медленным охлаждением. Визуальное отличие двух видов продукции: горячекатаный уголок имеет четкий прямой внешний угол, для гнутого характерен скругленный угол.
Размеры металлического равнополочного гнутого уголка определяются ГОСТом 19771-93, неравнополочного – ГОСТом 19772-93. Эта продукция имеет меньшую прочность, по сравнению с горячекатаной. Применяется в мебельном производстве, в качестве ребер жесткости, вспомогательных элементов при креплении конструкций, для изготовления деталей машин и механизмов.
Расчет квадратной трубы на прогиб и изгиб
Замкнутые профили, какими являются квадратные, прямоугольные и круглые трубы, — это вариант для тех, у кого нет возможности использовать деревянные конструкции, но есть желание предать будущему сооружению хорошую эстетичность. Например, каркас козырька, сваренный из квадратных труб, выглядит более эстетично, чем тот же козырек, сваренный из уголков.
На данной странице Вам представлен калькулятор способный подбирать сечение квадратной трубы по прочности и деформациям. Другими словами, с помощью данного калькулятора Вы можете произвести расчет квадратной трубы на прогиб и изгиб по ГОСТ 30245-2003 «Профили стальные гнутые замкнутые сварные квадратные для строительных конструкций».
Рассчитать квадратную трубу можно для следующих расчетных схем:
Сортамент. Уголки равнобокие (ГОСТ 8509-86) 004
Калькулятор
Калькуляторы по теме:
Инструкция к калькулятору
Обращаю ваше внимание, что в нецелых числах необходимо ставить точку, а не запятую, то есть, например, 5.7 м, а не 5,7. Также, если что-то не понятно, задавайте свои вопросы через форму комментариев, расположенную в самом низу.
Исходные данные
Длина пролета (L) — расстояние между двумя опорами или от жесткой заделки до края консоли.
Расстояния (А и В) — расстояния от опор до места приложения сил. В случае с 3-ей схемой — расстояние от опоры до края консоли.
Нормативная и расчетная нагрузки — нагрузки, которые действуют на уголок, выраженные в кг/м или кг.
Fmax — максимально допустимый прогиб для балки, применяемый в той или иной конструкции. Можно найти в таблице Е.1 приложения Е СНиПа 2.01.07-85* (СП 20.13330.2011) «Нагрузки и воздействия». Данный показатель для наиболее часто встречающегося случая представлен в таблице 1.
Количество уголков — если Вы собираетесь в качестве балки использовать два спаренных уголка, то нужно выбирать «два», в противном случае «один».
Расчетное сопротивление (Ry) — подбирается в зависимости от марки стали. Но чаще всего проектировщики принимают Ry = 210 МПа. Остальные см. таблицу 2.
Размеры уголка — выбирается предполагаемый размер равнополочного и (или) неравнополочного уголка.
Расположение — выбирается для неравнополочного уголка в зависимости от того, как он будет работать.
По Х — если нагрузка будет приходиться на короткую полку.
По Y — если нагрузка будет приходиться на длинную полку.
Подбор сечения растянутых элементов
Стали с нормативным пределом текучести кН/см² имеют развитую площадку текучести (см. гл.1), поэтому несущая способность элементов из таких сталей проверяется по формуле
где — площадь сечения нетто.
Для элементов, выполненных из сталей, не имеющих площадку текучести (условный предел текучести Ơ02 > 44кН/см²), а также, если эксплуатация конструкции возможна и после развития пластических деформаций, несущая способность проверяется по формуле:
где — расчетное сопротивление, определенное по временному сопротивлению;
— коэффициент надежности при расчете по временному сопротивлению.
В практике проектирования расчет растянутых элементов проводится по формуле (9.7).
При проверке растянутого элемента, когда несущая способность определяется напряжениями, возникающими в наиболее ослабленном сечении (например, отверстиями для болтов), необходимо учитывать возможные ослабления и принимать площадь нетто.
Требуемая площадь нетто растянутого элемента определяется по формуле
Затем по сортаменту выбирают профиль, имеющий ближайшее большее значение площади.
Пример 9.2. Требуется подобрать сечение растянутого раскоса фермы по расчетному усилию N
=535кН. Материал сталь – сталь С245;
Ry
= 24кН/см2;
γс
= 0,95
Требуемая площадь сечения Атр
Принимаем два равнополочных уголка 90×7; А
9.11. Подбор сечения элементов ферм, работающих на действие продольной силы и изгиб (внецентренное растяжение и сжатие)
Предельное состояние внецентренно растянутых элементов определяется чрезмерным развитием пластических деформаций в наиболее нагруженном состоянии. Их несущая способность определяется по формуле (см. гл.2).
Пример 9.3.Подобрать сечение растянутого нижнего пояса при действии на него внеузловой нагрузки в середине длины панели (рис.9.13,а
) F=10кН. Осевое усилие в поясе N=800кН. Расстояние между центрами узлов d=3м. Материал конструкции – сталь С245;Ry=24кН/см2. Коэффициент условий работы γс=0,95.
Рис. 9.13. К примеру 9.3 и 9.4
Подбираем сечение элемента из условия его работы на растяжение по формуле (9.9); Aтр=800/( 24 = 35,1см2.
Принимаем сечение из двух уголков 125х9; А=22 =44см2; моменты сопротивления для обушка Wобx и пера Wпx равны:
Wобx = 327 /3,4 = 192,4 см2; Wпx =327 /(12,5 – 3,4) = 72 см2
Момент с учетом неразрезности пояса М = ( Fd / 4)0.9 = ( 10 /4 )0.9 = 675 кН см.
Проверка несущей способности пояса: по табл.5 приложения для сечения из двух уголков n = 1, c = 1.6.
Пол формуле (9.10) для растянутого волокна (по обушку)
800 / (44 = 0,893 Читайте также: При какой температуре замерзает вода в водопроводе
Пояса тяжелых ферм имеют в разных панелях разные сечения, связанные общностью типа и условиями сопряжения стержней в узлах. Пред началом
подбора устанавливают тип сечения (Н-образное, швеллерное, коробчатое) и намечают места изменения сечения. В сварных Н-образных сечениях обычно
изменяется высота вертикалов; в крайнем случае, может меняться и их толщина при сохранении постоянства расстояния между наружными гранями сечения. Горизонталь из условия устойчивости и жесткости сечения должена иметь толщину не менее расстояния между вертикалями и не менее 12 мм.
Основой швеллерных сечений являются два швеллера, которые проходят через все сечения (см. рис. 9.11,д
Швеллерное сечение развивают путем добавления вертикальных листов.
После подбора сечений производят их проверку. Проверка сечений сжатых стержней ферм выполняется так же, как центрально-сжатых колонн (см. гл.8). Н-образных – как сплошных, швеллерных – как сквозных, с той разницей, что ширина “b
” сечений здесь является заданной, а не определяемой из условия равно устойчивости.
При учете жесткости узлов подбор сечений ферм выполняют как внецентренно сжатых или внецентренно растянутых элементов.
Раскосы ферм обычно принимают швеллерного (см. рис.9.11,д
Н-образного сечения (см. рис.9.11,а
или 9.11,
в
). Швеллерные сечения более выгодны при работе на продольный изгиб и поэтому часто применяются для длинных гибких раскосов, но они более трудоемки, по сравнению с
Ширину раскосов для простоты сопряжений на монтаже принимают на 2 мм меньше расстояние между гранями фасонок.
Конструкция легких ферм
Общие требования к конструированию. Чтобы избежать дополнительных напряжений от расцентровки осей стержней в узлах, их необходимо центрировать в узлах по осям, проходящим через центр тяжести (с округлением до 5 мм).
Угловые моменты, определяются как произведение нормальных усилий стержней и внешних узловых сил на их плечи до точки пересечения двух раскосов (рис.9.15).
Момент 1, распределяется между элементами фермы, сходящимися в узле пропорционально их погонным жесткостям. Если жесткость элементов решетки по сравнению с поясом мала, то момент
Резку стержней решетки производят, нормально к оси стержня, для крупных стержней допускают косую резку с целью уменьшения размеров фасонки. |
Рис. 9.15. К определению дополнительных моментов от расцентровки узлов |
Чтобы уменьшить сварочные напряжения в фасонках, стержни решетки не
доводятся до поясов на расстояние мм, но не более 80 мм (здесь — толщина фасонки в мм). Между торцами стыкуемых элементов поясов ферм, перекрываемых накладками, оставляют зазор не менее 50 мм.
Толщину фасонок выбирают в зависимости от действующих усилий (табл.9.2) и принятой толщины сварных швов. При значительной разнице усилий в стержнях решетки можно принимать две толщины в пределах отправочного элемента. Разница толщин фасонок в смежных узлах не должна превышать 2 мм.
Размеры фасонок определяются необходимой длиной швов крепления элементов. Фасонки должны быть простого очертания, чтобы упростить их изготовление и уменьшить количество обрезков. Целесообразно унифицировать размеры фасонок и иметь на ферму один – два типоразмера. Стропильные фермы пролетом 18-24 м разбивают на два отправочных элемента с укрупнительными стыками в средних узлах. Стыки следует проектировать так, чтобы правая и левая полуфермы были взаимозаменяемыми.
При проектировании ферм со стержнями из широкополочных двутавров и тавров, из замкнутых гнуто сварных профилей или из круглых труб надо пользоваться специальными руководствами.
Таблица 9.2. Рекомендуемые толщины фасонок
Максимальное усилие, в стержнях решетки, кН | До 150 | 160-250 | 260-400 | 410-600 | 610- | 1010- | 1410- | Более 1800 |
Толщина фасонки, мм |
Фермы из одиночных уголков
В легких сварных фермах из одиночных уголков узлы можно проектировать без фасонок, приваривая стержни непосредственно к полке поясного уголка угловыми швами (рис.9.16). Уголки следует прикреплять обваркой по контуру. Допускается приварка уголка одним фланговым швом (у обушка) и лобовыми швами, а также центрация осей стрежней решетки на обушок пояса
Рис. 9 16. Узлы ферм из одиночных уголков
). Если для крепления стержней решетки к полке поясов не хватает
места, то к полке пояса приваривают планку (рис.9.16,б
), создающую в узле необходимое уширение.
Фермы из парных уголков
В фермах из парных уголков, составленных тавром, узлы проектируют на фасонках, которые заводят между уголками. Стержни решетки прикрепляют к фасонке фланговыми швам (рис.9.17). Усилие в элементе распределяется между швами по обушку и перу уголка обратно пропорционально их расстояниям до оси стержня. Разность площадей швов регулируется толщиной и длиной швов. Концы фланговых швов выводят на торцы стержня на 20 мм для снижения концентрации напряжения. Фасонки прикрепляют к поясу сплошными швами и
выпускают их за обушок поясных уголков на 10-15 мм.
Швы, прикрепляющие фасонку к поясу, при отсутствии узловых нагрузок рассчитывают на разность усилий в смежных панелях пояса (рис.9.16,в
В месте опирания на верхний пояс прогонов или кровельных плит
,
г
) фасонки не д оводят до обушков поясных уголков на 10-15мм.
Чтобы прикрепить прогоны, к верхнему поясу фермы приваривают уголок с отверстиями под болты (рис.9.17,в
). В местах опирания крупнопанельных плит верхний пояс стропильной фермы усиливают накладками мм, если толщина поясных уголков менее 10 мм при шаге ферм 6 м и менее 14 мм при шаге ферм 12 м.
В избежании ослабления сечения верхнего пояса не следует приваривать накладки поперечными швами.
При расчете узлов обычно задаются значением “ ” и определяют требуемую длину шва.
Фасонки ферм с треугольной решеткой конструируют прямоугольного сечения, с раскосной решеткой – в виде прямоугольной трапеции.
Для обеспечения плавной передачи усилия и снижения концентрации напряжений угол между краем фасонки и элементом решетки должен быть не менее 150 (рис.9.17,в
Стыки поясов необходимо перекрывать накладками, выполненными из
листов (рис.9.18) или уголка. Для того чтобы прикрепить уголковую накладку
необходимо срезать обушок и полку уголка. Уменьшение его площади сечения компенсируется фасонкой.
При установке листовых накладок в работу включается фасонка. Центр тяжести сечения в месте стыка не совпадает с центром тяжести сечения пояса, и оно работает на внецентренное растяжение (или сжатие), поэтому стык пояса
выносят за пределы узла, чтобы облегчить работу фасонок.
Для обеспечения совместной работы уголков их соединяют прокладками. Расстояние между прокладками должно быть не более 40i
для сжатых и 80
i
для растянутых элементов, где
i
— радиус инерции одного уголка относительно оси, параллельной прокладке. При этом в сжатых элементах ставится не менее двух прокладок.
Решения укрупнительного узла фермы при их поставке из отдельных отправочных элементов показаны на рис.9.19.
Конструкции опорных узлов зависит от вида опор (металлические или железобетонные колонны, кирпичные стены и т.д.) и способ сопряжения (жесткое или шарнирное ).
При свободном опирании ферм на нижележащую конструкцию возможное решение опорного узла показано на рис.9.20. Давление фермы через плиту
Рис. 9.17. Узлы ферм из парных уголков |
а – центрирование стержней; б – узел при раскосной решетке; в – прикрепление прогонов; г – прикрепление крупнопанельных плит
передается на опору. Площадь плиты определяется по несущей способности
где — расчетное сопротивление материала опоры на сжатие.
Плита работает на изгиб от отпора материала опоры аналогично плите базы колонны (см. гл.8).
Давление фермы на опорную плиту передается через фасонку и опорную стойку, образующие жесткую опору крестового сечения. Оси пояса и опорного раскоса центрируются на ось опорной стойки.
Швы, приваривающие фасонку и опорную стойку к плите, рассчитывают на
Рис. 9.18. Заводской стык пояса с изменением сечения |
В опорной плите устраивают отверстия для анкеров. Диаметр отверстий делают в 2-2,5 раза больше диаметра анкеров, а шайбы анкерных болтов приваривают к плите.
Для удобства сварки и монтажа узла расстояние между нижним поясом и
опорной плитой принимают больше 150мм.
Аналогично конструируем опорный узел при опирании фермы в уровне верхнего пояса (рис.9.19.б).