какую функцию выполняют эфферентные нейроны

Афферентные и эфферентные нервные проводники и их роль в психологии

Вы будете перенаправлены на Автор24

Понятие и виды нейронов

Нейрон – это электрически возбудимая клетка, функциональная единица нервной системы.

Каждый нейрон имеет клеточное тело, дендриты и аксон. Нейроны делятся на три типа:

Физические стимулы, такие как звук или свет, активируют афферентные нейроны, превращая модальности в нервные импульсы. Они делают это, используя сенсорные рецепторы, находящиеся в их клеточных мембранах. Основные клеточные тела афферентных нейронов расположены вблизи головного и спинного мозга, которые в совокупности образуют центральную нервную систему.

Клетки эфферентных нейронов расположены в центральной нервной системе и называются моторными нейронами. Получив данные от разных нейронов, включая афферентные нейроны и интернейроны, эфферентные нейроны принимают эти сигналы от центральной нервной системы и передают нервные импульсы периферической нервной системе, мышцам и железам, чтобы инициировать реакцию на стимул.

Как они работают вместе и чем отличаются

Афферентные нейроны обычно имеют два аксона, которые передают электрохимические сигналы в позвоночный столб или мозг. Оказавшись там, сигнал проходит через сеть интернейронов и через эфферентный нейрон. Афферентно-эфферентные пары нейронов, которые проходят через позвоночник, управляют рефлексами (такими, как реакция коленного рефлекса).

Готовые работы на аналогичную тему

Афферентные нейроны предназначены для реагирования на различные раздражители. Например, афферентный нейрон, предназначенный для реакции на тепло, обнаруживает избыточное тепло и посылает импульс через центральную нервную систему. Затем эфферентный нейрон заставляет мышцы сокращаться, чтобы отвести тело от жары. Кожа имеет сенсорные рецепторы для тепла, холода, удовольствия, боли и давления.

Афферентные нейроны имеют круглые и гладкие клеточные тела, в то время как эфферентные нейроны имеют спутниковые тела. Афферентные нейроны обнаруживаются в периферической нервной системе, а эфферентные нейроны располагаются в центральной нервной системе. Аксоны в афферентных нейронах движутся от ганглиев (скопление нервных клеток, в которых находятся афферентные и эфферентные нейроны) к спинному мозгу. Длинный аксон фактически связан с эфферентным нейроном.

Значимость нейронов

Пациенты с травмой спинного мозга имеют дефицит двигательной и сенсорной систем. Что именно это означает с биологической точки зрения?

Центральная нервная система включает головной и спинной мозг. Периферическая нервная система состоит из сети нейронов, которая охватывает органы, мышцы и тело. Нейроны в обеих системах работают вместе, чтобы помочь нам думать, выживать и воздействовать на мир вокруг нас.

Нервная система работает по принципу ввода и вывода, восприятия и (пере) действия. Живые существа способны чувствовать, что происходит в их окружении, и что-то делать в ответ на это. Давайте рассмотрим простой пример: если машина собирается ударить вас, вы прыгаете с дороги. Это простое действие сложнее, чем кажется. Глаза увидели машину, мозг понял, что это опасно, и велел ногам соскочить с дороги. Другой пример: если пламя свечи обжигает палец, человек немедленно оттягиваете руку назад. То есть человек сначала почувствовал, а затем начал действовать.

Важно знать, что нервная система связана с деятельностью всего организма. Например, он всегда получает информацию о точном положении конечности, не глядя на нее, сканируя сгибание и растяжение суставов и мышц. Это чувство важно для движения тела, например, во время спорта, и иногда его называют шестым чувством. Основываясь на этой постоянной обратной связи, нервная система может контролировать деятельность организма, либо добровольно (движение мышц), либо невольно (сердцебиение).

Таким образом, если двигательные (эфферентные) волокна разрушены, человек не сможет поднять ногу, потому что команда не будет передаваться от мозга к мышцам в ноге. Если затронуты сенсорные (афферентные) волокна, органы чувств не будут уведомлять мозг, например, если кто-то ударит вас по ноге. На самом деле, после повреждения спинного мозга в основном повреждается комбинация эфферентных и афферентных волокон.

Как описано ранее, нервная система может рассматриваться как «система замкнутого цикла» ощущений, решений и реакций. В зависимости от сложности реакции и задействованных мышечных групп (частей тела), участвуют разные уровни центральной нервной системы.

В некоторых случаях замкнутый цикл не требует вмешательства более высоких уровней, таких как мозг. Афферентные волокна также напрямую связаны с эфферентными волокнами. Коленный рефлекс, также известный как рефлекс коленного рефлекса, является хорошим примером. Этот простой тест, который многие проходили во время медицинского осмотра, выявляет рефлекс, необходимый для поддержания осанки и равновесия, позволяя человеку ходить, не думая о каждом отдельном шаге.

Когда реакция является более сложной, требуется вмешательство более высоких уровней центральной нервной системы. Например, выход из машины: глаз обнаруживает автомобиль и передает эту информацию в мозг. Затем мозг вырабатывает соответствующий ответ (выпрыгивая в сторону) и посылает соответствующее двигательное действие мышцам.

Подводя итог, можно сказать, что то, в какой степени повреждены афферентные и эфферентные волокна после травмы спинного мозга, определяет, есть ли у пациентов дефицит ощущения и удержания позы или командования мышцами.

Источник

ВВЕДЕНИЕ. В периферической нервной системе различают афферентный и эфферентный отделы

Понятие и виды нейронов

Определение 1
Нейрон – это электрически возбудимая клетка, функциональная единица нервной системы.

Каждый нейрон имеет клеточное тело, дендриты и аксон. Нейроны делятся на три типа:

Сенсорная информация передается от периферии тела к главному органу — мозгу. Сенсорная информация включает в себя нервные импульсы (то есть вещи, которые люди слышат, трогают, видят, ощущают на вкус и чувствуют их запах), которые передаются от органов чувств. Афферентные нейроны также называют сенсорными нейронами, и именно эти специализированные клетки передают нервные импульсы от тела непосредственно к центральной нервной системе.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Физические стимулы, такие как звук или свет, активируют афферентные нейроны, превращая модальности в нервные импульсы. Они делают это, используя сенсорные рецепторы, находящиеся в их клеточных мембранах. Основные клеточные тела афферентных нейронов расположены вблизи головного и спинного мозга, которые в совокупности образуют центральную нервную систему.

Клетки эфферентных нейронов расположены в центральной нервной системе и называются моторными нейронами. Получив данные от разных нейронов, включая афферентные нейроны и интернейроны, эфферентные нейроны принимают эти сигналы от центральной нервной системы и передают нервные импульсы периферической нервной системе, мышцам и железам, чтобы инициировать реакцию на стимул.

Афферентный ассоциативный эфферентный нейрон

Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражений, возбуждения, выработки импульса и его передачи. Она является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой.

В нервной ткани выделяют два типа клеток — нервные и глиальные. Нервные клетки (нейроны, или нейроциты) — основные структурные компоненты нервной ткани, выполняющие специфическую функцию. Нейроглия обеспечивает существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции.

Нейроны, или нейроциты, — специализированные клетки нервной системы, ответственные за получение, обработку и передачу сигнала (на: другие нейроны, мышечные или секреторные клетки). Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги — звенья цепи, из которой построена нервная система. В зависимости от функции в рефлекторной дуге различают три типа нейронов:

Афферентные (или рецепторные, чувствительные) нейроны воспринимают импульс, эфферентные (или двигательные) передают его на ткани рабочих органов, побуждая их к действию, а ассоциативные (или вставочные) осуществляют связь между нейронами.Подавляющее большинство нейронов (99,9%) — ассоциативные.Нейроны отличаются большим разнообразием форм и размеров. Нейроны состоят из тела (или перикариона) и отростков: одного аксона и различного числа ветвящихся дендритов. По количеству отростков различают три типа нейронов:

· мультиполярные (большинство) и

Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Различают глию центральной и периферической нервной системы.Клетки глии центральной нервной системы делятся на макроглию и микроглию.

Макроглия развивается из глиобластов нервной трубки и включает: эпендимоциты, астроциты и олигодендроглиоциты.

Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы. Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость (ликвор).

Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов — протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты — преимущественно в белом веществе.

Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром. Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя (изолируя) их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд. Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности.

Олигодендроциты — имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы — нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов.

Микроглия представляет собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки (возможно, из премоноцитов красного костного мозга). Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы. Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной (ветвистой, или покоящейся) микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы.

Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты (или шванновские клетки) и глиоциты ганглиев (или мантийные глиоциты).

Нейролеммоциты Шванна формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов.

Нервные волокна

Отростки нервных клеток, покрытые оболочками, называются нервными волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном, так как чаще всего (за исключением чувствительных нервов) в составе нервных волокон находятся именно аксоны. В центральной нервной системе оболочки отростков нейронов образуются отростками олигодендроглиоцитов, а в периферической — нейроалеммоцитами Шванн. Безмиелиновые нервные волокна находятся преимущественно в составе автономной, или вегетативной, нервной системы. Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи. В нервных волокнах внутренних органов, как правило, в таком тяже имеется не один, а несколько осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в соседнее. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. По мере погружения осевых цилиндров в тяж нейролеммоцитов оболочки последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану — мезаксон, на которой как бы подвешен осевой цилиндр.

Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Они также состоят из осевого цилиндра, «одетого» оболочкой из нейролеммоцитов Шванна, но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. В миелиновом слое периодически встречаются узкие светлые линии-насечки миелина, или насечки Шмидта — Лантермана. Через определенные интервалы (1-2 мм) видны участки волокна, лишенные миелинового слоя, — это т.н. узловатые перехваты, или перехваты Ранвье. В процессе миелинизации аксон погружается в желобок на поверхности нейролеммоцита. Края желобка смыкаются. При этом образуется двойная складка плазмолеммы нейролеммоцита — мезаксон. Мезаксон удлиняется, концентрически наслаивается (как бы накручивается) на осевой цилиндр и образует вокруг него плотную слоистую зону — миелиновый слой. Отсутствие миелинового слоя в области узловых перехватов объясняется тем, что в этом участке волокна кончается один нейролеммоцит и начинается другой. Осевой цилиндр в этом месте частично прикрыт интердигитирующими отростками нейролеммоцитов. Оболочка аксона (аксолемма) обладает в области перехвата значительной электронной плотностью.

Отрезок волокна между смежными перехватами называется межузловым сегментом. Длина межузлового сегмента, так же как и толщина миелинового слоя, зависит от толщины осевого цилиндра. Насечка миелина (Шмидта-Лантермана) представляет собой участок миелинового слоя, где завитки мезаксона лежат неплотно друг к другу, образуя спиральный туннель, идущий снаружи внутрь и заполненный цитоплазмой нейролеммоцита, т.е. место расслоения миелина. Снаружи от нейролеммоцита располагается базальная мембрана.

Миелиновые волокна центральной нервной системы не имеют насечек миелина, а нервные волокна не окружены базальными мембранами.

Нервные волокна заканчиваются концевыми аппаратами — нервными окончаниями. Различают три группы нервных окончаний:

· межнейрональные синапсы, осуществляющие связь нейронов между собой;

· эффекторные окончания (эффекторы), передающие нервный импульс на ткани рабочего органа (на мышечные или железистые клетки)

· рецепторные (или аффекторные, или же чувствительные) окончания

Синапсы — это структуры, предназначенные для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры. Синапсы определяют направление проведения импульса. Если раздражать аксон электрическим током, импульс пойдет в обоих направлениях; но импульс, идущий в сторону тела нейрона и его дендритов, не может быть передан на другие нейроны. Только импульс, достигающий терминалей аксона, с помощью синапсов может передать возбуждение на другой нейрон, мышечную или железистую клетку. В зависимости от способа передачи импульса синапсы могут быть химическими или электрическими (электротоническими). В зависимости от локализации окончаний терминальных веточек аксона, межнейрональные синапсы различают: аксо-дендритические, аксо-соматические, аксо-аксональные.

Химические синапсы передают импульс на другую клетку с помощью специальных биологически активных веществ — нейромедиаторов, или нейротрансмиттеров, находящихся в синаптических пузырьках. Терминаль аксона представляет собой пресинаптическую часть, а область второго нейрона, или другой иннервируемой клетки, с которой она контактирует, — постсинаптическую часть. В пресинаптической части находятся синаптические пузырьки, многочисленные митохондрии и отдельные нейрофиламенты. Форма и содержимое синаптических пузырьков связаны с функцией синапса. Если передача импульса совершается с помощью медиатора ацетилхолина, — синапсы называют холинергическими, если медиатором служит норадреналин — адренергическими. В зависимости от передаваемого сигнала, нейромедиаторы, и соответственно синапсы, могут быть возбуждающими или тормозными. Такие нейромедиаторы, как дофамин, глицин и гамма-аминомасляная кислота (ГАМК) являются медиаторами тормозящих синапсов.

Область синаптического контакта между двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны.

Пресинаптическая мембрана — это мембрана клетки, передающей импульс. В этой области локализованы кальциевые каналы, способствующие слиянию синаптических пузырьков с пресинаптической мембраной и выделению медиатора в синаптическую щель.

Синаптическая щель между пре- и постсинаптической мембранами имеет ширину 20-30 нм. Мембраны прочно прикреплены друг к другу в синаптической области филаментами, пересекающими синаптическую щель.

Постсинаптическая мембрана — это участок плазмолеммы клетки, воспринимающий медиаторы и генерирующий импульс. Она снабжена рецепторными зонами для восприятия соответствующего нейромедиатора.

Лимбический отдел мозгу. Структура, что формирует лимбический мозг. Связь лимбичной системы с гипоталамусом, ретикулярноюформацией и корою большого мозга. Функциональные особенности лимбической системы, сделать рисунок

Лимбическая система — совокупность ряда структур головного мозга. Участвует в регуляции функций внутренних органов, обоняния, инстинктивного поведения, эмоций, памяти, сна, бодрствования и др.Включает в себя:* Обонятельная луковица (Bulbus olfacrorius)* Обонятельный тракт (Tractus olfactorius)* обонятельный треугольник* переднее продырявленное вещество (Substanti perforata)* поясная извилина (Gyrus Cinguli) (eng Cingulate gyrus) : автономные функции регуляции частоты сердцебиений, и кровяного давления* парагиппокампальная извилина(Gyrus hyppocampi )* зубчатая извилина(Gyrus dentatus)* гиппокамп (Hippocampus) : требуемый для формирования долговременной памяти* миндалевидное тело (Corpus amygdaloideum) (eng Amygdala) : агрессия и осторожность* гипоталамус (Hypothalamus) : регулирует автономную нервную систему через гормоны, регулирует кровяное давление и сердцебиение, голод, жажду, половое влечение, цикл сна и пробуждения* сосцевидное тело (Corpus Mamillare) (eng Mammilary body) : важен для формирования памяти

Все многочисленные формирования лимбической коры кольцеобразно охватывают основание переднего мозга и являются своеобразной границей между новой корой и стволовой частью мозга.Через гипоталамус и мамиллярные тела Лимбическая система соединена с центральным серым веществом и ретикулярной формацией среднего мозга. К миндалине и гиппокампу идут пути от височной доли коры, передающие информацию от зрительной, слуховой и соматической сенсорных систем. Установлены связи лимбической системы с лобными долями коры переднего мозга. Наконец, в пределах лимбической системы идентифицированы сложные циклические связи, создающие условия для циркуляции возбуждения по сложным круговым путям. Примером такой циклической связи может служить так называемый круг Папеса, идущий от гиппокампа через свод — мамиллярное тело — переднее ядро таламуса — кору поясной извилины и пресубикулум обратно к гиппокампу.

Очевидно, сложность связей и внутренней организации лимбической системы свидетельствует об ее участии в интеграции функций новой коры и стволовых образований головного мозга.

Функции лимбической системы

Получая информацию о внешней и внутренней средах организма, лимбическая система запускает вегетативные и соматические реакции, обеспечивающие адекватное приспособление организма к внешней среде и сохранение гомеостаза. Частные функции лимбической системы:

· регуляция функции внутренних органов (через гипоталамус);

· формирование мотиваций, эмоций, поведенческих реакций;

· играет важную роль в обучении;

Лимбическая система (limbus

— граница, край) — совокупность ряда структур головного мозга. Участвует в регуляции функций внутренних органов, обоняния, инстинктивного поведения, эмоций, памяти, сна, бодрствования и др.

Как они работают вместе и чем отличаются

Афферентные нейроны обычно имеют два аксона, которые передают электрохимические сигналы в позвоночный столб или мозг. Оказавшись там, сигнал проходит через сеть интернейронов и через эфферентный нейрон. Афферентно-эфферентные пары нейронов, которые проходят через позвоночник, управляют рефлексами (такими, как реакция коленного рефлекса).

Нужна консультация преподавателя в этой предметной области? Задай вопрос преподавателю и получи ответ через 15 минут! Задать вопрос

Афферентные нейроны предназначены для реагирования на различные раздражители. Например, афферентный нейрон, предназначенный для реакции на тепло, обнаруживает избыточное тепло и посылает импульс через центральную нервную систему. Затем эфферентный нейрон заставляет мышцы сокращаться, чтобы отвести тело от жары. Кожа имеет сенсорные рецепторы для тепла, холода, удовольствия, боли и давления.

Афферентные нейроны имеют круглые и гладкие клеточные тела, в то время как эфферентные нейроны имеют спутниковые тела. Афферентные нейроны обнаруживаются в периферической нервной системе, а эфферентные нейроны располагаются в центральной нервной системе. Аксоны в афферентных нейронах движутся от ганглиев (скопление нервных клеток, в которых находятся афферентные и эфферентные нейроны) к спинному мозгу. Длинный аксон фактически связан с эфферентным нейроном.

Афферентные нейроны имеют один длинный миелинизированный дендрит, тогда как эфферентные нейроны имеют более короткие дендриты. Дендрит в афферентном нейроне — это то, что отвечает за передачу нервных импульсов от рецепторов к телу клетки, в то время как в эфферентном нейроне импульсы проходят через дендрит и выходят через нервно-мышечное соединение, которое образуется между эффекторами и аксоном.

Источник

Функции нейронов: как работают и какую задачу выполняют

Наше тело состоит из бесчисленного множества клеток. Приблизительно 100.000.000 из них являются нейронами. Что такое нейроны? Каковы функции нейронов? Вам интересно узнать, какую задачу они выполняют и что вы можете благодаря им делать? Рассмотрим это подробнее.

какую функцию выполняют эфферентные нейроны. картинка какую функцию выполняют эфферентные нейроны. какую функцию выполняют эфферентные нейроны фото. какую функцию выполняют эфферентные нейроны видео. какую функцию выполняют эфферентные нейроны смотреть картинку онлайн. смотреть картинку какую функцию выполняют эфферентные нейроны.Функции нейронов

Вы когда-нибудь задумывались о том, как информация проходит через наше тело? Почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Где и как мы распознаём эту информацию? Всё это — действия нейронов. Как мы понимаем, что это холодное, а это — горячее…а это мягкое или колючее? За получение и передачу этих сигналов по нашему телу отвечают нейроны. В этой статье мы подробно расскажем о том, что такое нейрон, из чего он состоит, какова классификация нейронов и как улучшить их формирование.

Основные понятия о функциях нейронов

Прежде, чем рассказывать о том, каковы функции нейронов, необходимо дать определение того, что такое нейрон и из чего он состоит.

Нейроны — это клетки, формирующие нервную систему, другими словами, нервные клетки. Самыми главными функциями нейронов являются получение информации и её передача посредством электрических импульсов по всем каналам коммуникации, по всей нервной системе. Для того, чтобы нейроны могли осуществлять свои функции, им необходимы следующие части, образующие структуру нейрона:

Форма, посредством которой могут между собой общаться нейроны (отправлять информацию и получать её от других нейронов) называется Синапс. Речь идёт о процессе, при котором аксон одного нейрона передаёт информацию дендритам другого нейрона (канал между двумя частями нейронов называют «синаптическая щель»).

Функции нейронов

Наше тело выполняет много задач и обрабатывает огромный объем информации, идущей от мозга через всю нервную систему. Вследствие этого нейронам необходимо иметь специализацию. По этой причине, несмотря на то, что основной функцией нейронов является получение и передача информации, существуют различные типы нейронов, различающихся по:

Функциям нейронов:

Структуре:

Типу нейротрансмиттера (нейромедиатора), усиливающего функцию нейрона:

Ранее считалось, что на протяжении человеческой жизни новые нейроны в мозге не образуются. Однако группа учёных Каролинского Медицинского Института (Швеция) провела эксперимент с использованием углерода-14, который показал, что в человеческом мозге, а именно, в Гиппокампе, ежедневно могут рождаться 1400 клеток. Однако с возрастом эта цифра сокращается.

Этот процесс формирования нейронов называется Нейрогенез. Тот факт, что даже в зрелом возрасте возникают новые нейроны, играет важнейшую роль для их функций, а также пластичности и способности мозга адаптироваться к новым ситуациям.

Советы: как улучшить функции нейронов

Как и всегда, здоровые привычки играют важную роль в оптимальном развитии функций нейронов. Наш мозг благодарит нас за заботу о теле. Как говорится, «в здоровом теле — здоровый дух». Что мы можем сделать, чтобы улучшить пластичность мозга и нейрогенез?

Недостаток сна, однообразие, постоянная рутина и высокий уровень стресса приводят к замедлению нейрогенеза.

Могут ли нейроны умереть?

Конечно, и это происходит по разным причинам.

Выводы о нейронных функциях

Мы с вами узнали о том, что нейроны — это маленькие связные, которые передвигаются по всему нашему телу. Таким образом, функции нейронов заключаются в получении и передаче информации, как от различных структур (мышц и желез), так и от других нейронов.

Сейчас мы уже можем ответить на вопрос, который был задан в самом начале статьи: почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Чувствительные нейроны получают информацию о боли, а моторные нейроны в ответ посылают сигнал убрать руку.

Мы увидели, что внутри нашего тела на протяжении всей жизни, всё время, каждую секунду, проходят бесконечные информационные, коммуникационные потоки и электрические импульсы.

Также мы с вами узнали о том, что наш организм постоянно находится в процессе развития, с момента рождения до старости. Наша нейронная структура в гиппокампе также меняется, благодаря нейрогенезу и гибели нейронов.

Призываю вас вести здоровый образ жизни, развлекаться, учиться и стремиться к личностному росту. Это поможет вам сберечь нейроны, ваших маленьких почтальонов.

В статье есть ссылки на другие материалы, в которых можно подробнее прочитать информацию по той или иной теме. Если вам интересна тема Нейрогенеза, рекомендую также прочитать вот эту интересную статью о том, как предотвратить деменцию.

Будем признательны за ваши вопросы и комментарии.

Перевела с испанского Анна Иноземцева

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *