какую форму имеет капля воды в невесомости
Какую форму имеет капля воды в невесомости
Физика запись закреплена
В невесомости капля жидкости способна принимать не только шарообразную форму. #physics
Физики из Ноттингемского университета провели ряд экспериментов по определению формы водяных капель, подвешенных в пространстве с помощью диамагнитной левитации. Было показано, что при определенных условиях капли в равновесии могут принимать не только шарообразную или овальную форму, но также треугольную, четырех- и даже пятиугольную. Результаты исследований могут быть использованы как для объяснения структур астрономических объектов (черные дыры, пояс Койпера), так и в описании быстровращающихся атомных ядер.
То, что капля жидкости в отсутствие гравитации имеет форму шара, кажется очевидным, но подтвердить этот факт экспериментально смог лишь в 1863 году бельгийский физик Жозеф Плато (Joseph Plateau), давно ослепший к тому времени, после того как он однажды 25 секунд не отрываясь смотрел на полуденное солнце. Для доказательства он поместил каплю оливкового масла в водно-спиртовую смесь, имевшую такую же плотность, как и масло. Уравновешивая силу тяжести, действующую на каплю, архимедовой (выталкивающей) силой, ученый добивался состояния невесомости капли. В результате таких манипуляций капля принимала сферическую форму. Бельгийский ученый также провел эксперименты по вращению капли и наблюдению за происходящими с ней в результате этого метаморфозами. Плато удалось установить, что, по мере возрастания скорости вращения оливкового масла, капля меняла свою форму с шарообразной на овальную, а далее трансформировалась в двудольную структуру, напоминающую сильно вытянутый овал. И наконец, при очень большой скорости вращения капля становилась тором. Схематически изменение формы капли с увеличением скорости вращения жидкости в ней изображено на рис. 1.
К сожалению, опыты Плато не были совершенными по одной простой причине. Среда, которая окружала исследуемый объект в его опытах, за счет сил вязкости оказывает нежелательное дополнительное воздействие на форму капли. А потому результаты исследований бельгийского физика носили лишь качественный характер. И на протяжении 150 лет с момента экспериментов бельгийца главным препятствием на пути к количественному описанию процесса вращения и трансформации формы капли оставалось влияние сил вязкого трения.
Сравнительно недавно эксперименты Плато были повторены в космическом корабле с капелькой кремниевого масла. Но подобные эксперименты, как несложно понять, удовольствие недешевое — не запускать же ради этого специальный космический корабль. А программы научных исследований в космосе и без того перенасыщены, так что там не всегда находится время для исследования капель. Значит, необходимо подобрать такие условия эксперимента, чтобы одновременно убрать как действие на исследуемый объект гравитации, так и эффекты вязкого окружения (в опытах Плато, например, это трение между каплей оливкового масла и окружающей ее смесью спирта и воды).
Физики из Ноттингемского университета предложили оригинальный способ компенсации гравитации. Они решили эту проблему, используя диамагнитную левитацию водяных капель (рис. 2). Результаты своих экспериментальных изысканий ученые из Ноттингема опубликовали в журнале Physics Review Letters в статье Nonaxisymmetric Shapes of a Magnetically Levitated and SpinningWater Droplet (статья находится в открытом доступе).
Дело в том, что некоторые вещества по своей магнитной природе являются диамагнетиками (например, та же вода), то есть слабо пропускают внутрь себя магнитное поле (идеальным диамагнетиком является сверхпроводник).
Однако частично, на небольшую глубину, магнитное поле всё же проникает в диамагнитное вещество и генерирует на его поверхности электрический ток. Этот ток создает в диамагнетике собственное магнитное поле, которое как бы отталкивается от поля внешнего. Таким образом, сопротивление проникновению внешнего магнитного поля и заставляет диамагнетики зависать, или левитировать, в пространстве. Но необходимо понимать, что для возникновения диамагнитной левитации внешнее поле должно быть очень сильным. В опытах с водяными каплями магнитное поле, заставляющее капли зависать, по физическим меркам было гигантским — 16,5 Тл (в несколько десятков тысяч раз сильнее магнитного поля Земли). Интересно, что таким образом можно заставить левитировать не только водяные капли, но даже кузнечиков и лягушек.
После того как задача об уничтожении силы тяжести была успешно решена (проблема окружающей среды при этом решении уже отпадает — вязкое трение со стороны воздуха ничтожно), необходимо было придумать механизм, который заставил бы жидкость внутри подвешенных водяных капель вращаться так же, как в опытах Плато. Решение этой задачи тоже оказалось «магнитным». Ученые создали «жидкий электрический мотор»: в каплю вставлялось два тонких золотых электрода, один из которых совпадал с осью симметрии капли (рис. 2а); через электроды пропускался ток, направление протекания которого было перпендикулярно силовым линиям внешнего магнитного поля.
В итоге возникающий момент силы Лоренца заставлял жидкость внутри капли вращаться, и частота этого вращения зависела от силы тока, протекающего между электродами (рис. 2b). Интересной дополнительной особенностью «жидкого электрического мотора» является способность неосевого (то есть несовпадающего с осью симметрии капли) электрода создавать на капле поверхностные волны небольшой амплитуды. Для чего это было необходимо, станет ясно дальше.
С помощью изобретенной авторами статьи техники удалось наблюдать различные формы капель. В частности, при вращении жидкости внутри таких объектов, согласно теоретическим предсказаниям, существует возможность наблюдать их переход из двудольной формы в треугольную (трехдольную), причем последняя структура, как предсказывает та же теория, должна быть неустойчива. На примере водяной капли объемом 1,5 мл (что соответствует диаметру 14 мм), у которой с помощью поверхностно-активного вещества коэффициент поверхностного натяжения уменьшен вдвое, английские ученые впервые показали, что, вопреки теоретическим предсказаниям, можно добиться устойчивости треугольной формы. Стабилизация достигалась за счет комбинации вращения капли и генерирования на ней поверхностных волн. Таким образом, поверхностные волны играли роль своего рода стабилизатора треугольной формы водяной капли.
Как оказалось, возбуждение на капле поверхностных волн вкупе с ее вращением позволяет получить значительное многообразие форм водяных капель, о которых Плато, возможно, даже и не догадывался.
На рис. 3 приведена временная эволюция 1,5 мл водяной капли с поверхностно-активным веществом в своем составе при изменении частоты вращения (rps — количество оборотов в секунду). Несколько пояснений к графику. При малой частоте вращения и отсутствии поверхностных волн на капле ее форма напоминает сплюснутый сфероид (oblate spheroid) — проще говоря, форма капли овальная. После того как с помощью тока были активизированы поверхностные волны, а скорость вращения жидкости внутри капли продолжала увеличиваться, ее форма трансформировалась в сильно вытянутый овал — иными словами, стала двудольной (красная область на графике и снимок M1b под графиком). Желтый участок графика соответствует области, когда капля начинает вращаться вокруг своей оси как твердое тело (как единое целое) и когда одновременно с этим по капле «гуляют» поверхностные волны. В итоге капля выглядит так, как это показано на фотографии M1c — ученые такую форму капли назвали двудольная статическая + вращающаяся.
Дальнейшее увеличение силы тока и скорости вращения превращает каплю из овальной (двудольной) в треугольную (при этом динамическое поведение капли не твердотельное) — зеленая область на графике и фото М2. Далее, когда поверхностные волны стабилизировали такую структуру водяной капли, увеличивая скорость вращения можно добиться явления, при котором капля начинает себя вести подобно твердому телу — вращается как единое целое. На графике эта область отражена синим цветом (см. также фото М4). Обращает на себя внимание существование переходной области, когда капля только начинает себя вести как твердое тело (см. фото М3). На графике такая область соответствует градации зеленого и синего цветов.
Несколько богаче в эволюционном отношении проявляет себя капля воды объемом 3 мл уже без добавок поверхностно-активных веществ (рис. 4). До некоторого времени поведение большей капли ничем качественно не отличается от рассмотренного выше. Однако, как это видно из рис. 4, на пятой минуте эксперимента при монотонно возрастающей угловой скорости вращения жидкости есть возможность наблюдать четырех- и даже пятиугольную форму капли (голубая и фиолетовые области на графике и фото М10 и М11), которая, однако, не ведет себя как твердое тело. Справедливости ради отметим, что такая форма не является устойчивой и со временем вырождается в двудольную (сильно вытянутый овал, фото М12), поведение которой соответствует вращающемуся твердому телу.
Здесь в виде zip-архива представлена галерея из 12 коротких фильмов, показывающих эволюцию водяных капель, изученных английскими учеными. Приведенные выше фото М1–М12 являются стоп-кадрами этих фильмов и соответствуют названиям фильмов: на видеофайлах М1–М4 заснята капля 1,5 мл, М5–М12 показана капля воды объемом 3 мл.
Эксперименты с каплями воды, по мнению ученых, представляют не только академический интерес. Поскольку стабилизация формы капли происходила вследствие сложного взаимодействия ее вращения и поверхностных волн на ней, то результаты опытов могут быть использованы в описании схожих физических явлений — как значительно большего (астрономического), так и меньшего (ядерного) масштаба. Например, при изучении формы объектов пояса Койпера, горизонта событий черных дыр или при исследовании форм быстровращающихся атомных ядер. (Кстати, заметим, что идея использовать «капельный» подход в описании характеристик атомных ядер уже довольно стара — достаточно вспомнить о полуэкспериментальной формуле Вайцзеккера, которая описывает энергию связи атомных ядер; правда, само это выражение на современном этапе развития науки уже не используется.)
Какую форму имеет капля воды в невесомости
КАПЛЯ В НЕВЕСОМОСТИ
В условиях невесомости все выглядит так же, как и в условиях весомости, за исключением отсутствия веса, в связи с чем в условиях невесомости все выглядит не так, как в условиях весомости. |
Сферическая форма капли в опыте Плато объясняется тем, что вследствие равенства плотности вещества капли и среды сила тяготения, действующая на каплю, оказывается равной выталкивающей архимедовой силе. Именно поэтому капля не расплющивается и ее форма определяется только стремлением к уменьшению поверхностной энергии на границе капля-среда.
Плато, оставаясь приверженным Земле, поставил жидкость в условия, при которых капля оказывается как бы в невесомости, в условия, когда одна из особенностей поведения капли в истинной невесомости отчетливо себя проявила.
Здесь, пожалуй, следует истолковать смысл слов «как бы в невесомости».
Последнее утверждение обычно повторяют как само собой разумеющееся. Между тем стоило бы убедиться в том, что шар действительно обладает минимальной поверхностью. Это можно сделать с помощью рассуждений, некогда предложенных немецким геометром Штайнером. Воспроизведем его рассуждения в виде двухэтапной последовательности.
Рис. 2. «Маленькие» водяные капли на ворсистой поверхности листа
чувствуют себя почти в невесомости
«Маленькие» капли совершенной формы можно наблюдать после дождя на листьях многих деревьев. Не смачивая лист, капли располагаются на нем сверкающими шариками. Особенно хороши они на тыльной, ворсистой стороне. Капли висят как бы в воздухе, поддерживаемые ворсинками. Прекрасные «маленькие» капли можно увидеть после дождя на кончиках игл кактуса или ели.
Рис. 3. В невесомости между электродом и сварным швом
формируется почти сферическая капля
Вернемся к капле, находящейся в невесомости. Советский космонавт В. Н. Кубасов наблюдал жидкие капли в условиях невесомости. Он производил опыты по электросварке плавящимся электродом в космосе. Процесс сварки был запечатлен на кинопленке. Оказалось, что на кончике электрода формируется большая, почти сферическая капля жидкого металла, существенно больше той, которая образуется при сварке в земных условиях. Капли жидкого металла, случайно оторвавшиеся от электрода, свободно парят около места сварки, подобно тому как движутся капли в опыте Плато, если их слегка толкнуть.
Творческая фантазия Плато более 100 лет назад родила идею наземного опыта с каплей, в котором она вела себя как бы в невесомости. Быть может, он тогда думал и о космосе?
Воспоминание о лекции профессора Френкеля
Лекцию Якова Ильича Френкеля я слушал поздней весной 1939 г. Он тогда приезжал в Харьков и в маленькой университетской аудитории амфитеатром, которая еще с середины прошлого века торжественно называлась «большой физической», читал лекцию о капельной модели ядра. Теперь, спустя более трети века, когда во всех подробностях известны драматические события тех дней, когда закладывались основы ядерной энергетики, ясно, что с профессором Френкелем, который всего за несколько недель до приезда в Харьков предложил идею капельной модели ядра, в аудиторию вошла сама история. Тогда же мы, студенты-физики, шли слушать очередную лекцию «гостевого» профессора, одну из многочисленных лекций, которые в «большой физической» часто читали нам университетские гости.
Начал лекцию Френкель спокойно, размеренно, но постепенно академическая размеренность исчезла: он говорил так, как можно говорить лишь о самом сокровенном, о чем непрерывно думаешь, и кажется, что открывшееся тебе прозрение и ясность абсолютно необходимо передать слушателям. Именно на этой лекции я понял смысл выражения «слушать, затаив дыхание». Затаив, возможно, для того, чтобы не было лишних звуков, а возможно, чтобы не отвлекаться для дыхания.
Теперь, когда мне на лекциях приходится рассказывать студентам о ядре, я ловлю себя на том, что невольно пытаюсь повторять фразы и рисовать картинки, которые отпечатались у меня в памяти после той далекой предвоенной лекции, слышанной в юности.
Естественно возникает вопрос, где основания для аналогии? Ведь недостаточно представить себе, что, подобно жидкой капле, ядро имеет форму шарика. Видимо, Френкель усмотрел в строении ядра более глубокие основания, чтобы уподобить его жидкой капле.
Об аналогии между атомным ядром и каплей жидкости, вернее о том, в чем он усматривает основания для аналогии, Френкель говорил так просто и естественно, будто она не была угадана его чутьем, а заведомо очевидна любому студенту. Говорил доверительно, не низводя слушателя до положения школяра, которого известный ученый одаривает крупицами своих необозримых знаний, вынуждая себя при этом опуститься до школярского уровня. Он очень умело создавал иллюзию разговора «на равных» со слушателем, который чувствует себя вправе перебить лектора, усомниться в его правоте, выразить одобрение.
Не многим дано увидеть черты сходства между веществами, характеристики которых различаются в такое число раз, а профессор Френкель увидел, и его интуиция не отступила перед числом с 18 нулями.
Профессор Френкель об этом говорил так. Деление ядра капли на две дочерние капли осуществляется не сразу, а путем постепенного вытягивания, при котором оно сначала превращается в вытянутый эллипсоид, затем центральное сечение этого эллипсоида сужается, образуя шейку. Шейка постепенно утоньшается, пока, наконец, не разорвется, после чего процесс деления может считаться законченным. Разумеется, и вытягивание, и последующий разрыв происходят в режиме колебаний ядра-капли, во время одного из периодов этих колебаний, когда изменение формы капли оказалось наиболее значительным.
На доске появились элементарные формулы: Френкель «оценивал» атомный вес того элемента, ядро которого должно потерять устойчивость и разделиться на два дочерних. Атомный вес такого элемента оказался близким 100. Оценка озадачивающая, так как если она верна, то все элементы, атомный вес которых больше 100, должны были бы потерять право на существование, а в периодической системе элементов фигурируют более тяжелые элементы, вплоть до урана, атомный вес которого 238. Что-то, видимо, в оценке не учтено. Что же? Френкель уже говорил о том, что, превращаясь в две сферические дочерние капли-ядра, материнское ядро должно постепенно вытягиваться. Это значит, что поверхность, а с ней и поверхностная энергия должны увеличиваться. Следовательно, на пути к процессу деления природой поставлен барьер, который необходимо преодолеть. Величину этого барьера можно вычислить, и во время лекции профессор это сделал. Он показал, что по мере увеличения радиуса материнского ядра-капли этот барьер постепенно снижается и становится практически равным нулю для ядра урана. Вот почему все, что можно «примыслить» за ураном, не должно быть долго жизнеспособным, а менделеевская таблица «стабильных» элементов должна оканчиваться именно ураном.
Вернемся к водопроводному крану. Капелька, формирующаяся на его конце, подвержена действию силы тяжести, которая деформирует каплю. Действие ее подобно действию электростатических сил отталкивания между двумя половинками заряженного ядра. Таким образом, если усматривать аналогию между развалом ядра и отрывом капли от кончика водопроводного крана, надо домыслить, что в кране остается капелька, подобная той, которая от него оторвалась.
После лекции профессора Френкеля прошло более 30 лет. Капельная модель ядра уточнена, улучшена, а глубокая аналогия, навеянная видом капли на кончике крана или, быть может, дождевой каплей, в науке осталась прочно. Эта аналогия помогла решить задачи общечеловеческой значимости.
Образ капли близок творчеству Френкеля, к каплям он обращался много раз в разные годы и по разным поводам.
О подпрыгнувшей капле
Вначале совсем очевидное утверждение: если в силу каких-либо обстоятельств капля приобрела несферическую форму, это означает, что ее поверхность увеличилась по сравнению с поверхностью сферы и, следовательно, увеличилась и ее поверхностная энергия. Или если в силу каких-либо обстоятельств несферическая капля вдруг приобретает сферическую форму, вследствие уменьшения поверхности должна выделиться избыточная энергия.
Допустим, что нам удалось осуществить преобразование формы капли от несферической к сферической, удалось предоставить возможность избыточной поверхностной энергии освободиться, выделиться. Кстати, эта энергия может оказаться совсем немалой. Ее очень легко вычислить, если задаться объемом капли и ее начальной формой. Вот пример, который дальше нам пригодится. Крупная капля ртути весом 20 г на стеклянной пластинке имеет форму лепешки, близкую к форме цилиндра, радиус которого 1,2 см, а высота 0,35 см. Если эта капля превратится в сферу, то при этом освобождается энергия W = 1060 эрг.
Куда же эта энергия денется, на что она способна, что может произойти после того, как капле эта энергия в качестве поверхностной станет не нужна? Какие процессы могут сыграть роль «стоков» выделившейся энергии? Очевидно, некоторая часть энергии должна будет израсходоваться на то, чтобы осуществить перемещение вещества капли, в результате которого капля станет сферической. Дело в том, что жидкость, из которой капля состоит, обладает некоторой вязкостью, и поэтому всякое изменение формы капли связано с необходимостью преодолеть сопротивление вязкой жидкости ее деформированию, т.е. с необходимостью совершить работу против сил внутреннего трения. Кроме того, часть освободившейся энергии может израсходоваться на нагрев капли. Можно ожидать, что, приобретая сферическую форму, капля будет сама себя подогревать. Кроме того, может нагреваться и пространство, окружающее каплю. В этом случае сфероидизирующаяся капля будет играть роль своеобразной печки, отапливающей пространство вокруг себя.
Как видите, стоков энергии много, и, очевидно, все «работающие», но скорость их действия и «поглощательная способность», конечно, различны. Совершенно ясно, что капля не подпрыгнет, если изменение ее формы будет происходить медленно. В этом случае принципиально возможный расход энергии на скачок не произойдет. И на борьбу с сопротивлением жидкости изменению ее формы тоже будет расходоваться мало энергии, потому что этот расход, как оказывается, тем больше, чем быстрее должно произойти изменение формы. При медленной сфероидизации капли выделяющаяся энергия была бы израсходована в основном на ее нагрев и нагрев окружающего пространства. Увидеть, как капля подпрыгнет, можно лишь при условии, что преобразование ее формы будет происходить быстро. Если, присев на корточки, мы будем медленно распрямляться, прыжок не получится: чтобы подпрыгнуть, надо, быстро распрямляясь, оттолкнуться от земли. Но что значит «быстро» применительно к капле, которая изменяет свою форму? Капле, чтобы подпрыгнуть, надо побороть силу тяжести, препятствующую прыжку.
Рис. 4. Подпрыгнувшая в невесомости капля, колеблясь, свободно летит вверх
Возникает естественный вопрос: почему этот опыт, в основе своей «классический», постановка которого не предполагает использования каких-либо новых «квантовых» идей, не был осуществлен, скажем, 150 лет назад? Неужели потому, что тогда не было автоматических кинокамер? Но мог же какой-нибудь энтузиаст-естествоиспытатель, держа в руках перед глазами прозрачную кювету с ртутной лепешкой, покрытой соляной кислотой, прыгнуть «солдатиком» в воду с десятиметровой вышки! Вынырнул бы и сообщил, что капля подпрыгнула. И скорость ее мог бы определить по зарубкам на кювете. А вот не прыгнул. Видимо, не было интереса к тому, что может произойти в невесомости. А сейчас, в наш век, интерес к невесомости огромный. Вот и пришла в голову мысль сбросить с высоты контейнер с ртутной каплей и автоматической кинокамерой.
Фильм о слиянии двух капель
Такое различие свойств жидкости и твердого тела Френкель считал не принципиальным, а только количественным. В кругу этих идей у него и появился ответ на вопрос о том, каким образом твердые порошинки при высокой температуре самопроизвольно сближаются и соединяются в одно целое. Они просто сливаются, подобно тому как сливаются две соприкоснувшиеся жидкие капли. Такое слияние и в случае твердых крупинок, и в случае жидких капель оправданно и выгодно потому, что сопровождается уменьшением поверхности порошинок-капель. Вот, пожалуй, основная идея: порошинки сливаются, и этот процесс приводит к выигрышу энергии. Теперь нужен расчет скорости процесса слияния капель или крупинок. Он завершится формулой, затем эту формулу следует вручить экспериментатору, который выступит третейским судьей между теоретиком и явлением.
Опыт ставился следующим образом: соприкасающиеся бусинки выдерживались при высокой температуре некоторое время, затем охлаждались. На охлажденных бусинках измерялась ширина контактного перешейка, а потом все повторялось сначала: нагревались, выдерживались, охлаждались, измерялись. В каждом таком цикле добывалась одна экспериментальная точка. По 5-10 точкам строилась зависимость квадрата ширины контактного перешейка (эта величина пропорциональна площади контакта) от времени. Экспериментальные точки не совсем точно укладывались на прямую, но в общем, как и предсказывает формула Френкеля, прямая получалась.
Итак, как будто круг замкнулся. Экспериментатор подтвердил правоту теоретика, узнал в «карикатуре» истинную натуру. И все же, может быть, он увидел не все? Возможно, согласие теории и эксперимента иллюзорно, оно не точное, а, как говорят, «в общих чертах». Теоретику, определившему задачу, те допущения, которые он делает, решая ее, «карикатура» простительна, а от экспериментатора можно потребовать подлинную фотографию с деталями, которые не обязательны в «карикатуре».
Теперь уместно перейти к фильму о слиянии двух капель. Он назван «Слияние вязких сфер». Чтобы избавиться от перечисленных упреков в неточности, опыт, который должен был быть заснят на кинопленку, мы поставили так.
Рис. 5. Слияние капель эпоксидной смолы
Кадры фильма свидетельствуют о том, что в основном Френкель был прав, но только в основном. Действительно, быстрее иных участков поверхности движется вогнутая поверхность контактного перешейка, но движется не только она. Оказывается, что, стремясь поскорее слиться, сферы меняют свою форму и рядом с перешейком. Поэтому центры сфер сближаются быстрее, чем это следует из расчетов Френкеля. Поэтому и площадь контакта со временем изменяется по очень сложному закону, а закон, выведенный Френкелем, проглядывает сквозь последовательность огромного числа точек лишь как нечто усредненное, справедливое приближенно. На киноленте, кроме того, были запечатлены и более далекие стадии слияния сферических капель, которые описать с помощью формул чрезвычайно трудно. Начинает перемещаться вещество во всем объеме сферы, в каждой точке с разной скоростью и в разных направлениях, и оказывается практически невозможным усмотреть черты, пригодные для создания похожей «карикатуры».
Вот уже четверть века идея Френкеля определяет деятельность всех тех, кто занимается изучением процесса спекания. Кинокамера не отменила исследование 26-летней давности, а лишь указала на детали, от которых освободила сложное явление интуиция теоретика.
Статья Эйнштейна о лорде Кельвине
В первой работе Кельвин предлагает идею генератора высокого напряжения, в котором главным работающим элементом являются капли. Им оказывается под силу перераспределять заряды между электродами и таким образом создавать огромную разность потенциалов.
Во второй работе Кельвин заинтересовался следующим вопросом: как зависит давление пара жидкости вблизи поверхности от степени ее искривленности? Если рассуждать предметно, то речь идет о том, насколько отличается давление пара вблизи изогнутой поверхности водяной капли от давления пара вблизи плоской поверхности воды, налитой в широкое блюдце.
Рис. 6. К расчету влияния кривизны поверхности жидкости на давление пара над ней |
По поводу этой формулы Эйнштейн заметил, что она действительна «независимо от того, какими причинами обусловлено возникновение кривизны поверхности».
Образ капли пустоты прочно вошел в физику твердого тела, о нем вспоминают всякий раз, когда надо осмыслить поведение различных дефектов в кристалле. И я расскажу о том, как этот образ возник. На примере рождения образа капли пустоты можно проследить, как вяжется логическое кружево мысли ученого, где сосуществуют и конкурируют фантазия и строгая формальная логика.
Первая работа Бориса Яковлевича, посвященная изучению поведения пор в кристаллах (она появилась еще в 1946 г.), начинается с анализа давно известной формулы лорда Кельвина, которая устанавливает связь между давлением пара вблизи изогнутой поверхности капли ( P R ), ее радиусом ( R ) и давлением пара вблизи плоской поверхности жидкости, из которой капля состоит ( P о ). Вот эта формула:
Легко заметить, что в формуле Кельвина нет ничего специфически «жидкого» и ее можно применять и к твердым закристаллизовавшимся каплям. Надо только при этом помнить, что поверхностное натяжение зависит от ориентации кристаллографических плоскостей, ограняющих застывшую каплю. Но это деталь, а в главном формула применима к твердым кристаллическим каплям. Из формулы следует, что чем меньше капля, т.е. чем меньше ее радиус, тем на большую величину давление пара вблизи ее поверхности превосходит давление пара вблизи плоской поверхности вещества, из которого капля состоит.
Несколько странное соседство слов «вещество» и «пустота». В действительности имеется в виду не «вещество», а отсутствие вещества. Например, в узле кристаллической решетки нет атома, которому следовало бы в этом узле быть. Этот свободный от атома узел можно назвать «атомом пустоты», а физики его иногда называют «вакансией». Очевидно, скопление большого количества «атомов пустоты» должно образовать «каплю пустоты», т.е. пору. Все это по аналогии с реальными атомами и реальным веществом: скопление большого количества, скажем, атомов железа, образует жидкую каплю железа. Разумеется, при температуре более высокой, чем температура плавления железа.
Теперь о следствиях нового прочтения формулы. И не обо всех, а о самом главном, ради которого стоило пристально всмотреться в старую формулу и заново ее прочесть.
Вот опыт, который демонстрируют на школьных уроках физики или рассказывают о нем. Небольшой стеклянный колпак (перевернутый стакан) установлен на стекле. Под колпаком блюдечко с водой и рядом на предметном стеклышке капли воды. Эти капли надо поместить на стеклышко после того, как пространство под колпаком насытится водяным паром, который образуется над плоской поверхностью воды в блюдце. Через некоторое время капли исчезнут: они испарятся, а возникшие при этом в водяном паре молекулы воды сконденсируются на поверхности воды в блюдце.
Рис. 7. Перенос жидкости из капли в блюдце |
Начали мы опыт с пористым, а окончили с беспористым кристаллом! Как быстро это произойдет? Все зависит от размеров поры и температуры кристалла. Например, пора, радиус которой один микрон, в медном кристалле при температуре 1000° С исчезает приблизительно за 30 мин.
В названии очерка нет надуманности: его содержание находится в полном соответствии с названием. Дело в том, что гладкая, чистая, полированная поверхность твердого тела для жидкой капли неудобна. Попав на нее, капля будет пытаться изменить, улучшить подложку, сделать ее более удобной, даже если для этого ей придется трудиться очень долго.
Напомню, что нет ничего удобнее для капли, чем быть взвешенной в пространстве, в невесомости: ни с чем она не соприкасается, никакие силы ее не искажают и ни к каким изменениям она не стремится. А на пластинке с плоской поверхностью все не так, даже если пластинка с каплей находится в невесомости.
Вначале подумаем над тем, чем гладкая поверхность неудобна для жидкой капли. Казалось бы, капля подвижна и должна, переливаясь, как-то приспособиться к плоской поверхности, сделать свое пребывание на ней удобным. Оказывается, что одним изменением собственной формы добиться этого капля не может.
Риc. 9. Взаимное расположение сил, действующих на контур капли,
лежащей на гладкой твердой поверхности
Опыт первый. На полированной поверхности стеклянной пластинки, сухой и чистой, располагается тонкий лепесток полимерной пленки. Хорошо, если его толщина будет не более 5 микрон. На поверхность лепестка надо посадить каплю воды и наблюдать за происходящим. Капля начнет изгибать пленку, стремясь завернуться в нее. Отчетливо это иллюстрирует приводимая кинограмма. Работает при этом та сила, которая на рисунке обозначена жирной стрелкой. Если бы полимерная пленка абсолютно подчинялась воле капли, произошло бы следующее: капля приняла бы форму сферы, равномерно покрыв себя слоем полимерной пленки. В действительности же, так как плоская пленка не может приобрести сферическую форму, капле не удается полностью в нее завернуться, но все же устраивается она при этом удобнее, чем на плоской поверхности.
Стремление капли завернуться в пленку мы объяснили, сославшись на силу, изображенную жирной стрелкой. Можно и в иных словах и понятиях описать процесс, запечатленный на кинограмме, смонтированной из кадров фильма, в котором заснята кинетика заворачивания водяной капли в пленку.
Первый кадр кинограммы свидетельствует, что капля воды смачивает полимерную пленку и располагается на ней так, как схематически изображено на предыдущем рисунке со стрелками.
Внимательно присмотритесь к каплям, которые после дождя остались на поверхности тонких листиков, и увидите, что вблизи капель листики изогнуты значительно больше, чем это могло бы произойти лишь под влиянием их веса. Капли явно готовили себе «постель» поудобнее.
Рис. 11. Взаимное расположение сил, действующих на контур капли, которая «удобно устроилась» на твердой поверхности
Итак, в названии очерка все точно. Попав на твердую поверхность, капля действительно готовит себе удобную постель: либо изгибает подложку, если ей это удается, либо выкапывает для себя удобную ямку.
Раздавленная капля
Аналогия рождается на перекрестках памяти и раздумий и иногда связывает воедино образы и события, состоящие в очень дальнем родстве. Неожиданная аналогия, даже отдаленная или поверхностная, родившись вовремя, может помочь исследователю выйти из тупика и осветить путь к решению.
Когда-то, в конце 40-х годов, я участвовал в коллективной экспериментальной работе. Ее цель заключалась в определении физических характеристик вещества, которое ранее не исследовалось. Ранее этого вещества в чистом виде просто не было: ценой больших усилий его получили химики.
Группа, в которой я работал, должна была определить температуру плавления и поверхностное натяжение вещества в жидкой фазе.
Воспоминание подсказало идею, с помощью которой можно было измерить температуру плавления крупинки. Опыт заключался в следующем. На тщательно отполированной пластинке кварца располагалась крупинка. Сверху ее накрывали другой пластинкой кварца, которая, касаясь крупинки, образовывала некоторый угол с первой пластинкой. Это устройство нагревали, и в момент, когда крупинка расплавлялась, верхняя пластинка раздавливала образовавшуюся каплю и угол между пластинками скачкообразно уменьшался. Чтобы надежнее этот момент зарегистрировать, на внешнюю поверхность верхней пластинки нанесли зеркальное покрытие и следили за тем, как отражаемый от нее луч скачком смещается. Пластинка, меняющая свое положение, была подобна металлическому стержню, который наклонялся, свидетельствуя о начале процесса плавления. Так как масса крупинки пренебрежимо мала по сравнению с массой кварцевых пластинок, между которыми она зажата, температура крупинки равна температуре пластинок и, следовательно, измерить ее совсем просто.
Величины h и R можно измерить с большой точностью, а силу F легко определить, зная вес верхней пластинки. Способ решения стоящей перед нами задачи, который подсказала возникшая вдруг аналогия, конечно, был не единственно возможным. Видимо, можно было придумать и иные приемы, но нас привлекли в нем неожиданность аналогии и возможность опровергнуть пословицу о двух зайцах.