какую фазу мышечного сокращения необходимо ограничить упростить проходить без замедления подросткам
Режимы работы (сокращения) мышц
Описаны режимы работы мышц (режимы мышечного сокращения, режимы сокращения мышц): изометрический, преодолевающий (концентрический), уступающий (эксцентрический). Дана характеристика изменений (гипертрофии, силы и повреждений мышц), происходящих в скелетных мышцах при выполнении силовых упражнений в различных режимах их работы.
Режимы работы (сокращения) мышц
Классификация режимов работы мышц на основе изменения длины мышцы
В биомеханике основным классификационным признаком является длина мышцы. На основе того, что происходит с длиной мышцы режимы работы мышц делятся на изометрический и динамический.
Изометрический режим работы мышц
Скелетные мышцы могут работать не меняя своей длины. Такой режим работы мышц называется изометрический. Иногда говорят, что мышца работает в статическом режиме. Как пример такой работы — удержание гантели в руке, не меняя ее положения. В этом случае мышцы-сгибатели предплечья (двуглавая мышца плеча, плече-лучевая мышца и др.) не меняют своей длины. В чем особенность этого режима? Мышца возбуждена, должна укорачиваться, а ее длина не меняется. Это происходит из-за того, что внешняя сила уравновешивает силу, которую развивает мышца (правильнее, конечно говорить, что момент внешней силы равен моменту силы тяги мышцы, но этот нюанс можно опустить).
Динамический режим работы мышц
Если длина мышцы меняется, неважно она уменьшается или увеличивается, то принято говорить, что мышца работает в динамическом режиме. Как пример такой работы — сгибание и разгибание руки в локтевом суставе, удерживая в руке гантель. В этом случае мышцы-сгибатели предплечья вначале укорачиваются (это происходит при сгибании руки), затем — удлиняются (это происходит при разгибании руки в локтевом суставе).
Преодолевающий режим работы мышц (концентрический режим работы мышц)
Мышца работает в преодолевающем режиме, если ее длина уменьшается. Как пример — сгибание руки в локтевом суставе, удерживая в руке гантель. Преодолевающий режим является разновидностью динамического режима работы мышц. При работе в этом режиме усилие, развиваемое мышцами больше внешней силы (правильнее, конечно, говорить, что момент силы, развиваемый мышцами, больше момента внешней силы). Мышца как бы «преодолевает» внешнюю нагрузку. В англоязычной литературе этот режим сокращения мышцы называется концентрическим.
Уступающий режим работы мышц (эксцентрический режим работы мышц)
Мышца работает в уступающем режиме, если ее длина увеличивается. Как пример — разгибание руки в локтевом суставе, удерживая в руке гантель. Уступающий режим является разновидностью динамического режима. При работе в этом режиме развиваемое мышцей усилие меньше момента внешней силы (правильнее говорить момент силы мышц меньше внешнего момента силы). Мышца как бы «уступает» внешней силе. В англоязычной литературе этот режим называется эксцентрический режим работы мышц.
Различные режимы работы мышц иллюстрируют рис.1 и рис.2.
Следует обратить внимание на тот факт, что мышцы-антагонисты при выполнении движения работают в различных режимах. Например, при сгибании руки мышцы-сгибатели укорачиваются (преодолевающий режим), а мышцы-разгибатели (их антагонисты) — удлиняются (уступающий режим).
Изменения, происходящие в мышцах непосредственно или сразу после тренировочного занятия (срочный эффект тренировки)
Многочисленными исследованиями доказано, что выполнение физических упражнений в эксцентрическом (уступающем режиме, когда мышца удлиняется) режиме вызывает большие структурные повреждения мышечных волокон, чем другие режимы сокращения мышцы. Эти повреждения затрагивают в первую очередь Z-диски саркомеров, а также белки цитоскелета.
С биохимической точки зрения эксцентрические упражнения (упражнения, выполняемые в эксцентрическом режиме) представляют для организма значительно больший стресс, чем упражнения, производимые в других режимах: уровень креатинкиназы в крови (фермента, содержащегося в мышечных волокнах и выделяющегося в кровь при их разрушении) при работе в эксцентрическом режиме значительно превышает соответствующий показатель при работе в концентрическом (преодолевающем) и изометрическом режимах.
Если измерить силу мышц после выполнения упражнений в эксцентрическом режиме, то окажется, что она уменьшается значительно больше, чем при выполнении упражнений в концентрическом режиме. О чем это говорит? Это говорит о том, что в эксцентрическом режиме повреждено больше мышечных волокон.
Изменения, происходящие в мышцах после длительного применения физических упражнений (кумулятивный тренировочный эффект)
Показано, что долговременная адаптация скелетных мышц к упражнениям, выполняемым в эксцентрическом режиме, проявляется в несколько большей гипертрофии скелетных мышц по сравнению с другими режимами. Силовые тренировки в эксцентрическом режиме приводят к увеличению силы и жесткости скелетных мышц.
При выполнении силовых упражнений в изометрическом режиме увеличивается степень перекрытия мышечных и сухожильных волокон, несколько утолщается сухожилие и увеличивается площадь прикрепления сухожилия к кости. Именно поэтому рекомендуется в конце тренировки выполнять упражнения в изометрическом режиме (около 15 минут). Считается, что это позволяет уменьшить количество травм опорно-двигательного аппарата человека.
Если мышца сокращается в динамическом режиме (концентрическом или эксцентрическом режимах), в ней через некоторое время увеличивается длина мышечных волокон и уменьшается длина сухожилия. Компьютерное моделирование (U. Proske, D.L. Morgan, 2001) подтвердило целесообразность удлинения мышечной части и укорочения сухожильной. Авторами показано, что долговременная адаптация к выполнению эксцентрических упражнений проявляется в увеличении количества саркомеров в миофибриллах мышечных волокон и уменьшении сухожильной части. Это приводит к изменению оптимальной длины мышцы при развитии активного напряжения.
При выполнении силовых упражнений в динамическом режиме (концентрическом или эксцентрическом) возрастает количество нервных волокон, иннервирующих скелетную мышцу (в 4-5 раз больше, чем в изометрическом режиме).
Классификация режимов работы мышц на основе изменения длины и (или) тонуса мышцы
В физиологии принята несколько иная классификация режимов работы скелетных мышц. В качестве классификационных признаков используется длина и тонус мышцы. Согласно этим признакам режимы работы мышц делятся на три вида: изотонический, изометрический, ауксотонический. Эту классификацию даю по учебнику А.С. Солодкова, Е.Б.Сологуб (2005)
Изотонический режим работы мышцы
Изотонический режим (режим постоянного тонуса мышцы) наблюдается при отсутствии нагрузки на мышцу, когда мышца закреплена с одного конца и свободно сокращается. Напряжение в ней при этом не изменяется. Это происходит при раздражении изолированной мышцы лягушки, закрепленной одним концом на штативе. В таком режиме в организме человека работает только одна мышца — мышца языка. В настоящее время в литературе в качестве изотонического рассматривается такой режим работы мышцы с нагрузкой, при котором по мере изменения длины мышцы ее тонус не меняется.
Изометрический режим работы мышц
Изометрический режим (режим постоянной длины мышцы) характеризуется напряжением мышцы в условиях, когда она закреплена с обеих концов или когда она не может поднять слишком большой груз. В этом случае в мышечном волокне (миофибрилле) происходят процессы сокращения, при этом одни саркомеры укорачиваются, а другие — удлиняются.
Ауксотонический режим работы мышц
Ауксотонический режим (смешанный режим) характеризуется изменением и длины и тонуса мышцы. При этом режиме сокращения происходит перемещение груза. Этот режим также называется динамическим. Имеются две разновидности этого режима: преодолевающий (концентрический) — длина мышцы уменьшается, уступающий (эксцентрический) — длина мышцы увеличивается.
Классификация режимов работы мышц на основе изменения скорости сокращения мышцы
Изокинетический режим работы мышц
«Классификация», конечно, громко сказано. Как известно, мышцы сокращаются с различной скоростью. Этот вопрос подробно рассмотрен в моей докторской диссертации (А.В. Самсонова, 1998). Однако с появлением тренажеров, на которых можно было задавать постоянную скорость сокращения мышцы, стали выделить еще и изокинетический режим работы мышц. То есть изокинетический режим работы мышц — это режим, при котором скорость укорочения или растяжения мышцы постоянна.
Какую фазу мышечного сокращения необходимо ограничить упростить проходить без замедления подросткам
Верхняя кривая на рисунке выше подобна кривой на рисунке ниже, но показывает напряжение целой интактной мышцы, а не одиночного мышечного волокна. Целая мышца содержит большое количество соединительной ткани; кроме того, саркомеры в разных частях мышцы не всегда сокращаются с одинаковой силой. В результате данная кривая по сравнению с кривой для отдельного мышечного волокна имеет в определенной степени иные размерности, но демонстрирует ту же основную форму наклона в области нормального диапазона сокращения.
Связь между длиной и напряжением мышцы до мышечного сокращения и во время него.
На рисунке выше видно, что при длине мышцы, соответствующей ее состоянию покоя (т.е. когда длина саркомера около 2 мкм), активация мышцы приводит к ее сокращению, сила которого близка к максимальной. Однако увеличение напряжения, происходящее во время сокращения и называемое активным напряжением, снижается по мере растяжения мышцы за пределы ее нормальной длины (т.е. за пределы длины саркомера примерно в 2,2 мкм). Это демонстрируется на рисунке уменьшением длины стрелки при длине мышцы больше нормы.
Без нагрузки скелетная мышца сокращается чрезвычайно быстро, достигая максимума примерно за 0,1 сек для усредненной мышцы. При наличии нагрузки по мере ее возрастания скорость сокращения постепенно снижается. Когда нагрузка возрастает до величины, равной максимальной силе, которую способна развить мышца, скорость сокращения становится нулевой, и в результате укорочения мышцы нет, несмотря на ее активацию.
Связь между нагрузкой и скоростью сокращения в скелетной мышце с поперечным сечением 1 см 2 и длиной 8 см.
Снижение скорости сокращения при увеличении нагрузки связано с тем фактом, что нагрузка на сокращающуюся мышцу противостоит силе, развиваемой мышцей при сокращении. Следовательно, общая сила, доступная для развития скорости укорочения, соответственно уменьшается.
При сокращении против нагрузки мышца выполняет работу. Это значит, что энергия перемещается от мышцы к внешней нагрузке, чтобы поднять объект до большей высоты или преодолеть сопротивление движению.
В математическом выражении работа определяется следующим уравнением:
где W — производимая работа, L — нагрузка и D — расстояние движения против нагрузки.
Источником энергии, необходимой для выполнения работы, являются химические реакции в мышечных клетках во время сокращения, которые приведены в следующих разделах.
Источники энергии для мышечного сокращения
Мы уже знаем, что мышечное сокращение зависит от энергии, поставляемой АТФ. Большая часть этой энергии тратится на приведение в действие храпового механизма, с помощью которого поперечные мостики тянут актиновые нити. Однако небольшое количество энергии необходимо: (1) для откачивания ионов кальция из саркоплазмы в саркоплазматический ретикулум после завершения сокращения; (2) на активное перемещение ионов натрия и калия через мембрану мышечного волокна с целью поддержания соответствующей ионной среды для распространения потенциалов действия по волокну.
Концентрация АТФ в мышечном волокне (примерно 4 ммоль/л) достаточна для поддержания максимального сокращения в течение не более 1-2 сек. АТФ расщепляется с формированием АДФ и выделением энергии, которая передается механизму сокращения мышечного волокна. В течение следующей доли секунды АДФ рефосфорилируется, формируя новую молекулу АТФ, что позволяет мышце продолжать свое сокращение. Существуют несколько источников энергии для восстановления АТФ.
Первым источником энергии, используемым для восстановления АТФ, является креатинфосфат — вещество с высокоэнергетической фосфатной связью, подобной связям АТФ. Высокоэнергетическая фосфатная связь креатинфосфата имеет несколько большее количество свободной энергии, чем каждая связь АТФ. Креатинфосфат немедленно расщепляется, и освобожденная энергия вызывает связывание нового фосфата с АДФ, восстанавливая АТФ. Однако общее количество креатинфосфата в мышечном волокне также очень незначительно — примерно в 5 раз больше, чем АТФ. Следовательно, общий запас энергии в виде АТФ и креатинфосфата в мышце способен обеспечить максимальное сокращение в течение лишь 5-8 сек.
Вторым важным источником энергии, используемым для восстановления как АТФ, так и креатинфосфата, является гликолиз гликогена, предварительно накопленного в мышечных клетках. Быстрое ферментативное разрушение гликогена до пировиноградной кислоты, а затем до молочной кислоты освобождает энергию, которая используется для превращения АДФ в АТФ. Затем АТФ может участвовать непосредственно в обеспечении энергией дополнительного мышечного сокращения, а также в восстановлении запасов креатинфосфата.
Механизм гликолиза имеет двойное значение. Во-первых, гликолитические реакции могут происходить даже при отсутствии кислорода, и мышечное сокращение может поддерживаться в течение нескольких секунд, а иногда более 1 мин, даже если доставка кислорода из крови не доступна. Во-вторых, скорость образования АТФ с помощью гликолиза примерно в 2,5 раза выше, чем при образовании АТФ в реакциях питательных веществ клетки с кислородом. Однако конечных продуктов гликолиза в мышечных клетках накапливается так много, что примерно через 1 мин гликолиз также теряет способность поддерживать максимальное мышечное сокращение.
Третьим и решающим источником энергии является окислительный метаболизм, т.е. комбинирование кислорода с конечными продуктами гликолиза и различными другими клеточными питательными веществами с освобождением энергии. Более 95% всей энергии, используемой мышцей для непрерывного длительного сокращения, извлекается из этого источника. Потребляемыми питательными веществами являются углеводы, жиры и белки. Для чрезвычайно длительной максимальной мышечной активности, продолжающейся в течение многих часов, основная часть энергии получается из жиров, но при мышечной активности длительностью 2-4 ч до половины энергии может получаться из накопленных углеводов.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Какую фазу мышечного сокращения необходимо ограничить упростить проходить без замедления подросткам
Эффективность двигателя или автомашины рассчитывают как процент потребляемой энергии, которая превращается в работу вместо тепла. В мышцах количество энергии, способной превращаться в работу, даже при наилучших условиях составляет менее 25% всей энергии, доставляемой к мышце (химической энергии питательных веществ), а остальная энергия превращается в тепло. Причина этой низкой эффективности связана с тем, что примерно половина энергии питательных веществ теряется во время образования АТФ, и только 40-45% энергии самой АТФ может позднее превратиться в работу.
Максимальная эффективность реализуется лишь при условии сокращения мышцы с умеренной скоростью. При медленном сокращении мышцы или без какого-либо ее укорочения во время сокращения освобождается небольшое количество поддерживающего тепла, хотя работа практически не выполняется, что снижает эффективность преобразования до нуля. Напротив, если сокращение слишком быстрое, большая доля энергии используется на преодоление вязкого трения внутри самой мышцы, и это также снижает эффективность сокращения. Обычно максимальная эффективность развивается, когда скорость сокращения составляет около 30%.
Характеристики сокращения целой мышцы
Многие особенности сокращения мышцы можно продемонстрировать на примере одиночных мышечных сокращений. Такие сокращения вызывают с помощью одиночного электрического возбуждения, иннервирующего мышцу нерва, или короткого электрического раздражения самой мышцы, что ведет к развитию одиночного сокращения, продолжающегося долю секунды.
Изотоническая и изометрическая системы для регистрации мышечного сокращения. Длительность изометрических сокращений различных типов скелетных мышц млекопитающих. Показан также латентный период между потенциалом действия (деполяризацией) и мышечным сокращением.
Изометрическое и изотоническое сокращение. Мышечное сокращение называют изометрическим, если мышца не укорачивается во время сокращения, и изотоническим — если мышца укорачивается, но ее напряжение на протяжении всего сокращения остается постоянным.
В изометрической системе мышца сокращается без уменьшения своей длины, а в изотонической системе мышца укорачивается против фиксированной нагрузки: мышца поднимает чашу весов с разновесом. Изометрическая система строго регистрирует изменения силы самого мышечного сокращения, а параметры изотонического сокращения зависят от нагрузки, против которой мышца сокращается, а также от инерции нагрузки. В связи с этим при сравнении функциональных особенностей различных типов мышц чаще всего используют изометрическую систему.
Особенности одиночных изометрических сокращений, зарегистрированных от разных мышц. В теле человека имеются много мышц разного размера — от очень маленькой стременной мышцы в среднем ухе, длиной в несколько миллиметров и диаметром около 1 мм, до очень большой четырехглавой мышцы, в 500000 раз крупнее стременной. При этом диаметр волокон может быть маленьким (10 мкм) или большим (80 мкм). Наконец, энергетика мышечных сокращений значительно варьирует от одной мышцы к другой. Поэтому не удивительно, что механические характеристики сокращений разных мышц различаются.
На рисунке показаны кривые регистрации изометрических сокращений трех типов скелетных мышц: глазной мышцы (длительность изометрического сокращения менее 1/40 сек), икроножной мышцы (длительность сокращения около 1/15 сек) и камбаловиднй мышцы (длительность сокращения примерно 1/3 сек). Интересно, что эти длительности сокращений приспособлены к функциям соответствующих мышц. Движения глаз должны быть чрезвычайно быстрыми, чтобы поддерживать фиксацию глаз на объекте для обеспечения ясного видения. Икроножная мышца должна сокращаться умеренно быстро, чтобы обеспечить скорость движения нижней конечности, достаточную для бега или прыжков. А камбаловидная мышца имеет дело в основном с медленными сокращениями для непрерывной длительной поддержки тела против силы тяжести.
Быстрые и медленные мышечные волокна. Как обсуждается в предыдущих статьях, посвященных спортивной физиологии, каждая мышца тела состоит из совокупности так называемых быстрых и медленных мышечных волокон, а также других волокон с переходными свойствами. В состав быстрореагирующих мышц входят в основном быстрые волокна и лишь небольшое число медленных. И наоборот, медленнореагирующие мышцы составлены главным образом из медленных волокон. Различия между этими двумя типами волокон следующие.
Быстрые волокна: (1) крупные волокна, обеспечивающие большую силу сокращения; (2) имеют хорошо развитый саркоплазматический ретикулум для быстрого выделения ионов кальция, инициирующих сокращение; (3) содержат большое количество гликолитических ферментов для быстрого освобождения энергии путем гликолиза; (4) имеют сравнительно бедное кровоснабжение, поскольку окислительный метаболизм имеет второстепенное значение; (5) содержат немного митохондрий также в связи со второстепенностью окислительного метаболизма.
Медленные волокна: (1) более мелкие волокна; (2) иннервируются также более мелкими нервными волокнами; (3) имеют хорошо развитую систему кровеносных сосудов и капилляров для доставки большого количества кислорода; (4) содержат значительно больше митохондрий для обеспечения высоких уровней окислительного метаболизма; (5) содержат большое количество миоглобина — железосодержащего белка, подобного гемоглобину эритроцитов. Миоглобин связывается с кислородом и хранит его до момента, когда в нем возникнет потребность (это также значительно увеличивает скорость транспорта кислорода в митохондрии). Миоглобин придает медленным волокнам красноватый вид, поэтому их называют красными волокнами, а из-за дефицита красного миоглобина в быстрых волокнах их называют белыми волокнами.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Влияние тренировок, выполняемых в различных режимах сокращения на гипертрофию мышц
Влияние различных режимов сокращения на гипертрофию мышц человека проявляется по-разному. Повреждение мышечных волокон имеет место при всех режимах сокращения мышцы, однако в эксцентрическом режиме мышечные волокна повреждаются в большей степени; при выполнении двигательных действий в эксцентрическом режиме установлена большая степень повреждения цитоскелета и Z-дисков миофибрилл и мышечных волокон II типа.
Самсонова А.В, Барникова И.Э., Азанчевский В.В. Влияние силовых тренировок, выполняемых в различных режимах сокращения, на гипертрофию скелетных мышц человека // Труды каф. биомеханики. Сб. статей /Под ред. А.В.Самсоновой. В.Н.Томилова.- СПб, 2010.- С. 115-131.
Самсонова А.В., Барникова И.Э., Азанчевский В.В.
ВЛИЯНИЕ СИЛОВЫХ ТРЕНИРОВОК, ВЫПОЛНЯЕМЫХ В РАЗЛИЧНЫХ РЕЖИМАХ СОКРАЩЕНИЯ НА ГИПЕРТРОФИЮ СКЕЛЕТНЫХ МЫШЦ
ВВЕДЕНИЕ
Известно, что при выполнении двигательных действий мышцы могут выполнять как статическую, так и динамическую работу. Если момент силы, развиваемый мышцами, равен моменту внешней силы, то длина мышцы не изменяется. В этом случае говорят, что мышца работает в изометрическом режиме и выполняет статическую работу. Если момент силы, развиваемый мышцами, больше момента внешней силы, длина мышцы уменьшается, мышца работает в концентрическом (преодолевающем) режиме. Если мышечный момент меньше момента внешней силы и длина мышцы увеличивается, мышца сокращается в эксцентрическом (уступающем) режиме (Е.А.Котикова, 1939; Е.К.Жуков, Е.Г.Котельникова, Д.А.Семенов, 1963;. П.Богданов, Т.Тодоров, 1968; Н.Б.Кичайкина с соавт., 2000). Работа мышцы в концентрическом и эксцентрическом режимах соответствует динамической работе. Относительный вклад этих трех режимов сокращения в процессы, стимулирующие адаптацию мышц, несомненно, представляет большой интерес при планировании силовой тренировки.
P.J.Rasch и L.J.Morehouse (1957) одними из первых показали, что динамические упражнения вызывают больший прирост силы и площади поперечного сечения мышц, чем изометрические. В последствии, полученные результаты многократно проверялись (G.A.Dudley et al. 1991; S.Garfinkel, E.Cafarelli, 1992; E.J.Higbie et al. 1995; T.K.Evetovich et al. 2001; G.R.Adams et al. 2004; T.Garma et al. 2007). В некоторых исследованиях (D.A.Jones, O.M.Rutherford, 1989; G.R.Adams et al. 2004) было показано, что гипертрофия мышц после тренировки силовой направленности длительностью 10-12 недель была одинаковой во всех трех режимах и не очень большой (площадь поперечного сечения мышц увеличилась приблизительно на 5%). Однако большинство исследователей находят, что тренировка с использованием эксцентрического режима работы мышц приводит к несколько большей гипертрофии мышц, чем другие режимы сокращения (M.J.Gibala et al. 1995; Е. Hagbie et al. 1996; J.Y.Seger, B.Arvidsson, A.Thorstensson, 1998; M.J.Gibala et al. 2000).
Следует отметить, что до настоящего времени нет удовлетворительного объяснения механизмов, приводящих к адаптации мышцы при выполнении силовых упражнений в различных режимах ее сокращения.
ЦЕЛЬ РАБОТЫ состояла в разработке концепции, объясняющей воздействие силовых упражнений, выполняемых в различных режимах, на гипертрофию скелетных мышц.
РЕЗУЛЬТАТЫ
Прежде чем попытаться обосновать механизмы, происходящие в мышцах при выполнении двигательных действий, необходимо сопоставить факты, накопленные различными научными дисциплинами, относительно их функционирования в различных режимах.
Проявление срочной адаптации скелетных мышц при работе в различных режимах
Различают два типа адаптации скелетных мышц к физической нагрузке: срочную и долговременную. Срочная адаптация – это структурно-функциональная перестройка, происходящая в организме спортсмена непосредственно во время выполнения физических упражнений (С.С.Михайлов, 2009).
Исследования, проведенные на гистологическом уровне, свидетельствуют о существовании ряда особенностей, присущих работе мышцы в эксцентрическом режиме. Первой особенностью выполнения упражнений в эксцентрическом режиме является большая степень повреждения цитоскелета и Z-дисков мышечного волокна по сравнению с тренировкой в других режимах (J.Friden, M. Sjostrom, B. Ekblom, 1983; J.Friden, U. Kjorell, and L-E. Thornell, 1984; R.L.Lieber et al. 1996; J.Friden, R.L.Lieber, 2001), рис.1. При этом получен фактический материал (J.Friden, M. Sjostrom, B. Ekblom, 1983), свидетельствующий о том, что степень повреждения Z-дисков мышечных волокон II типа в три раза больше, чем у волокон I[1] типа. J.Friden и R.L.Lieber (1992) объясняют этот факт тем, что по гистологическим данным Z-диски мышечных волокон II типа в два раза тоньше, по сравнению с волокнами I типа.
Рис.1. Схематическая диаграмма механизма разрушения Z-диска. (a) – нормальное расположение миофибрилл (b) смещение миофибрилл. Широкие Z-диски как свидетельство Z-дискового «размытия» в электронном микроскопе (по: J.Friden, R.L.Lieber, 2001).
Исследованиями M.J.Gibala et al. (1995) показано, что даже однократная силовая тренировка в эксцентрическом режиме вызывает у начинающих спортсменов повреждение более 82% мышечных волокон, а в концентрическом – только 33%. У хорошо тренированных спортсменов аналогичная тренировка приводит к 45% повреждений мышечных волокон при работе в эксцентрическом режиме и 27% при работе в концентрическом режиме (M.J.Gibala et al. 2000). При этом у людей, не занимающихся физической культурой и спортом однократная силовая тренировка в концентрическом режиме вызывает приблизительно равные повреждения мышечных волокон малой, средней и высокой тяжести. В то же время тренировка в эксцентрическом режиме вызывает до 40,6% повреждений высокой тяжести сразу после занятий и 49,6% через 48 часов после занятия.
Второй особенностью работы в эксцентрическом режиме является появление поврежденных мышечных волокон II B типа с неправильными формами и больших размеров. J.Friden и R.L.Lieber, (2001) находят, что эти волокна представляют собой гиперсокращение мышечного волокна (рис. 2), что проявляется в очень коротких саркомерах возле поврежденной области. В тонкой области волокна чаще всего повреждена сарколемма и в ней найдено огромное количество клеток-сателлитов. Аналогичную картину наблюдал П.З.Гудзь (1963) при изучении воздействия на животных физических нагрузок различной направленности.
Рис.2. Схема продольного разреза мышечного волокна с сегментарным повреждением, окруженного двумя нормальными волокнами. Относительно центральной некротической зоны имеются две зоны гиперсокращения. В некрозированной зоне, фагоциты наблюдаются как внутри, так и снаружи частично поврежденной мембраны мышечного волокна. Зоны гиперсокращения сдвигают смежные мышечные волокна на уровне повреждения (по: J.Friden, R.L.Lieber, 2001).
Установлено (T.N.Shepstone et al. 2005), что сокращение мышц в эксцентрическом режиме с большой скоростью приводит к более значительным повреждениям мышечных волокон по сравнению с невысокой скоростью. Наибольшие повреждения обнаружены в Z-дисках волокон IIB типа.
Биохимические данные об эффектах срочной адаптации мышц свидетельствуют о том, что на 3-5 день после эксцентрических сокращений, в крови исследуемых значительно возрастает уровень креатинкиназы и миоглобина, что свидетельствует о сильных повреждениях мышцы (рис. 3). При этом он значительно превышает аналогичные показатели, полученные при выполнении движений в концентрическом режиме (J.A.Faulkner, S.V. Brooks, J.A.Opiteck, 1993; A.P.Lavender, K.Nosaka, 2006; K.Nosaka, 2008).
Из физиологических характеристик для оценки срочной адаптации применяется оценка интегрированной электрической активности мышц (ЭАМ). По данным M.J.Gibala et al. (1995) во время эксцентрических сокращений суммарная ЭАМ на 40% меньше, чем во время концентрических. Это подтверждает полученные ранее фактические данные о низкой метаболической стоимости работы мышц при выполнении движений в эксцентрическом режиме по сравнению с другими режимами (B.Katz, 1939; B.C.Abbott, B.Bigland, J.M.Ritchie, 1952; N.Curtin, R.E.Davies, 1973; S.L.Lindstedt, P.C.LaStayo, T.E.Reich, 2001). При этом различия в метаболической стоимости произведенной работы при концентрических и эксцентрических сокращениях могут быть шестикратными (B.Bigland-Ritchie, J.J.Woods, 1976).
Для оценки проявлений срочной адаптации скелетных мышц после выполнения упражнения в различных режимах чаще всего используются следующие биомеханические характеристики: уровень максимальной силы мышц, измеренной в изометрическом режиме (P.J.Rasch, L.J.Morehouse, 1957; D.A.Jones, O.M. Rutherford, 1989; R.C.Smith, O.M. Rutherford, 1995) или значение максимального момента силы (M.J.Gibala et al. 1995; J.Y.Seger, B.Arvidsson, A.Thorstensson, 1998; T.N.Shepstone et al. 2005).
Так, в исследованиях M.J.Gibala et al. (1995) было показано (рис.4), что после одного тренировочного занятия силовыми упражнениями значения максимального момента силы (МVС) двуглавой мышцы плеча, измеренного в изометрическом режиме, понизились как у руки, выполнявшей движения в концентрическом, так и у руки, выполнявшей движения в эксцентрическом режимах сокращения (P≤0,05). Однако через 24 часа этот показатель, измеренный у руки, работающей в концентрическом режиме достоверно не отличался от базового уровня (Р>0,05). В то же время значения максимального момента силы, у руки, выполняющей эксцентрические сокращения, достоверно отличались от начального уровня через 24, 48, 72 и даже 96 часов (Р≤0,05).
Рис.4. Максимальные значения момента силы, полученного в изометрическом режиме для руки, выполнявшей концентрические сокращения (квадраты) и руки, выполнявшей эксцентрические сокращения (треугольники) в различные моменты времени: до (PRE), сразу после (POST),через 24 часа (24H),48 часов (48H), 72 часа (72H) и 96 часов (96H) после выполнения упражнения. Представлены средние значения и ошибка среднего до и после выполнения упражнения * – различия между значениями, полученными до и после проведения упражнений достоверны на уровне значимости Р ≤ 0,05. + – различия статистически достоверны на уровне значимости Р ≤ 0,05 между CON рукой и Eсс рукой (по: M.J.Gibala et al. (1995).
M.J.Gibala, et al. (1995) установлено, что снижение уровня максимальной изометрической силы через 48 часов после тренировочного занятия обнаруживает достоверную корреляцию (Р≤0,05) с количеством сильно поврежденных мышечных волокон (%), как при эксцентрическом, так и концентрическом режиме сокращения. Но как резонно замечают авторы (M.J.Gibala, et al. 1995) снижение способности генерировать силу, однако, напрямую не может быть свидетельством миофибриллярного повреждения, так как через 48 часов уровень развиваемой силы частично восстанавливался (рис.4), в то время как процент повреждений был таким же, как и после тренировочного занятия.
Проявление долговременной адаптации скелетных мышц при работе в различных режимах
Если применить не однократное тренировочное воздействие, а многократное, можно увидеть эффект долговременной адаптации, происходящий в скелетных мышцах под воздействием силовых упражнений, выполняемых в различных режимах.
Долговременная адаптация – структурно-функциональная перестройка, происходящая в организме в ответ на длительное, или многократное воздействие физической нагрузки (С.С.Михайлов, 2009).
Гистологическими исследованиями показано, что при работе в изометрическом режиме наряду с возрастанием объема мышц увеличивается поверхность их прикрепления к костям, удлиняется сухожильная часть, увеличиваются внутримышечные соединительнотканные прослойки эндомизия. Происходит увеличение саркоплазмы и числа митохондрий, возрастает число ядер, они принимают округлую форму. Возрастает поперечное сечение мышечного волокна, однако количество миофибрилл не увеличивается, в связи с чем их плотность уменьшается. Вследствие длительного сокращения мышечных волокон в них повышаются метаболические процессы, что способствует увеличению количества кровеносных капилляров, а концевые пластинки увеличиваются в поперечном размере. Если мышца сокращается в концентрическом и эксцентрическом режимах, в ней происходит удлинение мышечной части и укорочение сухожильной, возрастает количество миофибрилл. Также возрастает количество ядер, и они принимают овальную форму. В этом случае концевые пластинки увеличиваются в длину (В.И.Козлов, А.А.Гладышева, 1977).
Анатомические и физиологические исследования свидетельствуют о том, что гипертрофия мышц при силовой тренировке в эксцентрическом режиме больше, чем в концентрическом режиме, однако эти различия не очень существенны. Так, например, Е. Hagbie et al. (1996) показано, что после 10 — недельной гипертрофической силовой тренировки поперечное сечение латеральной широкой мышцы бедра у женщин при работе в эксцентрическом режиме увеличилось на 6,6%, в то время как при работе в концентрическом режиме только на 5,0%.
Гипертрофия мышечных волокон при работе в эксцентрическом режиме больше, чем при концентрическом (S.L.Lindstedt, P.C.LaStayo, T.E.Reich, 2001), при этом гипертрофия быстрых мышечных волокон при выполнении быстрых эксцентрических сокращений больше, чем медленных (T.N.Shepstone et al. 2005).
Следует отметить, что растяжение пассивной мышцы не приводит к ее гипертрофии. Посредством эксперимента (J.R.Fowles et al. 2000) было установлено, что у исследуемых, выполнявших пассивное растягивание мышц, не было отмечено изменений в их поперечном сечении, в то время как у испытуемых, выполнявших изометрическое напряжение, площадь поперечного сечения мышц увеличилась.
Установлено, что при изучении биомеханических аспектов долговременной адаптации, необходимо учитывать закономерность, названную специфичностью эффектов тренировки (Ю.В.Верхошанский, 1988; Е. Hagbie et al. 1996; А.Л.Нетреба, 2007). Суть этой закономерности заключается в том, что максимальный прирост силы мышц при тестировании регистрируется в том режиме работы, в котором осуществлялась тренировка.
Существует большое количество исследований, в которых сравнивалось воздействие силовой тренировки в изометрическом, концентрическом и эксцентрическом и режимах на уровень максимальной силы, развиваемой мышцами в изометрическом режиме или значение максимального момента силы мышц (P.J.Rasch, L.J.Morehouse, 1957; D.A.Jones, O.M. Rutherford, 1989; M.J.Gibala, et al. 1995; Е. Hagbie et al. 1995). В связи с тем, что в экспериментах применялись различные протоколы, а также исследовались различные типы мышц, полученные данные не убеждают, что эксцентрический режим более эффективен, чем концентрический или изометрический (Дж.Х.Уилмор, Д.Л.Костилл, 1997). Однако показано, что эксцентрические упражнения в большей степени увеличивают жесткость мышц, чем концентрические. Увеличение жесткости связывают с повышенным содержанием белков цитоскелета мышечных волокон, а также белком титином. (S.L.Lindstedt, P.C.LaStayo, T.E.Reich, 2001).
Механизм повреждения мышечных волокон при работе в различных режимах
Разрабатывая концепцию, объясняющую большую эффективность эксцентрического режима, J.Friden, R.L.Lieber (1992) дали объяснение механизма повреждения мышц, базирующееся на характеристической зависимости «скорость-сила». Они обратили внимание, что при концентрическом режиме сокращения, эта зависимость не имеет резких скачков, в то время как при эксцентрическом режиме, после прохождения нулевой точки, у этой зависимости наблюдается резкий скачок (рис. 5). Исходя из этого, они (J.Friden, R.L.Lieber,1992) указывают: «Таким образом, мышца при работе в концентрическом режиме при увеличении на 5% от максимальных значений скорости уменьшает свою силу примерно на 20% от максимальных значений силы, однако при удлинении мышцы (эксцентрический режим) только на 1% от максимальной скорости она может увеличить силу на 50%. Неоднородность зависимости «скорость-сила» возле нуля приводит к тому, что сила увеличивается приблизительно в 10 раз быстрее при удлинении, чем при такой же скорости укорочения. Так как длина саркомеров варьирует (более длинные саркомеры расположены в середине миофибриллы, а более короткие – на ее концах), для смежных саркомеров из-за крутизны зависимости «скорость-сила» в эксцентрическом режиме развиваемая сила может существенно различаться, поэтому актиновые филаменты испытывают различные силы на своих концах. Эти силы приводят к значительному смещению Z-дисков. Это смещение может приводить к «размытию» диска». J.A Faulkner et al. (1993) также считают, что в течение эксцентрического упражнения некоторые саркомеры перерастянуты, и поэтому повреждены, в то время как другие сохраняют свою длину.
Рис.5. Классическая зависимость «скорость–сила». Отметьте, что при укорочении (скорость положительная) падение силы с возрастанием скорости относительно медленное. Однако, при удлинении мышцы (скорость сокращения отрицательная) сила возрастает очень резко. Это может вызывать нестабильность между соседними саркомерами (по: J.Friden, R.L.Lieber (1992).
Таким образом, результаты исследований позволили сформулировать шесть утверждений (тезисов) относительно эффектов срочной и долговременной адаптации мышц при работе в различных режимах:
Мы предлагаем следующую концепцию, описывающую последовательность событий, приводящих к большему повреждению мышечных волокон при работе в эксцентрическом режиме по сравнению с концентрическим и изометрическим.
Для того, чтобы мышца, выполняющая статическую работу, начала удлиняться, момент внешних сил должен превосходить момент силы мышцы. Это возможно только в том случае, если часть двигательных единиц (ДЕ) будет деактивирована, то есть прекратит свою активность и, как следствие – будет уменьшено количество активных мышечных волокон. V.Eloranta, P.W.Komi (1980) и M.J.Gibala et al. (1995) находят, что этот механизм управления ДЕ лежит в основе эксцентрических сокращений мышцы. Это предположение подтверждается исследованиями метаболических затрат и суммарной ЭАМ (тезис № 5), которые меньше при работе в эксцентрическом режиме по сравнению с другими режимами.
Вследствие деактивации части ДЕ момент внешней силы становится больше момента силы, развиваемого мышцей и, как следствие – активная мышца начинает удлиняться. Удлинение мышцы сопровождается удлинением мышечных волокон. Так как миофибриллы внутри мышечного волокна имеют «жесткую» привязку к его мембране посредством костамеров и элементов цитоскелета (рис.6), длина миофибрилл, а, следовательно, и саркомеров, из которых состоят миофибриллы, увеличивается.
Рис.6. Мышечное волокно и костамеры (по: J.M.Ervasty, 2003)
Удлинению саркомера, находящегося в активном состоянии, препятствуют силы, возникающие между его толстыми и тонкими филаментами, которые стремятся уменьшить его длину. В связи с тем, что значение внешней силы превосходит силу, развиваемую сократительными элементами, саркомер растягивается. Следствием этого является повреждение элементов цитоскелета и мембранного скелета мышечных волокон, а также повреждение Z-дисков миофибрилл (J.Friden, U.Kjorell, R.L.Lieber, 1984), что согласуется со вторым утверждением. Частое повреждение Z-дисков свидетельствует о том, что они представляют собой одно из «слабых мест» с точки зрения механики. Так как толщина Z-дисков у мышечных волокон II типа меньше, чем у мышечных волокон I типа, они повреждаются в большей степени (J.Friden, R.L.Lieber,1992).
На основе предложенной нами концепции можно объяснить, почему при выполнении эксцентрических сокращений с большой скоростью наблюдаются большие повреждения Z-дисков, по сравнению с медленным выполнением движения (тезис № 4). Для того, чтобы эксцентрическое упражнение выполнялось с большей скоростью, необходимо деактивировать дополнительное количество ДЕ и, следовательно, мышечных волокон. Таким образом, момент силы, развиваемый мышцей, уменьшится еще больше. Можно также увеличить внешнюю нагрузку, сохранив количество ДЕ на том же уровне.
Наша гипотеза также позволяет объяснить отсутствие повреждения при растягивании пассивной мышцы (шестой тезис). Это происходит вследствие того, что внешней растягивающей силе не противодействует сила, возникающая между толстым и тонким филаментами саркомера. Отсутствие сил, стремящихся укоротить саркомер позволяет ему максимально увеличить свою длину.
На основе предлагаемой гипотезы возможно объяснение, почему при концентрическом и изометрическом режимах работы мышцы, также повреждаются мышечные волокна, хотя и в меньшей степени, чем при эксцентрическом (первый тезис).
Из физиологических исследований хорошо известно, что существует временной промежуток (латентный период) между возникновением потенциала действия и началом механической реакции мышцы. Это свойство мышцы проявляется особенно ясно при противодействии большим нагрузкам. При этом латентный период тем больше, чем больше внешнее отягощение (В.С.Abbott, J.M.Ritchie 1951; Е.К.Жуков, 1969; В.М.Зациорский, В.С.Аруин, В.Н.Селуянов, 1981; В.С.Гурфинкель, Ю.С.Левик, 1985; А.Вайн, 1990).
В течение латентного периода в мышце развивается процесс возбуждения, вследствие чего некоторые мышечные волокна начинают укорачиваться и утолщаться. Это приводит к увеличению площади поперечного сечения мышцы и возникновению тяги посредством эндо- пери- и эпимизия мышцы. Однако, в латентный период количество возбужденных мышечных волокон недостаточно, чтобы развить момент силы, необходимый для преодоления внешнего момента силы. Вследствие этого длина мышцы остается неизменной. Другими словами в течение латентного периода мышца сокращается в изометрическом режиме. Долгое время считалось (Е.К.Жуков, 1969; В.М.Зациорский, 1979), что неизменность длины мышцы связана с растяжением сухожилий, однако А.А.Вайном (1990) было показано, что прочность сухожилий значительно превосходит прочность мышечных волокон. Поэтому в латентный период сухожилия практически не изменяют своей длины, и следовательно, неизменной остается длина мышечных волокон и жестко связанных с ними миофибрилл. Это возможно только в том случае, если одни, более слабые саркомеры будут растягиваться, а другие, более сильные – укорачиваться.
При рассмотрении эксцентрического режима было показано, что растяжение саркомеров, находящихся в активном состоянии, приводит к их повреждению. Однако во время латентного периода при сокращении мышцы в концентрическом режиме растягиваются не все саркомеры, а только самые слабые (сильные укорачиваются), в этом режиме должны наблюдаться меньшие повреждения мышечных волокон. Это предположение подтверждается данными M.J.Gibala, et al. (1995).
При работе мышцы в изометрическом режиме происходят те же процессы, что и в латентный период при развитии возбуждения при работе мышцы в концентрическом режиме. Существуют прямые доказательства этого предположения (рис. 7).