какую функцию в клетке выполняет молекула атф

Научная электронная библиотека

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.транспортировка питательных веществ и утилизация продуктов обмена клетки;

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.поддержание тургора (упругость) клетки;

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Источник

Органические соединения клетки. Витамины и АТФ

Вопрос 1. Какое строение имеет молекула АТФ?
АТФ — это аденозинтрифосфат, нуклеотид, относящийся к группе нуклеиновых кислот. Концентрация АТФ в клетке мала (0,04 %; в скелетных мышцах 0,5 %). Молекула аденозинтрифосфорной кислоты (АТФ) по своей структуре напоминает один из нуклеотидов молекулы РНК. АТФ включает три компонента: аденин, пятиуглеродный сахар рибозу и три остатка фосфорной кислоты, соединенных между собой особыми макроэргическими связями.

Вопрос 2. Какую функцию выполняет АТФ?
АТФ является универсальным источником энергии для всех реакций, протекающих в клетке. Энергия выделяется в случае отделения от молекулы АТФ остатков фосфорной кислоты при разрыве макроэргических связей. Связь между остатками фосфорной кислоты является макроэргической, при ее расщеплении выделяется примерно в 4 раза больше энергии, чем при расщеплении других связей. Если отделяется один остаток фосфорной кислоты, то АТФ переходит в АДФ (аденозиндифосфорную кислоту). При этом выделяется 40 кДж энергии. При отделении второго остатка фосфорной кислоты выделяется еще 40 кДж энергии, а АДФ переходит в АМФ (аденозинмонофосфат). Выделившаяся энергия используется клеткой. Энергию АТФ клетка использует в процессах биосинтеза, при движении, при производстве тепла, при проведении нервных импульсов, в процессе фотосинтеза и т.д. АТФ является универсальным аккумулятором энергии в живых организмах.
При гидролизе остатка фосфорной кислоты выделяется энергия:

Вопрос 3. Какие связи называются макроэргическими?
Макроэргическими называются связи между остатками фосфорной кислоты, так как при их разрыве выделяется большое количество энергии (в четыре раза больше, чем при расщеплении других химических связей).

Вопрос 4. Какую роль выполняют в организме витамины?
Обмен веществ невозможен без участия витаминов. Витамины — низкомолекулярные органические вещества, жизненно необходимые для существования организма человека. Витамины или совсем не вырабатываются в человеческом организме, или вырабатываются в недостаточных количествах. Так как чаще всего витамины являются небелковой частью молекул ферментов (коферментами) и определяют интенсивность множества физиологических процессов в организме человека, то необходимо их постоянное поступление в организм. Исключения до некоторой степени составляют витамины группы В и А, способные в небольших количествах накапливаться в печени. Кроме того, некоторые витамины (В1 В2, К, Е) синтезируются бактериями, обитающими в толстом кишечнике, откуда и всасываются в кровь человека. При недостатке витаминов в пище или заболеваниях желудочно-кишечного тракта поступление витаминов в кровь уменьшается, и возникают заболевания, имеющие общее название гиповитаминозов. При полном отсутствии какого-либо витамина возникает более тяжелое расстройство, получившее название авитаминоза. Например, витамин D регулирует обмен кальция и фосфора в организме человека, витамин К участвует в синтезе протромбина и способствует нормальной свертываемости крови.
Витамины подразделяются на водорастворимые (С, РР, витамины группы В) и жирорастворимые (А, D, E и др.). Водорастворимые витамины усваиваются в водном растворе, а при их избытке в организме легко выводятся с мочой. Жирорастворимые витамины усваиваются вместе с жирами, поэтому нарушение переваривания и всасывания жиров сопровождается нехваткой рада витаминов (А, О, К). Значительное увеличение содержания жирорастворимых витаминов в пище может вызвать ряд нарушений обмена веществ, так как эти витамины плохо выводятся из организма. В настоящее время насчитывается не менее двух десятков веществ, относящихся к витаминам.

Источник

Биология. 11 класс

§ 8. Строение и функции РНК. АТФ

Строение и функции РНК. РНК, так же как и ДНК, представляет собой биополимер, построенный из нуклеотидов. Однако молекулы РНК имеют ряд особенностей. Вы знаете, что в состав нуклеотидов РНК вместо дезоксирибозы входит рибоза, а вместо тимина (Т) — урацил (У). Кроме того, молекулы РНК значительно короче ДНК и представлены одной полинуклеотидной цепью, а не двумя.

Лишь некоторые вирусы имеют двухцепочечные молекулы РНК, представляющие собой генетический материал этих неклеточных форм.

*Количество нуклеотидов в молекулах ДНК, как правило, исчисляется миллионами, в то время как полинуклеотидные цепи РНК обычно состоят из 75—3000 мономерных звеньев. Известно, что некоторые РНК могут включать десятки тысяч нуклеотидов, но это является не правилом, а исключением.*

Молекулы РНК могут принимать различную пространственную конфигурацию, прежде всего за счет образования водородных связей. Но, в отличие от ДНК, эти связи формируются не между двумя разными цепями, а между отдельными участками одной и той же цепи, комплементарными друг другу.

*Содержание ДНК в клетках организма сравнительно постоянно, а количество РНК сильно варьирует. Молекулы РНК обеспечивают синтез белков, поэтому наибольшее их содержание характерно для клеток, активно вырабатывающих белки. Это, например, секреторные клетки пищеварительных и эндокринных желез, синтезирующие ферменты и белковые гормоны, лейкоциты, продуцирующие антитела, и т. д.*

Существует несколько видов РНК, различающихся по строению молекул, содержанию в клетке и выполняемым функциям. Все виды РНК синтезируются на определенных участках одной из цепей ДНК. Такой синтез называется матричным, поскольку молекула ДНК является матрицей (т. е. образцом, моделью) для построения молекул РНК.

Рибосомные РНК (рРНК) составляют более 80 % всех РНК клетки. Молекулы рРНК соединяются с особыми белками и образуют рибосомы — органоиды, в которых происходит синтез белков из аминокислот.

*Молекулы рРНК составляют более 50 % массы рибосомы и имеют сложную объемную структуру. Бóльшую часть цепи рРНК составляют комплементарные участки. Они соединяются водородными связями и приобретают спиральную конфигурацию. Взаимодействуя с рибосомными белками, одна или несколько молекул рРНК компактно укладываются в пространстве. Так формируются субъединицы рибосом — структурные компоненты этих органоидов.

Установлено, что рРНК в составе рибосомы выполняют не только структурную функцию, но и каталитическую. В процессе синтеза белка они ускоряют образование пептидных связей между аминокислотами, т. е. действуют подобно ферментам. Такие молекулы РНК, обладающие каталитическим действием, были названы рибозимами (сокращение от «рибонуклеиновая кислота» и «энзим»). Кроме рРНК, известны и другие рибозимы. Они могут катализировать расщепление самих себя или других молекул РНК, а также соединять фрагменты РНК друг с другом.

До открытия рибозимов единственными биологическими катализаторами считались ферменты. За исследование каталитических свойств рибонуклеиновых кислот американские молекулярные биологи С. Олтмен и Т. Чек в 1989 г. были награждены Нобелевской премией.*

Транспортные РНК (тРНК) — самые маленькие из молекул РНК, участвующих в синтезе белков. В среднем они состоят из 80 нуклеотидов. тРНК связывают аминокислоты, доставляют их в рибосомы и обеспечивают правильное включение этих аминокислот в полипептидную цепь. Для каждой из 20 белокобразующих аминокислот существует как минимум одна особая разновидность тРНК, а для некоторых аминокислот — несколько. Содержание тРНК составляет около 15 % от общего количества клеточных РНК.

Все тРНК имеют сходное строение. Благодаря образованию внутримолекулярных водородных связей молекулы тРНК приобретают особую структуру, в которой комплементарно связанные участки чередуются с петлями (рис. 8.1). Такая пространственная конфигурация была названа клеверным листом.

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.

*Как и любая другая полинуклеотидная цепь, молекула тРНК имеет 5′- и 3′-концы. У всех тРНК на 5′-конце находится гуаниловый нуклеотид, а 3′-конец завершается последовательностью ЦЦА. Присоединение аминокислоты происходит именно к 3′-концу молекулы тРНК, поэтому он называется акцепторным хвостом.*

Матричные, или информационные, РНК (мРНК, иРНК) наиболее разнообразны по строению и длине цепей. Молекулы мРНК содержат информацию о первичной структуре определенных белков. Во время синтеза белков в рибосомах они служат матрицами, определяющими порядок расположения аминокислот в белковых молекулах. Поэтому биосинтез белка, так же как и синтез РНК, относится к матричным процессам. Количество мРНК не превышает 3—5 % всех РНК, содержащихся в клетке.

*У ядерных организмов каждая молекула мРНК, как правило, содержит закодированную информацию о структуре одного белка. Для бактерий и вирусов характерны мРНК, кодирующие несколько разных белков.*

Функции рассмотренных видов РНК связаны с процессами синтеза белка. Следовательно, рРНК, тРНК и мРНК обеспечивают реализацию наследственной информации, хранящейся в молекулах ДНК.

Источник

Какую функцию в клетке выполняет молекула атф

Основным источником энергии для клетки являются питательные вещества: углеводы, жиры и белки, которые окисляются с помощью кислорода. Практически все углеводы, прежде чем достичь клеток организма, благодаря работе желудочно-кишечного тракта и печени превращаются в глюкозу. Наряду с углеводами расщепляются также белки — до аминокислот и липиды — до жирных кислот.В клетке питательные вещества окисляются под действием кислорода и при участии ферментов, контролирующих реакции высвобождения энергии и ее утилизацию.

Почти все окислительные реакции происходят в митохондриях, а высвобождаемая энергия запасается в виде макроэргического соединения — АТФ. В дальнейшем для обеспечения внутриклеточных метаболических процессов энергией используется именно АТФ, а не питательные вещества.

Молекула АТФ содержит: (1) азотистое основание аденин; (2) пентозный углевод рибозу, (3) три остатка фосфорной кислоты. Два последних фосфата соединены друг с другом и с остальной частью молекулы макроэргическими фосфатными связями, обозначенными на формуле АТФ символом

. При соблюдении характерных для организма физических и химических условий энергия каждой такой связи составляет 12000 калорий на 1 моль АТФ, что во много раз превышает энергию обычной химической связи, поэтому фосфатные связи и называют макроэргическими. Более того, эти связи легко разрушаются, обеспечивая внутриклеточные процессы энергией сразу, как только в этом возникает необходимость.

При высвобождении энергии АТФ отдает фосфатную группу и превращается в аденозиндифосфат. Выделившаяся энергия используется практически для всех клеточных процессов, например в реакциях биосинтеза и при мышечном сокращении.

Восполнение запасов АТФ происходит путем воссоединения АДФ с остатком фосфорной кислоты за счет энергии питательных веществ. Этот процесс повторяется вновь и вновь. АТФ постоянно расходуется и накапливается, поэтому она получила название энергетической валюты клетки. Время оборота АТФ составляет всего несколько минут.

Роль митохондрий в химических реакциях образования АТФ. При попадании внутрь клетки глюкоза под действием ферментов цитоплазмы превращается в пировиноградную кислоту (этот процесс называют гликолизом). Энергия, высвобождаемая в этом процессе, затрачивается на превращение небольшого количества АДФ в АТФ, составляющего менее 5% общих запасов энергии.

Синтез АТФ на 95% осуществляется в митохондриях. Пировиноградная кислота, жирные кислоты и аминокислоты, образующиеся соответственно из углеводов, жиров и белков, в матриксе митохондрий в итоге превращаются в соединение под названием «ацетил-КоА». Это соединение, в свою очередь, вступает в серию ферментативных реакций под общим названием «цикл трикарбоновых кислот» или «цикл Кребса», чтобы отдать свою энергию.

В цикле трикарбоновых кислот ацетил-КоА расщепляется до атомов водорода и молекул углекислого газа. Углекислый газ удаляется из митохондрий, затем — из клетки путем диффузии и выводится из организма через легкие.

Атомы водорода химически очень активны и поэтому сразу вступают в реакцию с кислородом, диффундирующим в митохондрии. Большое количество энергии, выделяющейся в этой реакции, используется для превращения множества молекул АДФ в АТФ. Эти реакции достаточно сложны и требуют участия огромного числа ферментов, входящих в состав крист митохондрий. На начальном этапе от атома водорода отщепляется электрон, и атом превращается в ион водорода. Процесс заканчивается присоединением ионов водорода к кислороду. В результате этой реакции образуются вода и большое количество энергии, необходимой для работы АТФ-синтетазы — крупного глобулярного белка, выступающего в виде бугорков на поверхности крист митохондрий. Под действием этого фермента, использующего энергию ионов водорода, АДФ превращается в АТФ. Новые молекулы АТФ направляются из митохондрий ко всем отделам клетки, включая ядро, где энергия этого соединения используется для обеспечения самых разных функций.
Данный процесс синтеза АТФ в целом называют хемиосмотическим механизмом образования АТФ.

какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф. картинка какую функцию в клетке выполняет молекула атф. какую функцию в клетке выполняет молекула атф фото. какую функцию в клетке выполняет молекула атф видео. какую функцию в клетке выполняет молекула атф смотреть картинку онлайн. смотреть картинку какую функцию в клетке выполняет молекула атф.Использование аденозинтрифосфата митохондрий для реализации трех важных функций клетки:
мембранного транспорта, синтеза белка и мышечного сокращения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *