какую частоту не определяет стандарт 1394 firewire
Стандарты FireWire (IEEE 1394)
Интерфейсная шина FireWire (IEEE1394)
Протокол FireWire (также известный как i.Link или IEEE 1394) предназначен для персональных компьютеров в качестве быстродействующего последовательного интерфейса, возможно применение и для задач реального времени. Стандарт был утвержден в 1995 году. Стандарт IEEE 1394-1995 для скоростной последовательной шины определяет протокол последовательной передачи данных. Возможности стандарта 1394 достаточны для поддержки широкого круга цифровых аудио/видео приложений, таких как маршрутизация сигналов, домашние сети, управление аудио/видео устройствами, нелинейное DV редактирование и 32-канальное (или более) цифровое аудио-микширование.
FireWire допускает подключение до 63 периферийных устройств. Стандарт допускает коммуникации между устройствами в режиме P2P, например, соединение сканера и принтера без использования ресурсов памяти или ЦПУ компьютера. FireWire поддерживает также подключение нескольких машин к шине, а с помощью программного обеспечения возможно формирование IP-сетей между машинами, соединенными через FireWire. Для реализации протокола используется 6-проводный кабель, что более удобно, чем в случае SCSI, и может также обеспечить до 45 ватт питания на порт. Это позволяет в случае применения устройств с малым потреблением обойтись без отдельных сетевых кабелей.
FireWire 400 может передавать данные между устройствами со скоростью 100, 200 или 400 Мбит/с (в действительности это 98.304, 196.608 или 393.216 Мбит/с, и называется S100, S200 и S400). Длина кабеля ограничивается 4.5 метрами, но в случае использования петлевой, ромашка-подобной схемы с 16-ю кабелями, суммарная длина соединений может достигать 72 метров. Стандарт FireWire 800 был введен в 2003, и позволяет поднять пропускную способность до 786.432 Мбит/с при сохранении совместимости для работы при более низких скоростях.
Архитектура IEEE-1394
Стандарт IEEE 1394-1995 определяет две категории шины: backplane и кабель. Шина backplane служит для обеспечения параллельной передачи данных, которая является альтернативой последовательной передачи данных между устройствами, подключенными к backplane. Кабельная шина представляет собой древовидную сеть, состоящую из шинных бриджей и узлов (кабельные устройства). 6-битовый идентификатор имени узла позволяет иметь до 63 узлов, подключенных к одной шинному бриджу; 10 битовый шинный идентификатор позволяет иметь до 1,023 бриджей в системе. Это означает, например, что до 63 устройства может быть подключено к одной карте адаптера 1394 в PC.
Каждый узел обычно имеет три разъема, хотя стандарт предусматривает от 1 до 27 разъемов на одно устройство уровня PHY. До 16 узлов может быть подключено к сети при схеме типа ромашки с помощью кабелей длиной 4.5 м. При этом суммарная длина кабелей оказывается равной 72 м. Шина 1394 может рассматриваться как plug-and-play шина.
Стандарт для кабеля 1394 определяет три базовые скорости передачи: 98.304, 196.608 и 393.216 Мбит/с. Пользователь DV устройства использует скорость S100, но большинство адаптеров 1394 PC поддерживают скорость S200. Скорость работы всей шины обычно является самой медленной; однако, если мастер шины (контроллер) использует Topology_Map и Speed_Map для специфицированной пары узлов, шина может поддерживать кратные (более высокие) скорости обмена для данной пары устройств.
Возможен изохронный и асинхронный обмен данными. Изохронный режим передачи шины 1394 обеспечивает гарантированную полосу и необходимую задержку при высокоскоростной передаче через несколько каналов. При сбросе шины или при включении изохронного режима узла, узел запрашивает полосу. Если нужная полоса недоступна, запрашивающее устройство периодически повторяет запросы.
В 2004 году был утвержден стандарт IEEE 1394.1, который позволяет расширить число подключаемых устройств до 64449.
В 2005 году принята версия стандарта IEEE 1394c, которая позволяет использовать кабель категории 5е (Ethernet). При этом появилась возможность использовать параллельно IEEE 1394c и GigaEthernet на одном кабеле. Максимальная заявленная длина сегмента — 100 м, Максимальная скорость соответствует S800 — 800 Мбит/с.
Внешние проводные интерфейсы
Стандарт FireWire (IEEE 1394)
Стандарт под техническим названием IEEE 1394 был официально представлен в 1995 году. Но его разработка была начала еще в конце 80-х годов прошлого века. Начала ее небезызвестная Apple. Тогда она планировала выпустить альтернативу интерфейсу SCSI. Причем альтернативу, ориентированную на работу с аудио и видео устройствами. Со временем разработка была передана институту IEEE.
У IEEE 1394 есть несколько имен. FireWire — это коммерческое именование самой Apple. Сегодня оно встречается чаще всего на пару с техническим названием. Со временем японская Sony, часто идущая своим путем, стала именовать этот стандарт i.LINK. Не осталась в долгу и Panasonic, предложив свое имя: DV.
Давайте разберемся как работает IEEE 1394. В сравнении с USB есть множество отличий. Прежде всего FireWire работает по принципу «точка-точка» (peer-to-peer), а не «мастер-подчиненный» (master-slave). Получается, что каждое устройство, подключенное по FireWire, имеет одинаковый ранг. Одним из преимуществ такого подхода — возможность вести обмен данными между устройствами напрямую без участия компьютера, не затрачивая на это его ресурсы. Некоторые читатели могут заметить, что USB On-The-Go предоставляет такую же функциональность. Но ведь в FireWire она была изначально, а в универсальной последовательной шине — буквально пару лет как появилась.
Так же как и USB FireWire поддерживает систему Plug-and-Play и hot swap (возможность подключать устройства без выключения компьютера). В отличие от USB устройствам FireWire не присваивается уникальный идентификатор при подсоединении к системе. В каждом из них зашит свой уникальный идентификатор, соответствующий стандарту IEEE EUI-64. Последний является расширением для MAC-адресов, широко применяемых среди сетевых устройств.
Хаб FireWire
Топология шины FireWire также дерево. При необходимости увеличить число портов можно подключать специальные FireWire-хабы. О глубине «вложенности» мы данных не нашли, поэтому предположим, что она может быть достаточно большой. Но максимальное число подключенных устройств (надо полагать на один FireWire-контроллер) составляет 63.
И немного о принятых стандартах и версиях шины FireWire. Всего мы их насчитали пять штук.
FireWire 400 (IEEE 1394-1995). Самая первая версия стандарта, принятая в 1995 году. Поддерживает скорость передачи данных 100 (подстандарт S100), 200 (S200) и 400 (S400) Мбит/с. Длина кабеля может составлять 4.5 метра. Тем не менее, в отличие от USB, FireWire работает по принципу репитеров. Репитеры (по сути усилители сигнала) могут быть независимыми, увеличивая общую длину кабеля, либо встроенными в хабы и устройства с поддержкой FireWire. Таким образом общая длина провода для стандарта S400 может составлять до 72 метров.
Коннектор FireWire
Основной тип коннектора FireWire выполнен в виде шестиугольника и имеет шесть контактов. По своим физическим размерам он несколько толще разъема USB. Зато через него может проходить значительно больше энергии. Так напряжение может составлять от 24 до 30 В, а сила тока — 1.5 А.
IEEE 1394a-2000. Данный стандарт был принят в 2000 году. Он внес некоторые дополнения в оригинальную спецификацию FireWire. В частности добавилась поддержка асинхронной передачи данных, более быстрое распознание подключенных устройств, объединение пакетов и энергосберегающий «спящий» режим. Кроме того был «узаконена» маленький вариант коннектора.
Четырехконтактный коннектор FireWire (i.LINK)
Уменьшенная версия разъема работает только с четырьмя контактами, но питания она может передавать значительно меньше. Сегодня именно этот тип наиболее распространен и он же чаще всего встречается в ноутбуках (лишь Apple продолжает устанавливать шестиконтактные разъемы). Соединить маленький разъем и большой коннектор (или наоборот) можно через специальный кабель-переходник.
FireWire 800 (IEEE 1394b-2002). В 2002 году было принято еще одно дополнение к стандарту FireWire. Оно получило название IEEE 1394b (а первая версия стала именоваться IEEE 1394a) или FireWire 800. Цифра «800» прямо указывает на максимальную скорость передачи данных — 800 Мбит/с.
Коннектор FireWire 800
Вдвое более высокая скорость потребовала разъем другого типа. Теперь в нем уже используется 9 контактов. При этом была сохранена обратная совместимость с FireWire 400 через кабель-переходник. Конечно, подключая старые устройства к новому порту или наоборот скорость упадет.
Заметим, что 800 Мбит/с для IEEE 1394b не предел. В тестовом режиме поддерживается передача на скорости до 3200 Мбит/с, но эта возможность будет раскрыта несколько позже. Также стало возможным использовать два типа кабеля: обычный и оптический. В первом случае максимальная длина составит 5 метров, а во втором — до 100 метров. Электрические характеристики обновленного стандарта не изменились.
FireWire 800 сегодня чаще всего можно встретить в рабочих станциях и компьютерах Apple. На обычные материнские платы пока если и устанавливается, то FireWire 400. Да и пока на рынке сравнительно мало устройств с поддержкой более быстрой спецификации FireWire. Как правило это внешние жесткие диски, объединенные в RAID-массив. Да и то, они чаще всего поддерживают передачу по 3-4 интерфейсам (USB 2.0, FireWire 400/800, eSATA).
FireWire S800T (IEEE 1394c-2006). Главное нововведение этого стандарта — поддержка возможности использования витой пары категории 5e, на конце которой разведены обычные коннекторы RJ-45. Первое нововведение потребовало и второго — автоматического определение подключенного кабеля. Кроме этого были внесены незначительные изменения и исправления в IEEE 1394b.
FireWire S3200. Ну и о будущем. Объявление о планах выпустить USB 3.0 не могло не отразиться на FireWire. Итог — в декабре было объявлено о намерениях представить спецификацию стандарта, способного передавать на скорости до 3.2 Гбит/с. И в данном случае сделать это, вероятно, будет проще чем с USB. Ведь современный FireWire 800 уже может передавать на такой скорости данные. Остается лишь отладить технологию и хорошо ее протестировать, а не серьезно дорабатывать.
На этом создатели FireWire останавливаться не собираются. Следующий на очереди стандарт со скоростью передачи до 6.4 Гбит/с. Правда, если S3200 может появится в течение года-двух, то второй пока неизвестно когда увидит свет. Но надо полагать, затягивать с ним не станут.
В конце рассказа о FireWire попробуем разобраться почему при всей его прелести он №2 после USB. Первый аргумент против — более низкая скорость (если сравнить наиболее распространенный FireWire 400 и USB 2.0). Тем не меняя, речь идет о теоретической максимальной пропускной способности. Она достижима, но лишь при определенных условиях, довольно редко выполняемых в реальности.
Мы не стали сами тестировать скорость (все же это не статья «Что выбрать: USB или FireWire?»), но нашли в Интернете довольно много отзывов и заметок по этой теме. Так вот, в реальных ситуациях FireWire оказывается практически всегда быстрее. Разница порой может составлять довольно много — до 30-70%. Отмечается, что скорость USB 2.0 редко превышает 35 Мбайт/с (при теоретическом пике 60 Мбайт/с), тогда как FireWire спокойно передает данные со скоростью до 49 Мбайт/с.
И возможности обеспечения питанием у IEEE 1394 куда лучше. При использовании полноразмерного шестиконтактного разъема подключение внешнего источника питания требуется куда реже, чем в случае USB. Да и устройства заряжались бы значительно быстрее.
Так почему же в каждом компьютере установлено по 4-10 портов USB и хорошо если один FireWire, а не наоборот? Потому же почему на 90% ПК проинсталлирована Windows, а на Mac OS только на 5%. В свое время Apple отказалась начать лицензирование своей операционной системы производителям компьютеров и в итоге Microsoft теперь первая.
USB изначально открытый стандарт, ориентированный на широкую аудиоторию. То есть он банально обходится дешевле, поэтому его все и предпочли, даже сама Apple совсем не брезгует им (достаточно вспомнить MacBook Air, оснащенный только одним USB и обделенный традиционным FireWire, а также перевод iPod с FireWire на USB).
Мы же посоветуем при возможности все же использовать FireWire, особенно если требуется передавать большие объемы данных. Например, при подключении внешнего жесткого диска. Впрочем, для последнего типа устройств уже есть собственный стандарт — eSATA.
Интерфейс FireWire (IEEE 1394) — почему не конкурент usb?
Что такое FireWire?
FireWire представляет собой стандарт высокоскоростной шины последовательного типа. Он необходим для передачи цифрового контента между компьютерными устройствами и различной электроникой. Данный стандарт на сегодня является устаревшим, а использовали его такие крупные бренды как Sony, Apple, Creative, Yamaha и др.
История создания интерфейса
Комитет по микрокомпьютерным стандартам решился на очень важный шаг. Так, в 1986 году осуществилось объединение сразу нескольких вариаций последовательной шины. Это делалось в первую очередь в угоду универсализму, чтобы такие шины все-таки развивались в плане технологий по единому варианту.
При этом непосредственной разработкой FireWire с самого начала занялась именно корпорация Apple. Это произошло в 1992 году, а вот сам стандарт IEEE 1394 был официально принят в 1995 году. Что касается данной технологии, то она создавалась длительное время, но разработка окончилась гораздо раньше.
В самом конце 20 века технологические гиганты стали повсеместно придерживаться идеи внедрения в своих устройствах IEEE 1394. Причем речь шла не только о внешнем, но и внутреннем расположении интерфейса в корпусе компьютера. В свое время для этих целей планировалось выпускать специальные карты контроллеров, в которых присутствовал особый разъем с внутренним направлением. И уже тогда бурно развивалась концепция Device Bay с функцией «горячей» замены.
К сожалению (или к счастью), подобного рода планы в результате не осуществились. Крупные корпорации во главе с Microsoft хоть и пытались вытеснить с рынка интерфейс ATA, но у них практически ничего не получилось. Ключевую роль в таком развитии событий сыграла жесткая позиция Apple в отношении лицензирования и отчислений. «Яблочная» компания настаивала, чтобы покупатели оплачивали не партию или лицензию, а каждый отдельный чип IEEE 1394.
Поэтому с 2010 года стандарт FireWire практически перестал применяться в материнских платах. Его еще можно кое-где встретить, например, в премиальном сегменте IT. Но массовый рынок интерфейс так и не захватил.
Особенности интерфейса FireWire
Если рассматривать кабель, то он состоит из двух витых пар, распаянных разным образом с двух сторон. В плане топологии предельная длина пути достигает 16, а количество устройств может составлять 64. Важной особенностью топологии является древовидная структура. Что касается разъемов, то их может быть максимум 4.
Шина каждый раз сбрасывается, если соединять и отключать устройства. Причем одновременно происходит выбор главенствующего устройства. Отсюда зависит и логическая направленность. После этого может происходить раздача конкретных номеров с последующим исполнением обращений. Одновременно шина передает пакетный трафик с определенным числом портов. Среди остальной передающейся информации нужно отметить предельную скорость нескольких портов и дистанции, а еще ориентацию всех портов. При этом IEEE 1394 «забирает» входящие пакеты данных. Затем вступает в дело стек драйверов, чтобы связать устройства между собой, а также определить единую скорость.
Данная шина осуществляет не только асинхронные, но и изохронные операции. Асинхронные — атомарные операции, чтение и запись 32-битных слов. Применяются номера 16 бит для каждого устройства, а также адреса 24 бит. Имеется поддержка 2-фазных исполнений с получением промежуточного и финального ответа. А вот изохронные операции представляются более четкими и строгими, так как привязаны к частоте 8 КГц, передаваясь в едином ритме. Тут применяются адреса вплоть до 31. И подтверждений здесь нет, поэтому поток данных односторонний.
Скоростные возможности FireWire
Такой интерфейс демонстрирует очень хорошие показатели скорости передачи информации. Речь идет о 400 Мбит/с и выше. Если измерять скорость в мегабайтах, то это от 50 и до 400 (в самых поздних версиях). Этого хватает, чтобы без проблем транслировать мультимедиа контент.
FireWire 400, 800, S800T, S3200
Сразу стоит заметить, что именно так могут обозначаться версии стандарта. Причем эти цифры говорят о максимальной пропускной способности шины. Самые простые и одновременно первые интерфейсы FireWire 400 (IEEE 1394, IEEE 1394a) обеспечивают скорость передачи данных до 400 мегабит в секунду. FireWire 800 (IEEE 1394b) дает возможность наслаждаться транслированием контента до 800 мегабит в секунду.
FireWire S800T (IEEE 1394c) — предельный скоростной показатель достигает 800 мегабит в секунду. И самый продвинутый на сегодня FireWire S3200 (beta mode 8B10B) обеспечивает фантастическую скорость до 3,2 Гбит/с.
Почему FireWire ещё называют IEEE 1394, в чем разница?
По своей сути FireWire и есть IEEE 1394. При этом FireWire является стандартом относительно высокоскоростной шины IEEE 1394. Интересно, что интерфейс FireWire больше связывают все же с продукцией Apple, ведь эта корпорация и занималась основной разработкой стандарта. А в остальных случаях это IEEE 1394, потому что так изначально называлась последовательная шина высокой скорости.
Разъемы подключения, виды IEEE 1394
На данный момент известно о следующих разновидностях разъемов, которые относятся к FireWire:
IEEE 1394 появился в 1995 году для передачи видеопотоков. В дальнейшем использовался и во внешних накопителях благодаря отличной пропускной способности (до 400 Мбит/с). Его доработанная версия IEEE 1394а оказалась утверждена в 2000 году. Совместимость была существенно улучшена, а также повысилась надежность и безопасность соединения.
Более существенные изменения коснулись стандарта IEEE 1394b, который стал актуальным с 2002 года. В результате была повышена максимальность скорость до 800 Мбит/с (в некоторых случаях и до 1600 Мбит/с). Здесь для существенных расстояний предусмотрено использование кабеля волоконно-оптического типа. Более того, в 2007 году появилась на свет спецификация S3200, скорость которой достигает невероятных 3,2 Гбит/с, а кабель может быть 100-метровой длины.
Что касается интерфейса IEEE 1394.1, то он оказался утвержден в 2004 году, чтобы строить гигантские сети с невероятным количеством устройств. А вот IEEE 1394c был принят в 2006 году в качестве основного стандарта для подключения Ethernet-сетей и витопарного кабеля.
Как и где используют FireWire?
Сфер использования FireWire достаточно много. В основном интерфейс применяется для реализации компьютерных и интернет сетей. Также шину широко используют производители RAID-массивов и жестких дисков. С помощью стандарта осуществляется подключение как видео, так и аудио техники. Офисное оборудование (сканеры, принтеры) тоже активно использует IEEE 1394.
Чаще всего стандарт применяется в качестве эффективного инструмента захвата видео и фильмов с MiniDV-видеокамеры. FireWire известен и благодаря подключению компьютерных устройств к корпусам с внешними накопителями. Контроллеры IEEE 1394 часто выполняют роль отладчиков при помощи повышенной пропускной способности.
Звуковые карты и FireWire
Музыкальный бизнес активно использует звуковые карты с интерфейсом FireWire. И здесь причин несколько. Во-первых, благодаря стандарту звукорежиссеры и диджеи могут устанавливать сразу несколько и более звуковых карт на единой шине. Во-вторых, ширины канала хватает, чтобы свободно осуществлять мультиканальную запись, либо же соответствующее воспроизведение музыки. Особое внимание заслуживают звуковые карты от именитых брендов APOGEE, RME и др.
Преимущества и недостатки FireWire
Стандарт имеет много плюсов, но и некоторые минусы.
Переходники и конвертеры FireWire
Сегодня можно отыскать самые разные переходники, которые позволяют подключать практически любое оборудование с использованием FireWire. Особой популярностью пользуются конвертеры с FireWire на USB. Но во многих случаях присутствуют некоторые проблемы, связанные с увеличенными задержками передачи сигнала. Могут возникать и разнообразные ошибки. Поэтому данные переходники подойдут для непритязательных пользователей и новичков, нежели для профессионалов.
Конкуренты FireWire
Пожалуй, главным конкурентом FireWire является интерфейс USB. На протяжении длительного периода времени стандарт USB вел ожесточенную борьбу с детищем Apple. И если вначале FireWire выигрывал за счет быстроты передачи сигнала, то в дальнейшем ситуация изменилась.
С появлением USB 2.0, а потом и USB 3.0, интерфейс IEEE 1394 начал уходить на задний план.
Почему FireWire уже не актуален?
К сожалению, FireWire на данный момент является устаревшим. Его активное производство и внедрение завершилось в 2013 году. При этом на смену ему пришел аппаратный интерфейс нового поколения Thunderboll от все той же Apple. Примечательно, что данный стандарт разрабатывался совместно с Intel. И этот передовой интерфейс смог достаточно уверенно и быстро заменить FireWire практически во всех сферах. Thunderbolt обеспечивает скорость до 20 Гбит/с, комбинируя интерфейсы DisplayPort и PCI Express.
Так почему же «не взлетел» FireWire? Одной из основных причин считается жадность со стороны Apple. Американский гигант желал иметь прибыль буквально с каждого чипа в контроллере интерфейса. Это сразу же сделало стандарт непривлекательным как для производителей «железа», так и для конечных потребителей, которым приходилось существенно переплачивать. Также с появлением USB 2.0 и USB 3.0 многие «козыри» FireWire были уничтожены.
Прямо сейчас будет сложно найти в свободной продаже компьютер или другое оборудование с FireWire на борту. Однако многие профи из мира музыки и звука до сих пор высоко ценят данную шину, ведь с ее помощью легко проводить прямые трансляции, передавая изображение и звучание оригинального качества. Более того, многие видеокамеры можно подключить напрямую друг к другу только с помощью FireWire.
IEEE 1394 (Firewire) — новая последовательная шина
Введение
IEEE 1394 или Firewire — это последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами. Благодаря невысокой цене и большой скорости передачи данных эта шина становится новым стандартом шины ввода-вывода для персонального компьютера. Ее изменяемая архитектура и одноранговая топология делают Firewire идеальным вариантом для подключения жестких дисков и устройств обработки аудио- и видеоинформации. Эта шина также идеально подходит для работы мультимедийных приложений в реальном времени. В этом материале приведены некоторые общие сведения о стандарте IEEE 1394.
Зачем нужен новый интерфейс
Прежде всего, посмотрите на заднюю стенку своего компьютера. Там можно найти множество всяких разъемов: последовательный порт для модема, принтерный порт для принтера, разъемы для клавиатуры, мыши и монитора, SCSI-интерфейс, предназначенный для подключения внешних носителей информации и сканеров, разъемы для подключения аудио и MIDI устройств, а также для устройств захвата и работы с видеоизображениями. Это изобилие сбивает с толка пользователей и создает беспорядок из соединительных кабелей. Причем, нередко производители ноутбуков используют и другие типы коннекторов.
Новый интерфейс призван избавить пользователей от этой мешанины и к тому же имеет полностью цифровой интерфейс. Таким образом, данные с компакт-дисков и цифровых магнитофонов смогут передаваться без искажений, потому что в настоящее время эти данные сначала конвертируются в аналоговый сигнал, а затем обратно оцифровываются устройством-получателем сигнала. Кабельное телевидение, радиовещание и видео CD передают данные также в цифровом формате.
Цифровые устройства генерируют большие объемы данных, необходимые для передачи качественной мультимедиа-информации. Например:
Высококачественное видео
Цифровые данные = (30 frames / second) (640 x 480 pels) (24-bit color / pel) = 221 Mbps
Видео среднего качества
Цифровые данные = (15 frames / second) (320 x 240 pels) (16-bit color / pel) = 18 Mbps
Высококачественное аудио
Цифровые данные = (44,100 audio samples / sec) (16-bit audio samples) (2 audio channels for stereo) = 1.4 Mbps
Аудио среднего качества
Цифровые данные = (11,050 audio samples / sec) (8-bit audio samples) (1 audio channel for monaural) = 0.1 Mbps
Обозначение Mbps — мегабит в секунду.
Для решения всех этих проблем и высокоскоростной передачи данных была разработана шина IEEE 1394 (Firewire).
IEEE 1394 — высокоскоростная последовательная шина
Стандарт поддерживает пропускную способность шины на уровнях 100, 200 и 400 Мбит/с. В зависимости от возможностей подключенных устройств одна пара устройств может обмениваться сигналами на скорости 100 Мбит/с, в то время как другая на той же шине — на скорости 400 Мбит/с. В начале следующего года будут реализованы две новые скорости — 800 и 1600 Мбит/с, которые в настоящее время предлагаются как расширение стандарта. Такие высокие показатели пропускной способности последовательной шины практически исключают необходимость использования параллельных шин, основной задачей которых станет передача потоков данных, например несжатых видеосигналов, внутри компьютера.
Таким образом, Firewire удовлетворяет всем вышеперечисленным требованиям, включая:
Благодаря этому шина IEEE 1394 может использоваться с:
Простейшая система для видеоконференций, построенная на шине IEEE 1394, использующая два 15 fps аудио/видео канала загрузит всего третью часть 100Mbps интерфейса 1394. Но, в принципе, для этой задачи возможно и использование 400Mbps интерфейса.
Кабель IEEE 1394
Шесть контактов FireWire подсоединены к двум проводам, идущим к источнику питания, и двум витым парам сигнальных проводов. Каждая витая пара и весь кабель в целом экранированы.
Провода питания рассчитаны на ток до 1,5 А при напряжении от 8 до 40 В, поддерживают работу всей шины, даже когда некоторые устройства выключены. Они также делают ненужными кабели питания во многих устройствах. Не так давно инженеры Sony разработали еще более тонкий четырехпроводный кабель, в котором отсутствуют провода питания. (Они намерены добавить свою разработку к стандарту.) Этот так называемый AV-разъем будет связывать небольшие устройства, как «листья» с «ветками» 1394.
Гнездо разъема имеет небольшие размеры. Ширина его составляет 1/10 ширины гнезда разъема SCSI, у него всего шесть контактов (у SCSI — 25 или 50 разъемов).
К тому же кабель 1394 тонкий — приблизительно в три раза тоньше, чем кабель SCSI. Секрет тут прост — ведь это последовательная шина. Все данные посылаются последовательно, а не параллельно по разным проводам, как это делает шина SCSI.
Топология
Стандарт 1394 определяет общую структуру шины, а также протокол передачи данных и разделения носителя. Древообразная структура шины всегда имеет «корневое» устройство, от которого происходит ветвление к логическим «узлам», находящимся в других физических устройствах.
Корневое устройство отвечает за определенные функции управления. Так, если это ПК, он может содержать мост между шинами 1394 и PCI и выполнять некоторые дополнительные функции по управлению шиной. Корневое устройство определяется во время инициализации и, будучи однажды выбранным, остается таковым на все время подключения к шине.
Сеть 1394 может включать до 63 узлов, каждый из которых имеет свой 6-разрядный физический идентификационный номер. Несколько сетей могут быть соединены между собой мостами. Максимальное количество соединенных шин в системе — 1023. При этом каждая шина идентифицируется отдельным 10-разрядным номером. Таким образом, 16-разрядный адрес позволяет иметь до 64449 узлов в системе. Поскольку разрядность адресов устройств 64 бита, а 16 из них используются для спецификации узлов и сетей, остается 48 бит для адресного пространства, максимальный размер которого 256 Терабайт (256х1024 4 байт) для каждого узла.
Однако есть несколько ограничений. Между любыми двумя узлами может существовать не больше 16 сетевых сегментов, а в результате соединения устройств не должны образовываться петли. К тому же для поддержки качества сигналов длина стандартного кабеля, соединяющего два узла, не должна превышать 4,5 м.
Протокол
Интерфейс позволяет осуществлять два типа передачи данных: синхронный и асинхронный. При асинхронном методе получатель подтверждает получение данных, а синхронная передача гарантирует доставку данных в необходимом объеме, что особенно важно для мультимедийных приложений.
Протокол IEEE 1394 реализует три нижних уровня эталонной модели Международной организации по стандартизации OSI: физический, канальный и сетевой. Кроме того, существует «менеджер шины», которому доступны все три уровня. На физическом уровне обеспечивается электрическое и механическое соединение с коннектором, на других уровнях — соединение с прикладной программой.
На физическом уровне осуществляется передача и получение данных, выполняются арбитражные функции — для того чтобы все устройства, подключенные к шине Firewire, имели равные права доступа.
На канальном уровне обеспечивается надежная передача данных через физический канал, осуществляется обслуживание двух типов доставки пакетов — синхронного и асинхронного.
На сетевом уровне поддерживается асинхронный протокол записи, чтения и блокировки команд, обеспечивая передачу данных от отправителя к получателю и чтение полученных данных. Блокировка объединяет функции команд записи/чтения и производит маршрутизацию данных между отправителем и получателем в обоих направлениях.
«Менеджер шины» обеспечивает общее управление ее конфигурацией, выполняя следующие действия: оптимизацию арбитражной синхронизации, управление потреблением электрической энергии устройствами, подключенными к шине, назначение ведущего устройства в цикле, присвоение идентификатора синхронного канала и уведомление об ошибках.
Чтобы передать данные, устройство сначала запрашивает контроль над физическим уровнем. При асинхронной передаче в пакете, кроме данных, содержатся адреса отправителя и получателя. Если получатель принимает пакет, то подтверждение возвращается отправителю. Для улучшения производительности отправитель может осуществлять до 64 транзакций, не дожидаясь обработки. Если возвращено отрицательное подтверждение, то происходит повторная передача пакета.
В случае синхронной передачи отправитель просит предоставить синхронный канал, имеющий полосу частот, соответствующую его потребностям. Идентификатор синхронного канала передается вместе с данными пакета. Получатель проверяет идентификатор канала и принимает только те данные, которые имеют определенный идентификатор. Количество каналов и полоса частот для каждого зависят от приложения пользователя. Может быть организовано до 64 синхронных каналов.
Шина конфигурируется таким образом, чтобы передача кадра начиналась во время интервала синхронизации. В начале кадра располагается индикатор начала и далее последовательно во времени следуют синхронные каналы 1, 2… На рисунке изображен кадр с двумя синхронными каналами и одним асинхронным.
Оставшееся время в кадре используется для асинхронной передачи. В случае установления для каждого синхронного канала окна в кадре шина гарантирует необходимую для передачи полосу частот и успешную доставку данных.
Резюме
Таким образом, в скором будущем, на задней панели компьютера можно будет увидеть выходы всего двух последовательных шин: USB для низкоскоростных применений и Firewire — для высокоскоростных. Причем путь в жизнь у шины IEEE 1394 произойдет гораздо быстрее, чем у USB. В этом случае производители программных продуктов и аппаратуры действуют сообща. Уже сейчас доступны различные виды устройств с шиной Firewire, поддержка этой шины будет встроена в операционную систему Windows 98 и в ближайшем будущем ведущие производители чипсетов для PC встроят поддержку этой шины в свои продукты. Так что 1998 год станет годом Firewire.
Дополнительная информация
Дополнительную информацию о шине IEEE 1394 можно получить на сайтах: