какую мощность имеет достаточный алфавит для представления текстовой информации в пк

Мощность алфавита в информатике

какую мощность имеет достаточный алфавит для представления текстовой информации в пк. картинка какую мощность имеет достаточный алфавит для представления текстовой информации в пк. какую мощность имеет достаточный алфавит для представления текстовой информации в пк фото. какую мощность имеет достаточный алфавит для представления текстовой информации в пк видео. какую мощность имеет достаточный алфавит для представления текстовой информации в пк смотреть картинку онлайн. смотреть картинку какую мощность имеет достаточный алфавит для представления текстовой информации в пк.

Описание термина

Понятие мощности алфавита находится в основании изучения информатики. Алфавитом принято называть набор многочисленных символов. Сумма всех их в определённом языке и есть алфавитная мощность. Иными словами, это количество всех символов, входящих в конкретно взятый язык. Сюда входят не только буквы, но и прочие обозначения, в частности:

какую мощность имеет достаточный алфавит для представления текстовой информации в пк. картинка какую мощность имеет достаточный алфавит для представления текстовой информации в пк. какую мощность имеет достаточный алфавит для представления текстовой информации в пк фото. какую мощность имеет достаточный алфавит для представления текстовой информации в пк видео. какую мощность имеет достаточный алфавит для представления текстовой информации в пк смотреть картинку онлайн. смотреть картинку какую мощность имеет достаточный алфавит для представления текстовой информации в пк.

Это определение считается обобщённым и не принимает во внимание вычисления информационной составляющей сообщения. Она может содержать в себе числа, знаки препинания и прочее. В этом случае прибегают к использованию другого способа. Его суть основывается на том, что любая буква, цифра или знак обладают собственным информационным объемом данных. Компьютер работает с этим информационным кодом и распознает то, что было написано.

Основным постулатом в информатике является тот факт, что устройство разбирает введённую информацию исключительно в двоичном коде в форме нуля и единицы. В итоге получается, что абсолютно любой символ алфавита может быть успешно закодирован при помощи соответствующего подбора этих двух цифровых символов. Самая маленькая последовательность, применяемая при обозначении какой-либо цифры, буквы или другого знака, состоит из двух элементов.

Информационная масса отдельно взятого символа обычно изображается в форме информационной стандартной измерительной единицы, которая называется «бит». Восемь битов становятся равны одному байту.

Отображение символов в двоичном коде

Алфавитная мощность может быть использована на практике только при наличии двоичного кода. В качестве примера можно использовать упрощённый алфавит, состоящий всего из четырёх символов. В этом случае разрядность их и информационное представление описываются следующим образом:

какую мощность имеет достаточный алфавит для представления текстовой информации в пк. картинка какую мощность имеет достаточный алфавит для представления текстовой информации в пк. какую мощность имеет достаточный алфавит для представления текстовой информации в пк фото. какую мощность имеет достаточный алфавит для представления текстовой информации в пк видео. какую мощность имеет достаточный алфавит для представления текстовой информации в пк смотреть картинку онлайн. смотреть картинку какую мощность имеет достаточный алфавит для представления текстовой информации в пк.

Из этого списка можно сделать вывод о том, что если алфавитная мощность равняется 4, то масса отдельного единичного символа будет составлять 2 бита. Если же есть алфавит, состоящий из 8 символов, то при подборе двоичного трёхзначного кода для него комбинационное количество будет следующим:

Иными словами, если алфавитная мощность равна 8, то вес отдельно взятого символа для двоичного трёхзначного кода составит 3 бита.

Вычисление мощности алфавита

какую мощность имеет достаточный алфавит для представления текстовой информации в пк. картинка какую мощность имеет достаточный алфавит для представления текстовой информации в пк. какую мощность имеет достаточный алфавит для представления текстовой информации в пк фото. какую мощность имеет достаточный алфавит для представления текстовой информации в пк видео. какую мощность имеет достаточный алфавит для представления текстовой информации в пк смотреть картинку онлайн. смотреть картинку какую мощность имеет достаточный алфавит для представления текстовой информации в пк.

Эта формула была изобретена американским инженером Ральфом Хартли более сотни лет тому назад. Она применяется для работы с равновероятными событиями и используется для определения мощности конкретного буквенного набора, которая обозначается буквой N (информационная масса или объём). n означает численность бит в словесной единице, иными словами, количество знаков внутри двоичного кода. Так, если n равен 1, то N тоже равен 1, при n = 2 N = 4, при n = 3 N = 8, при n = 4 N = 16.

Чтобы сформулировать теорию о численности информации в набранном словосочетании, пользуются формулой I=K*i. В этом случае К обозначает численность всех символов в предложении, а i — это информационная масса символа.

При ответе на вопрос, как найти мощность алфавита, нужно сказать, что в русском языке 33 буквы, поэтому это можно выразить как N = 33. Для сравнения, аналогичный показатель в английском, немецком и французском языках равняется 26, в испанском — 27. Венгерский язык, например, является 40-символьным.

Существует также и клавиатурный язык, куда входят не только буквы, но и дополнительные знаки. Так, в русском языке есть ещё 10 цифр и 11 символов, а также пробел и пара скобок. Их мощность прибавляется к аналогичному буквенному показателю, и на выходе получается N = 33+10+11+1+2=57. В некоторых случаях букву «ё» не выделяют в качестве отдельного самостоятельного символа, и в таком случае полная мощность русского алфавита становится равна 56.

Определение информационного объёма в тексте

Почти всегда при наборе текста на компьютерах и других электронных устройствах приходится сталкиваться с написанием различных символов. К ним следует отнести:

По всем расчётам получается, что мощность компьютерного алфавита составляет 256 различных символов и вариантов. В соответствии с формулой Хартли, N = 256, а i — масса любого из значков в клавиатурном алфавите соответствует одному байту, или восьми битам.

какую мощность имеет достаточный алфавит для представления текстовой информации в пк. картинка какую мощность имеет достаточный алфавит для представления текстовой информации в пк. какую мощность имеет достаточный алфавит для представления текстовой информации в пк фото. какую мощность имеет достаточный алфавит для представления текстовой информации в пк видео. какую мощность имеет достаточный алфавит для представления текстовой информации в пк смотреть картинку онлайн. смотреть картинку какую мощность имеет достаточный алфавит для представления текстовой информации в пк.

Размер любой напечатанной фразы может быть вычислен по формуле V=K ⋅ log2N. В этом случае N обозначает количество всех символов в алфавите, а K — это численность знаков непосредственно в напечатанной фразе. Так, например, имеется произвольный текст объёмом в 25 листов. На каждом из них расположено по 45 строчек текста, содержащих по 58 символов.

Исходя из этого, на любой отдельной странице будет 45*58 = 2610 байт информации. В целом же по всему тексту этот объём будет равен 2610*25 = 65250 байт. Для обозначения мощности алфавита в информатике общепринятым вариантом является буква N из формулы Хартли. Именно ее чаще всего указывают в большинстве учебников и профессиональной литературе.

В кодовой таблице ASCII используют восьмибитную кодировку текстовых сообщений. Она позволяет полностью вместить основной набор символов кириллического и латинского алфавитов как в строчном, так и в прописном вариантах. Также с её помощью можно отобразить знаки препинания, цифры и прочие базовые знаки. Часто пользователям приходится иметь дело с более крупными объёмами, состоящими из триллионов байтов.

Для удобства их всегда переводят в увеличенные величины — кило-, мега-, гигабайты и прочее. Для их упрощённого обозначения используются специальные сокращения: Кб, Мб, Гб и так далее. 1 Кб равняется 1024 байтам (2 байта в десятой степени), 1 Мб составляет 1024 Кб (2 Кб в десятой степени) и так далее. Исходя из этого, 65250 байт будут составлять 63,72 килобайта.

Поскольку один отдельный символ состоит из 8 битов, то устанавливать их кодировку целиком не представляется возможным. Вместо этого предпочтительнее образовать кодировку трёхбитовых комбинаций. Расчёт этого действия проводится по формуле Хартли, где n-ная степень будет равняться трём. В результате получается N, равная 8.

При определении мощности чаще всего используют алфавитный подход. Он говорит о том, что объём информации, заложенной в тексте, зависит исключительно от мощности самого алфавита и размера сообщения (то есть количества символов, содержащихся в нём). Этот показатель не имеет никакой связи со смысловым наполнением для человека.

Примеры расчёта мощности

какую мощность имеет достаточный алфавит для представления текстовой информации в пк. картинка какую мощность имеет достаточный алфавит для представления текстовой информации в пк. какую мощность имеет достаточный алфавит для представления текстовой информации в пк фото. какую мощность имеет достаточный алфавит для представления текстовой информации в пк видео. какую мощность имеет достаточный алфавит для представления текстовой информации в пк смотреть картинку онлайн. смотреть картинку какую мощность имеет достаточный алфавит для представления текстовой информации в пк.

От пользователей или обучающихся в задачах часто требуют научиться определять информационный объём какого-либо сообщения, приняв информационный вес символа за один байт. Так, в отрывке из поэмы Н. Н. Некрасова «Крестьянские дети»:

Я из лесу вышел; был сильный мороз»

будет 67 символов вместе с пробелами, то есть, в соответствии с условиями задания, 67 байт. Их количество умножают на 8 (количество битов в байте), и на выходе получается 536 битов.

Таким образом, зная в теории суть мощности, можно без проблем определять информационный объем различных сообщений.

Источник

Представление текстовой информации в компьютере (8 класс)

Урок по теме: Представление текстовой информации в компьютере (8 класс)

сформировать у учащихся представление о том, как в компьютере кодируется текстовая информация.

Учащиеся должны научиться:

кодировать и декодировать символы с помощью таблицы кодов;

находить информационный объем текстов и сообщений.

Программно-дидактическое обеспечение: ПК, таблицы кодов, текстовый редактор, калькулятор.

Постановка целей урока.

Как кодируются символы в компьютере? Почему именно так, а не иначе?

Всегда ли разные компьютеры «понимают» друг друга? Почему?

Сколько текстов поместится на дискете? А на жестком диске?

Как в компьютере кодируются символы?

Что такое «компьютерный алфавит»? Какова его мощность?

Чему равен информационный объем одного символа компьютерного алфавита?

Почему иногда текст, состоящий из букв русского алфавита, полученный с другого компьютера, мы видим на своем компьютере в виде «абракадабры»?

Изложение нового материала.

Компьютеры не самого рождения могли обрабатывать символьную информацию. Лишь с конца 60-х годов они стали использоваться для обработки текстов и в настоящее время большинство пользователей ПК занимаются вводом, редактированием и форматированием текстовой информации.

Таблица кодирования ASCII.

А теперь «заглянем» в память компьютера и разберемся, как же представлена в нем текстовая информация.

Текстовая информация состоит из символов: букв, цифр, знаков препинания, скобок и других. Мы уже говорили, что множество всех символов, с помощью которых записывается текст, называется алфавитом, а число символов в алфавите — его мощностью.

Для представления текстовой информации в компьютере используется алфавит мощностью 256 символов. Мы знаем, что один символ такого алфавита несет 8 битов информации: 2 в 8 степени равно 256. 8 битов = 1 байт, следовательно:

Один символ в компьютерном тексте занимает 1 байт памяти.

Как мы выяснили, традиционно для кодирования одного символа используется 8 бит. И, когда люди определились с количеством бит, им осталось договориться о том, каким кодом кодировать тот или иной символ, чтобы не получилось путаницы, т.е. необходимо было выработать стандарт – все коды символов сохранить в специальной таблице кодов. В первые годы развития вычислительной техники таких стандартов не существовало, а сейчас наоборот, их стало очень много, но они противоречивы. Первыми решили эти проблемы в США, в институте стандартизации. Этот институт ввел в действие таблицу кодов ASCII ( American Standard Code for Information Interchange – стандартный код информационного обмена США).

Рассмотрим таблицу кодов ASCII.

Таблица ASCII разделена на две части. Первая – стандартная – содержит коды от 0 до 127. Вторая – расширенная – содержит символы с кодами от 128 до 255.

Первые 32 кода отданы производителям аппаратных средств и называются они управляющие, т.к. эти коды управляют выводом данных. Им не соответствуют никакие символы.

Коды с 32 по 127 соответствуют символам английского алфавита, знакам препинания, цифрам, арифметическим действиям и некоторым вспомогательным символам.

Коды расширенной части таблицы ASCII отданы под символы национальных алфавитов, символы псевдографики и научные символы.

Стандартная часть таблицы кодов ASCII

какую мощность имеет достаточный алфавит для представления текстовой информации в пк. картинка какую мощность имеет достаточный алфавит для представления текстовой информации в пк. какую мощность имеет достаточный алфавит для представления текстовой информации в пк фото. какую мощность имеет достаточный алфавит для представления текстовой информации в пк видео. какую мощность имеет достаточный алфавит для представления текстовой информации в пк смотреть картинку онлайн. смотреть картинку какую мощность имеет достаточный алфавит для представления текстовой информации в пк.

Если вы внимательно посмотрите на обе части таблицы, то увидите, что все буквы расположены в них по алфавиту, а цифры – по возрастанию. Этот принцип последовательного кодирования позволяет определить код символа, не заглядывая в таблицу.

Коды цифр берутся из этой таблицы только при вводе и выводе и если они используются в тексте. Если же они участвуют в вычислениях, то переводятся в двоичную систему счисления.

Коды национального (русского) алфавита

расширенной части таблицы ASCII

Акакую мощность имеет достаточный алфавит для представления текстовой информации в пк. картинка какую мощность имеет достаточный алфавит для представления текстовой информации в пк. какую мощность имеет достаточный алфавит для представления текстовой информации в пк фото. какую мощность имеет достаточный алфавит для представления текстовой информации в пк видео. какую мощность имеет достаточный алфавит для представления текстовой информации в пк смотреть картинку онлайн. смотреть картинку какую мощность имеет достаточный алфавит для представления текстовой информации в пк.
льтернативные системы кодирования кириллицы.

Тексты, созданные в одной кодировке, не будут правильно отображаться в другой. В настоящее время для поддержки букв русского алфавита (кириллицы) существует несколько кодовых таблиц (кодировок), которые используются различными операционными системами, что является существенным недостатком и в ряде случаев приводит к проблемам, связанным с операциями декодирования числовых значений символов.

Для разных типов ЭВМ используются различные кодировки:

В настоящее время существует 5 кодовых таблиц для русских букв: Windows (СР(кодовая страница)1251), MS – DOS (СР(кодовая страница)866), KOИ – 8 (Код обмена информацией, 8-битный) (используется в OS UNIX), Mac (Macintosh), ISO (OS UNIX).

Одним из первых стандартов кодирования кириллицы на компьютерах был стандарт КОИ-8.

Национальная часть кодовой таблицы стандарта КОИ8-Р

какую мощность имеет достаточный алфавит для представления текстовой информации в пк. картинка какую мощность имеет достаточный алфавит для представления текстовой информации в пк. какую мощность имеет достаточный алфавит для представления текстовой информации в пк фото. какую мощность имеет достаточный алфавит для представления текстовой информации в пк видео. какую мощность имеет достаточный алфавит для представления текстовой информации в пк смотреть картинку онлайн. смотреть картинку какую мощность имеет достаточный алфавит для представления текстовой информации в пк.

В настоящее время применяется и кодовая таблица, размещенная на странице СР866 стандарта кодирования текстовой информации, которая используется в операционной системе MS DOS или сеансе работы MS DOS для кодирования кириллицы.

Нкакую мощность имеет достаточный алфавит для представления текстовой информации в пк. картинка какую мощность имеет достаточный алфавит для представления текстовой информации в пк. какую мощность имеет достаточный алфавит для представления текстовой информации в пк фото. какую мощность имеет достаточный алфавит для представления текстовой информации в пк видео. какую мощность имеет достаточный алфавит для представления текстовой информации в пк смотреть картинку онлайн. смотреть картинку какую мощность имеет достаточный алфавит для представления текстовой информации в пк.
ациональная часть кодовой таблицы СР866

В настоящее время для кодирования кириллицы наибольшее распространение получила кодовая таблица, размещенная на странице СР1251 соответствующего стандарта, которая используется в операционных системах семейства Windows фирмы Microsoft.

Национальная часть кодовой таблицы СР1251

какую мощность имеет достаточный алфавит для представления текстовой информации в пк. картинка какую мощность имеет достаточный алфавит для представления текстовой информации в пк. какую мощность имеет достаточный алфавит для представления текстовой информации в пк фото. какую мощность имеет достаточный алфавит для представления текстовой информации в пк видео. какую мощность имеет достаточный алфавит для представления текстовой информации в пк смотреть картинку онлайн. смотреть картинку какую мощность имеет достаточный алфавит для представления текстовой информации в пк.

Во всех представленных кодовых таблицах, кроме таблицы стандарта Unicode, для кодирования одного символа отводится 8 двоичных разрядов (8 бит).

В мире существует примерно 6800 различных языков. Если прочитать текст, напечатанный в Японии на компьютере в России или США, то понять его будет нельзя. Чтобы буквы любой страны можно было читать на любом компьютере, для их кодировки стали использовать 2 байта (16 бит).

N = 65536 N – мощность алфавита символов в кодовой таблице Unicode.

i – информационный вес символа

Основополагающая таблица использования кодового пространства Unicode

Источник

Какую мощность имеет достаточный алфавит для представления текстовой информации в пк

Юнико́д — стандарт кодирования символов, позволяющий представить знаки практически всех письменных языков.
Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода». Применение этого стандарта позволяет закодировать очень большое число символов из разных письменностей: в документах Unicode могут соседствовать китайские иероглифы, математические символы, буквы греческого алфавита, латиницы и кириллицы, при этом становится ненужным переключение кодовых страниц.
Стандарт состоит из двух основных разделов: универсальный набор символов и семейство кодировок. Универсальный набор символов задаёт однозначное соответствие символов кодам — элементам кодового пространства, представляющим неотрицательные целые числа. Семейство кодировок определяет машинное представление последовательности кодов UCS.
Коды в стандарте Юникод разделены на несколько областей. Область с кодами от U+0000 до U+007F содержит символы набора ASCII с соответствующими кодами. Далее расположены области знаков различных письменностей, знаки пунктуации и технические символы. Часть кодов зарезервирована для использования в будущем. Под символы кириллицы выделены области знаков с кодами от U+0400 до U+052F, от U+2DE0 до U+2DFF, от U+A640 до U+A69F (см. Кириллица в Юникоде).

Универсальная система кодирования (Юникод) представляет собой набор графических символов и способ их кодирования для компьютерной обработки текстовых данных.
Графические символы — это символы, имеющие видимое изображение. Графическим символам противопоставляются управляющие символы и символы форматирования. Графические символы включают в себя следующие группы: буквы, содержащиеся хотя бы в одном из обслуживаемых алфавитов; цифры; знаки пунктуации; специальные знаки (математические, технические, идеограммы и пр.); разделители.
Юникод — это система для линейного представления текста. Символы, имеющие дополнительные над- или подстрочные элементы, могут быть представлены в виде построенной по определённым правилам последовательности кодов (составной вариант, composite character) или в виде единого символа (монолитный вариант, precomposed character).

Модифицирующие символы
Графические символы в Юникоде подразделяются на протяжённые и непротяжённые (бесширинные). Непротяжённые символы при отображении не занимают места в строке. К ним относятся, в частности, знаки ударения и прочие диакритические знаки. Как протяжённые, так и непротяжённые символы имеют собственные коды. Протяжённые символы иначе называются базовыми, а непротяжённые — модифицирующими; причём последние не могут встречаться самостоятельно. Например, символ «á» может быть представлен как последовательность базового символа «a» (U+0061) и модифицирующего символа « ́» (U+0301) или как монолитный символ «á» (U+00C1).
Особый тип модифицирующих символов — селекторы варианта начертания. Они действуют только на те символы, для которых такие варианты определены. В версии 5.0 варианты начертания определены для ряда математических символов, для символов традиционного монгольского алфавита и для символов монгольского квадратного письма.

Термины «композиция» и «декомпозиция» понимают под собой соответственно соединение или разложение символов на составные части.

Примеры

Исходный текстNFDNFCNFKDNFKC
FrançaisFranc\u0327aisFran\xe7aisFranc\u0327aisFran\xe7ais
А, Ё, Й\u0410, \u0415\u0308, \u0418\u0306\u0410, \u0401, \u0419\u0410, \u0415\u0308, \u0418\u0306\u0410, \u0401, \u0419
\u304b\u3099\u304c\u304b\u3099\u304c
Henry IVHenry IVHenry IVHenry IVHenry IV
Henry ⅣHenry \u2163Henry \u2163Henry IVHenry IV

Юникод включает практически все современные письменности, в том числе:
арабскую, армянскую, бенгальскую, бирманскую, глаголицу, греческую, грузинскую, деванагари, еврейскую, кириллицу, китайскую (китайские иероглифы активно используются в японском языке, а также достаточно редко в корейском), коптскую, кхмерскую, латинскую, тамильскую, корейскую (хангыль), чероки, эфиопскую, японскую (которая включает в себя кроме китайских иероглифов ещё и слоговую азбуку),
и другие.

С академическими целями добавлены многие исторические письменности, в том числе: руны, древнегреческая, египетские иероглифы, клинопись, письменность майя, этрусский алфавит.

Способы представления
Юникод имеет несколько форм представления: UTF-8, UTF-16 (UTF-16BE, UTF-16LE) и UTF-32 (UTF-32BE, UTF-32LE). Была разработана также форма представления UTF-7 для передачи по семибитным каналам, но из-за несовместимости с ASCII она не получила распространения и не включена в стандарт. 1 апреля 2005 годабыли предложены две шуточные формы представления: UTF-9 и UTF-18 (RFC 4042).
В Microsoft Windows NT и основанных на ней системах Windows 2000 и Windows XP в основном используется форма UTF-16LE. В UNIX-подобных операционных системах GNU/Linux,BSD и Mac OS X принята форма UTF-8 для файлов и UTF-32 или UTF-8 для обработки символов в оперативной памяти.

UTF-8
UTF-8 — представление Юникода, обеспечивающее наилучшую совместимость со старыми системами, использовавшими 8-битные символы. Текст, состоящий только из символов с номером меньше 128, при записи в UTF-8 превращается в обычный текст ASCII. И наоборот, в тексте UTF-8 любой байт со значением меньше 128 изображает символ ASCII с тем же кодом. Остальные символы Юникода изображаются последовательностями длиной от 2 до 6 байт (на деле, только до 4 байт, поскольку в Юникоде нет символов с кодом больше 10FFFF, и вводить их в будущем не планируется), в которых
первый байт всегда имеет вид 11xxxxxx, а остальные — 10xxxxxx.
Формат UTF-8 был изобретён 2 сентября 1992 года Кеном Томпсоном и Робом Пайком и реализован в Plan 9. Сейчас стандарт UTF-8 официально закреплён в документах RFC 3629 и ISO/IEC 10646 Annex D.
Символы UTF-8 получаются из Unicode следующим образом:

Порядок байтов
В потоке данных UTF-16 старший байт может записываться либо перед младшим, либо после младшего. Аналогично существует два варианта четырёхбайтной кодировки — UTF-32BE и UTF-32LE.
Для определения формата представления Юникода в начало текстового файла записывается сигнатура — символ U+FEFF (неразрывный пробел с нулевой шириной), также именуемыйметкой порядка байтов (англ. byte order mark, BOM). Это позволяет различать UTF-16LE и UTF-16BE, поскольку символа U+FFFE не существует. Также этот способ иногда применяется для обозначения формата UTF-8, хотя к этому формату и неприменимо понятие порядка байтов. Файлы, следующие этому соглашению, начинаются с таких последовательностей байтов:UTF-8 EF BB BFUTF-16BE FE FFUTF-16LE FF FEUTF-32BE 00 00 FE FFUTF-32LE FF FE 00 00
К сожалению, этот способ не позволяет надёжно различать UTF-16LE и UTF-32LE, поскольку символ U+0000 допускается Юникодом (хотя реальные тексты редко начинаются с него).
Файлы в кодировках UTF-16 и UTF-32, не содержащие BOM, должны иметь порядок байтов big-endian (unicode.org).

Юникод и традиционные кодировки
Внедрение Юникода привело к изменению подхода к традиционным 8-битным кодировкам. Если раньше кодировка задавалась шрифтом, то теперь она задаётся таблицей соответствия между данной кодировкой и Юникодом. Фактически 8-битные кодировки превратились в форму представления некоторого подмножества Юникода. Это намного упростило создание программ, которые должны работать с множеством разных кодировок: теперь, чтобы добавить поддержку ещё одной кодировки, надо всего лишь добавить ещё одну таблицу перекодировки в Юникод.
Кроме того, многие форматы данных позволяют вставлять любые символы Юникода, даже если документ записан в старой 8-битной кодировке. Например, в HTML можно использоватькоды с амперсандом.

Реализации
Большинство современных операционных систем в той или иной степени обеспечивают поддержку Юникода.
В операционных системах семейства Windows NT для внутреннего представления имён файлов и других системных строк используется двухбайтовая кодировка UTF-16LE. Системные вызовы, принимающие строковые параметры, существуют в однобайтном и двухбайтном вариантах. Подробнее см. в статье Юникод в операционных системах Microsoft.
UNIX-подобные операционные системы, в том числе GNU/Linux, BSD, Mac OS X, используют для представления Юникода кодировку UTF-8. Большинство программ могут работать с UTF-8 как с традиционными однобайтными кодировками, не обращая внимания на то, что символ представляется как несколько последовательных байт. Для работы с отдельными символами строки обычно перекодируются в UCS-4, так что каждому символу соответствует машинное слово.
Одной из первых успешных коммерческих реализаций Юникода стала среда программирования Java. В ней принципиально отказались от 8-битного представления символов в пользу 16-битного. Сейчас большинство языков программирования поддерживают строки Юникода, хотя их представление может различаться в зависимости от реализации.

Методы ввода
Поскольку ни одна раскладка клавиатуры не может позволить вводить все символы Юникода одновременно, от операционных систем и прикладных программ требуется поддержка альтернативных методов ввода произвольных символов Юникода.

Microsoft Windows
Начиная с Windows 2000, служебная программа «Таблица символов» (charmap.exe) показывает все символы в ОС и позволяет копировать их в буфер обмена. Похожая таблица есть, например, в Microsoft Word.
Иногда можно набрать шестнадцатеричный код, нажать Alt+X, и код будет заменён на соответствующий символ, например, в WordPad, Microsoft Word. В редакторах Alt+X выполняет и обратное преобразование.
Во многих программах MS Windows, чтобы получить символ Unicode, нужно при нажатой клавише Alt набрать десятичное значение кода символа на цифровой клавиатуре. Например, полезными при наборе кириллических текстов будут комбинации Alt+0171 («) и Alt+0187 (»). Интересны также комбинации Alt+0133 (…) и Alt+0151 (—).

Macintosh
В Mac OS 8.5 и более поздних версиях поддерживается метод ввода, называемый «Unicode Hex Input». При зажатой клавише Option требуется набрать четырёхзначный шестнадцатеричный код требуемого символа. Этот метод позволяет вводить символы с кодами, большими U+FFFF, используя пары суррогатов; такие пары операционной системой будут автоматически заменены на одиночные символы. Этот метод ввода перед использованием нужно активизировать в соответствующем разделе системных настроек и затем выбрать как текущий метод ввода в меню клавиатуры.
Начиная с Mac OS X 10.2, существует также приложение «Character Palette», позволяющее выбирать символы из таблицы, в которой можно выделять символы определённого блока или символы, поддерживаемые конкретным шрифтом.

GNU/Linux
В GNOME также есть утилита «Таблица символов», позволяющая отображать символы определённого блока или системы письма и предоставляющая возможность поиска по названию или описанию символа. Когда код нужного символа известен, его можно ввести в соответствии со стандартом ISO 14755: при зажатых клавишах Ctrl и Shift ввести шестнадцатеричный код (начиная с некоторой версии GTK+ ввод кода нужно предварить нажатием клавиши «U»). Вводимый шестнадцатеричный код может иметь до 32 бит в длину, позволяя вводить любые символы Юникода без использования суррогатных пар.
Все приложения X Window, включая GNOME и KDE, поддерживают ввод при помощи клавиши Compose. Для клавиатур, на которых нет отдельной клавиши Compose, для этой цели можно назначить любую клавишу — например, Caps Lock.
Консоль GNU/Linux также допускает ввод символа Юникода по его коду — для этого десятичный код символа нужно ввести цифрами расширенного блока клавиатуры при зажатой клавише Alt. Можно вводить символы и по их шестнадцатеричному коду: для этого нужно зажать клавишу AltGr, и для ввода цифр A—F использовать клавиши расширенного блока клавиатуры от NumLock до Enter (по часовой стрелке). Поддерживается также и ввод в соответствии с ISO 14755. Для того чтобы перечисленные способы могли работать, нужно включить в консоли режим Юникода вызовом unicode_start(1) и выбрать подходящий шрифт вызовом setfont(8).
Mozilla Firefox для Linux поддерживает ввод символов по ISO 14755.
источник

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *