какую частицу называют протоном
Что же есть протон?
Добрый вечер, просвещённые судари и сударыни!
«Протон — стабильная частица из класса адронов, ядро атома водорода.
В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и открытие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906 — 1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона первые фотографии следов протона, одновременно подтвердив открытие искусственного превращения элементов. В этих опытах альфа-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода.
Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атомный номер данного элемента.
Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона.
Масса протона = (938,2796 ± 0,0027) МэВ или = 1,6;10 в минус 24 степени
грамм, т. е. протон в 1836 раз тяжелее электрона! С современной точки зрения протон не является истинно элементарной частицей: он состоит из двух u-кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d-кварка с электрическим зарядом — 1/3. Кварки связаны между собой обменом другими гипотетическими частицами — глюонами, квантами поля, переносящего сильные взаимодействия.
Данные экспериментов, в которых рассматривались процессы рассеяния электронов на протонах, действительно свидетельствуют о наличии внутри протонов точечных рассеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечные размеры = 10 * 10 в минус 13 см, хотя, разумеется, его нельзя представлять как твердый шарик. Скорее, протон напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц.
Протон, как и все адроны, участвует в каждом из фундаментальных взаимодействий. Так: сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимодействия — протоны и электроны в атомах.»
Получается следующий логический вывод: с одной стороны- он частица, а с другой стороны- обладает волновыми качествами.
Обратим наше особое внимание, уважаемые читатели, что сам протон был открыт косвенным путём при облучении альфа частицами ( ядра гелия с высокими энергиями ) атомов азота, то есть он был открыт в движении.
Кроме этого, уважаемые мыслители, протон по современным представлениям учёных представляет собой «яблоко в тумане» с размытой границей, состоящее из рождающихся и уничтожающихся виртуальных частиц.
И вот наступает момент истины, который заключается в неожиданном вопросе,- А что же происходит с протоном в движении с очень большими скоростями порядка скорости света?
На этот вопрос отвечает учёный Игорь Иванов на своей учёной странице «Какую форму имеет быстролетящий протон»: http://elementy.ru/novosti_nauki/430940
Вот что он пишет: «Теоретические расчеты показывают, что протоны и ядра, движущиеся с околосветовой скоростью, имеют форму не плоского диска, а двояко-вогнутой линзы.
Микромир живет по законам, которые очень непохожи на законы окружающего нас мира. Многие наслышаны про волновые свойства вещества или про то, что вакуум в квантовой теории — вовсе не пустота, а бурлящий океан виртуальных частиц. Менее известно то, что само понятие «состава» сложных частиц является в микромире понятием относительным, зависящим от того, как вы на эту частицу посмотрели. А это, в свою очередь, влияет на «форму» составных частиц, например протона.
Протон — составная частица. Обычно говорят, что протоны состоят из кварков, скрепленных вместе глюонным полем, однако такое описание справедливо только для неподвижных или медленно движущихся протонов. Если же протон летит со скоростью, близкой к скорости света, то намного корректнее его описывать в виде пронизывающих друг друга облаков кварков, антикварков и глюонов. Все вместе они называются «партоны» (от английского «part» — часть).
В квантовой теории количество партонов не фиксировано (это, в общем-то, относится ко всем частицам). Такой «закон несохранения» возникает из-за того, что каждый партон может расщепиться на два партона с энергией поменьше или, наоборот, два партона могут рекомбинировать — слиться в один. Оба этих процесса происходят постоянно, и в результате в быстролетящем протоне возникает некоторое динамически сбалансированное количество партонов. Причем это количество зависит от системы отсчета: чем больше энергия протона, тем больше в нём партонов.
В итоге получается несколько неожиданная картина, которая, на первый взгляд, даже противоречит теории относительности. Напомним, что в соответствии с теорией относительности продольный размер быстро движущихся тел сокращается. Например, шар (в своей системе покоя) выглядит сильно сплюснутым диском для быстро движущегося наблюдателя. Однако это «правило сплющивания» нельзя буквально переносить на протон, поскольку где в пространстве пролегает «граница протона» — зависит от системы отсчета.
С одной стороны, при переходе из одной системы отсчета в другую партонное облако действительно стремится сплющиться в согласии с теорией относительности. Но с другой стороны, при этом нарождаются новые партоны, которые как бы «восстанавливают» его продольный размер. В целом получается так, что протон — который является просто набором партонных облаков — вовсе не сплющивается с ростом энергии. «
Момент истины продолжается, мои дорогие мыслители! Он продолжается в неожиданных вопросах читателей автору Игорю Иванову, заданных при обсуждении его статьи » Какую форму имеет быстролетящий протон».
Я приведу вам не все из них, а только избранные ввиде вопросов и ответов:
1. Вопрос Анонимного автора:
Когда протон при высоких энергиях принимает форму «двояковыпуклой линзы», как это согласуется с неопределённостью Гезенберга?
1. Ответ учёного Игоря Иванова:
Он именно из- за этого отношения принимает такую форму. Ближе к краю продольный импульс мягких глюонов меньше, так как продольная толщина больше.
2. Вопрос Анонимного автора:
Он вовсе не сжимается в гамма раз, а остаётся довольно «толстым.»
Толстая волновая функция протона- это как?
2. Ответ учёного Игоря Иванова:
Разве это не понятно из контекста?! «Толстый» в противоположность «тонкому», то есть имеющий (относительно) большой продольный размер!
3. Вопрос Анонимного автора:
Я не о том спрашиваю! Я спрашиваю,- к чему вы приписываете геометрию? К волновым функциям? Или рассматриваете в виде волнового пакета и как-то пытаетесь его описать? Что такое размер для протона? Может, по- вашему, это какие-то свойства его дифференциального сечения или что?
4. Ответ учёного Игоря Иванова:
Зачем столько вопросительных знаков? Да, размер относится к волновой функции партонов, то есть к фурье образу распределения партонов по продольному импульсу. Я привёл ссылки, вы можете подробнее прочитать их.
5. Вопрос Анонимного автора:
5. Ответ учёного Игоря Иванова:
Извините, но мне кажется,- вы уже троллите. Ссылеку я дал, теперь очередь за вами их изучить, если вас этот вапрос действительно интересует.
6. Замечание Аномимного автора:
Вы правы- я тороллю, так как не совсем согласен с описанием протонов в виде «толстых» и «тонких.».
Я приведу вам, мои любопытные читатели ещё один из диалогов нового человека firtree c учёным Игорем Ивановым:
1. Вопрос нового человека:
В первых строках «продольный размер быстро летящего протона» вы подменяете размер частицы длинной волны или размером волнового пакета частицы. Это примерно тоже самое, что сказать, что электрон- не точечный, а имеет размеры порядка радиуса Бора, находясь в атоме водорода. В том числе, если взять покоящийся протон, его «продольные размеры» будут больше его же радиуса.
1. Ответ учёного Игоря Иванова:
Нет, я эти две вещи не путаю. Я говорю, что размер протона эквивалентен типичным длинам волн, составляющих его партонов. Это то же самое, что сравнивать размер атома водорода и типичные длины волн электрона, а не длину атома целиком, которая может быть много больше своего размера.
К покоящемуся протону переходить нельзя, описание не годится.
2. Размышление нового человека:
Я говорю, что размер протона эквивалентен длинам волн составляющих его партонов. Это то же самое, что сравнивать размер атома водорода и типичные длины волн электрона, а не длину атома целиком, которая может быть много больше своего размера.
Вот это и настараживает. Если длина волны атома целиком велика, много больше размеров атома, то и длина волны электрона в составе атома также велика.
Для оценки размеров атома используется другой метод, который называется «переход в систему отсчёта центра масс». Разумеется, речь идёт о взятии оператора разности пары частиц, составляющих систему (Ядро- электрон).
Когда длина волны атома целиком велика, волны электрона и ядра, рассмотренные по отдельности, сильно коррелированы, так что такая разность ( среднее значение ) оказывается нисколько не похожей на длину волны электрона, рассмотренного самого по себе. Аналогично для партонов должна оцениваться разность координат.
3. А сейчас я приведу вам, мои дорогие читатели, заключительный вывод другого человека, подключившегося к беседе с учёным Игорем Ивановым:
Кроме этого, я поражаюсь тому, как возможно, что из инвариантных уравнений квантовой теории поля получаются неинвариантные сущности, вроде структуры частицы?!
Уважаемые судари и сударыни! Прочитав предубеждения современных учёных о строении протона и прослушав беседы с учёным Игорем Ивановым я пришел к следующим неизгладимым выводам:
2. Состав протона придумали сами учёные ради своих собственных умозаключений и вычислительных трюков.
3. Мы не можем ответить на самый простой вопрос мироздания,-
Что же такое частица протон? И не можем проникнуть в его тайну, поскольку зациклились в дебрях неверной теории- Квантовой Теории Поля, которая не может объяснить самого главного:
4. Каким образом полу- частица протон становиться пакетом полу- волн?
И что происходит со временем в час перехода полу- частицы в пакет полу- волн?
5. Мы забыли о самом времени, о его искривлении в час перехода из трёхмерного мира в многомерный мир.
Он частица иль волна?
Видно глюки у меня
Появилися не зря
После слов глюон любави
У протона на крови?
Он в покое не сидит,
А как яблоко дрожит
И туманом пьяных глаз
Водит за нос часто нас.
А когда примет на грудь
Стопочку свою чуть- чуть,
То летит потоком в свет
Передать друзьям портрет.
Он рисунок не простой,
Чертит новою мечтой,
С вогнутостью линз в очах,
С дерзким словом, в дерзких снах.
Он и здесь и там, и тут.
Его люди не поймут,
Потому что в их мозгах
Прозябает детский страх.
Только тот, кто сердцем чист,
Скинет в безну знанья лист,
Примет сердцем свой протон
И познает счастья тон.
Примечание: Красота обновлённого протона взята из обновлённых мозгов интернета.
Что такое протон, и что у него внутри?
Рис. 1: атом водорода. Не в масштабе.
Вы знаете, что Большой адронный коллайдер в основном занимается тем, что сталкивает друг с другом протоны. Но что такое протон?
В первую очередь – ужасная и полная неразбериха. Настолько же уродливая и хаотичная, насколько прост и элегантен атом водорода.
Но что тогда такое атом водорода?
Это простейший пример того, что физики называют «связанным состоянием». «Состояние», по сути, означает некую штуку, существующую довольно долгое время, а «связанное» означает, что её компоненты связаны друг с другом, будто супруги в браке. На самом деле, пример супружеской пары, в которой один супруг гораздо тяжелее другого, сюда очень хорошо подходит. Протон сидит в центре, едва двигаясь, а по краям объекта движется электрон, движется быстрее, чем вы и я, но гораздо медленнее скорости света, всеобщего скоростного ограничения. Мирный образ брачной идиллии.
Или он кажется таким, пока мы не заглянем в сам протон. Внутренности самого протона больше напоминают коммуну, где плотно расположено множество холостых взрослых и детей: чистый хаос. Это тоже связанное состояние, но связывает оно не нечто простое, вроде протона с электроном, как в водороде, или хотя бы несколько десятков электронов с атомным ядром, как в более сложных атомах типа золота – но несметное количество (то есть, их слишком много и они слишком быстро меняются, чтобы их можно было подсчитать практически) легковесных частиц под названием кварки, антикварки и глюоны. Невозможно просто описать структуру протона, нарисовать простые картинки – он чрезвычайно дезорганизован. Все кварки, глюоны, антикварки, мечутся внутри с максимально возможной скоростью, почти со скоростью света.
Рис. 2: Изображение протона. Представьте, что все кварки (верхний, нижний, странный — u,d,s), антикварки (u,d,s с чёрточкой), и глюоны (g) снуют туда-сюда почти со скоростью света, сталкиваются друг с другом, появляются и исчезают
Вы могли слышать, что протон состоит из трёх кварков. Но это ложь – во благо, но всё же довольно большая. На самом деле в протоне существует несметное количество глюонов, антикварков и кварков. Стандартное сокращение «протон состоит из двух верхних кварков и одного нижнего кварка» просто говорит о том, что в протоне на два верхних кварка больше, чем верхних антикварков, и на один нижний кварк больше, чем нижних антикварков. Чтобы это сокращение стало верным, необходимо добавлять к нему «и ещё несметные количества глюонов и пар кварк-антикварк». Без этой фразы представление о протоне будет настолько упрощённым, что понять работу БАК будет совершенно невозможно.
Рис. 3: Маленькая ложь во благо на стереотипном изображении из Википедии
В общем, атомы по сравнению с протонами похожи на па-де-де в изысканном балете по сравнению с дискотекой, заполненной пьяными подростками, прыгающими и машущими диджею.
Именно поэтому, если вы – теоретик, пытающийся понять, что увидит БАК в столкновениях протонов, вам будет сложно. Очень сложно предсказывать результаты столкновений объектов, которые нельзя описать простым способом. Но, к счастью, с 1970-х годов, на основе идей Бьёркена из 60-х, физики-теоретики нашли относительно простую и рабочую технологию. Но она всё же работает до определённых пределов, с точностью порядка 10%. По этой и некоторым другим причинам надёжность наших подсчётов на БАК всегда ограничена.
Ещё одна деталь по поводу протона – он крохотный. Реально крохотный. Если раздуть атом водорода до размеров вашей спальни, протон будет размером с такую маленькую крупицу пыли, что её будет очень трудно заметить. Именно потому, что протон настолько мал, мы можем игнорировать творящийся внутри него хаос, описывая атом водорода как простой. Точнее, размер протона в 100000 раз меньше размера атома водорода.
Для сравнения, размер Солнца всего в 3000 раз меньше размера Солнечной системы (если считать по орбите Нептуна). Именно так – в атоме более пусто, чем в Солнечной системе! Вспоминайте об этом, когда смотрите на небо ночью.
Но вы можете спросить: «Секундочку! Вы утверждаете, что Большой адронный коллайдер как-то сталкивает протоны, имеющие в 100000 раз меньшие размеры, чем атом? Да как это вообще возможно?»
Столкновения протонов против мини-столкновений кварков, глюонов и антикварков
Столкновения протонов на БАК происходят с определённой энергией. Это было 7 ТэВ = 7000 ГэВ в 2011 году, и 8 ТэВ = 8000 ГэВ в 2012-м. Но специалистам по физике частиц в основном интересны столкновения кварка одного протона с антикварком другого протона, или столкновениях двух глюонов, и т.п. – то, что может привести к появлению по-настоящему нового физического явления. Эти мини-столкновения несут в себе малую долю общей энергии столкновения протонов. Насколько большую часть этой энергии они могут переносить, и зачем нужно было увеличивать энергию столкновений с 7 ТэВ до 8 ТэВ?
Ответ – на рис. 4. На графике показано количество столкновений, зафиксированных в детекторе ATLAS. В данных от лета 2011 года участвуют рассеяние кварков, антикварков и глюонов с других кварков, антикварков и глюонов. Такие мини-столкновения чаще всего производят два джета (струи адронов, проявления высокоэнергетических кварков, глюонов или антикварков, выбитых из родительских протонов). Измеряют энергии и направления джетов, и из этих данных определяют количество энергии, которое должно было участвовать в мини-столкновении. На графике показано количество мини-столкновений такого типа в виде функции энергии. Вертикальная ось логарифмическая – каждая чёрточка обозначает увеличение количества в 10 раз (10 n обозначает 1 и n нулей после него). К примеру, количество мини-столкновений наблюдаемых в промежутке энергий от 1550 до 1650 ГэВ равнялось порядка 10 3 = 1000 (отмечено голубыми линиями). Учтите, что график начинается с энергии в 750 ГэВ, но количество мини-столкновений продолжает расти, если вы изучаете джеты с меньшими энергиями, вплоть до момента, когда джеты становятся слишком слабыми, чтобы их засечь.
Рис. 4: количество столкновений как функция энергии (mjj)
Учтите, что общее количество столкновений протон-протон с энергией в 7 ТэВ = 7000 ГэВ приблизилось к 100 000 000 000 000. И из всех этих столкновений только два мини-столкновения превысили отметку 3500 ГэВ – половину энергии столкновения протонов. Теоретически энергия мини-столкновения может возрасти до 7000 ГэВ, но вероятность этого всё время падает. Мы настолько редко видим мини-столкновения с энергией 6000 ГэВ, что вряд ли увидим энергию в 7000 ГэВ, даже если соберём в 100 раз больше данных.
Но это ещё не всё. Посмотрите на голубую и зелёную линии на рис. 4: они показывают, что происходят на энергиях порядка 1400 и 1600 ГэВ – таких, что соотносятся друг с другом, как 7 к 8. На уровне энергии столкновения протонов в 7 ТэВ количество мини-столкновений кварков с кварками, кварков с глюонами и т.п. с энергией 1400 ГэВ более чем в два раза превышает количество столкновений с энергией в 1600 ГэВ. Но когда машина увеличивает энергию на 8/7, то, что выполнялось для 1400, начинает выполняться для 1600. Иначе говоря, если вас интересуют мини-столкновения фиксированной энергии, их количество растёт – и гораздо больше, чем 14% роста энергии столкновения протонов! Это значит, что для любого процесса с предпочтительной энергией, допустим, появления легковесных частиц Хиггса, которое происходит на энергиях порядка 100-200 ГэВ, вы получаете больше результата за те же деньги. Рост с 7 до 8 ТэВ означает, что для того же количества столкновений протонов вы получаете больше частиц Хиггса. Производство частиц Хиггса увеличится примерно на 1,5. Количество верхних кварков и определённых типов гипотетических частиц увеличится чуть сильнее.
Это означает, что хотя в 2012 году количество столкновений протонов увеличено в 3 раза по сравнению с 2011-м, общее количество полученных частиц Хиггса увеличится почти в 4 раза просто из-за увеличения энергии.
Кстати, рис. 4 также доказывает, что протоны не состоят просто из двух верхних кварков и одного нижнего, как изображают на рисунках типа рис. 3. Если бы они были такими, тогда кварки должны были бы переносить порядка трети энергии протонов, и большая часть мини-столкновений проходила бы с энергиями порядка трети от энергии столкновения протонов: в районе 2300 ГэВ. Но на графике видно, что в районе 2300 ГэВ ничего особенного не происходит. С энергиями меньше 2300 ГэВ происходит гораздо больше столкновений, и чем ниже вы спускаетесь, тем больше столкновений видите. Всё оттого, что в протоне содержится огромное количество глюонов, кварков и антикварков, каждый из которых переносит малую часть энергии протона, но их так много, что они участвуют в огромном количестве мини-столкновений. Это свойство протона и показано на рис. 2 – хотя на самом деле количество низкоэнергетических глюонов и пар кварк-антикварк гораздо больше, чем изображено на рисунке.
Но вот чего график не показывает, так это доли, которые при мини-столкновениях с определённой энергией приходятся на столкновения кварков с кварками, кварков с глюонами, глюонов с глюонами, кварков с антикварками, и т.д. На самом деле, напрямую из экспериментов на БАК этого и нельзя сказать – джеты от кварков, антикварков и глюонов выглядят одинаково. Откуда нам известны эти доли – это история сложная, в неё входят множество различных прошлых экспериментов и комбинирующая их теория. И отсюда нам известно, что мини-столкновения самых высоких энергий обычно происходят у кварков с кварками и у кварков с глюонами. Столкновения на низких энергиях обычно происходят между глюонами. Столкновения кварков и антикварков происходят относительно редко, но они очень важны для определённых физических процессов.
Распределение частиц внутри протона
Два графика, отличающихся масштабом вертикальной оси, показывают относительную вероятность столкновения с глюоном, верхним или нижним кварком, или антикварком, переносящим долю энергии протона, равную x. При малых x доминируют глюоны (а кварки и антикварки становятся равновероятными и многочисленными, хотя их всё равно меньше, чем глюонов), а при средних x доминируют кварки (хотя их становится крайне мало).
Оба графика демонстрируют одно и то же, просто с разным масштабом, поэтому то, что сложно увидеть на одном из них, проще рассмотреть на другом. А показывают они вот что: если в Большом адронном коллайдере на вас летит протонный луч, и вы ударяете по чему-либо внутри протона, насколько вероятно то, что вы ударите верхний кварк, или нижний кварк, или глюон, или верхний антикварк, или нижний антикварк, переносящий долю энергии протона, равную x? Из этих графиков можно вынести, что:
• Из того, что все кривые очень быстро растут при малых x (видно на нижнем графике), следует, что большая часть частиц в протоне переносит менее 10% (x 0,2) энергии протона – что бывает очень, очень редко – это, скорее всего, кварк, при этом вероятность того, что это верхний кварк, в два раза больше вероятности, что это нижний кварк. Это остатки идеи, что «протон – это два верхних кварка и один нижний».
• Все кривые с увеличением х резко падают; очень маловероятно, что вы столкнётесь с чем-либо, переносящим более 50% энергии протона.
Эти наблюдения непрямым образом отражаются на графике с рис. 4. Вот ещё пара неочевидных вещей по поводу двух графиков:
• Большая часть энергии протона делится (примерно одинаково) между небольшим количеством высокоэнергетических кварков и огромным количеством низкоэнергетических глюонов.
• Среди частиц по количеству преобладают низкоэнергетические глюоны, а за ними уже идут кварки и антикварки очень низких энергий.
Количество кварков и антикварков огромно, но: общее количество верхних кварков за вычетом общего количество верхних антикварков равно двум, а общее количество нижних кварков за вычетом общего количества нижних антикварков, равно одному. Как мы видели выше, лишние кварки переносят ощутимую (но не основную) часть энергии протона, летящего на вас. И только в этом смысле можно сказать, что протон в основном состоит из двух верхних кварков и одного нижнего.
Кстати, вся эта информация была получена из захватывающей комбинации экспериментов (в основном по рассеянию электронов или нейтрино с протонов или с атомных ядер тяжёлого водорода – дейтерия, содержащего один протон и один нейтрон), собранных вместе при помощи подробных уравнений, описывающих электромагнитные, сильные ядерные и слабые ядерные взаимодействия. Эта долгая история тянется с конца 1960-х и начала 1970-х. И она прекрасно работает для предсказания явлений, наблюдаемых в коллайдерах, где сталкиваются протоны с протонами и протоны с антипротонами – таких, как Тэватрон и БАК.
Другие доказательства сложной структуры протона
Давайте посмотрим на кое-какие данные, полученные на БАК, и то, как они подтверждают утверждения о строении протона (хотя текущее понимание протона появилось уже 3-4 десятилетия назад, благодаря множеству экспериментов).
Количество столкновений такого типа в зависимости от энергии дано на рис. 4. То, что на низких энергиях количество столкновений гораздо больше, подтверждает тот факт, что большая часть частиц внутри протона переносит только малую долю его энергии. Данные начинаются с энергий в 750 ГэВ.
Рис. 7: данные для более низких энергий, взятые из меньшего набора данных. Dijet mass – то же, что mjj на рис. 4.
Данные для рис. 7 взяты из эксперимента CMS от 2010 года, на котором они строили график столкновений плоть до энергий в 220 ГэВ. Здесь построен график не количества столкновений, а немного сложнее: количества столкновений на ГэВ, то есть количество столкновений поделено на ширину столбца гистограммы. Видно, что тот же самый эффект продолжает работать на всём диапазоне данных. Столкновений типа тех, что изображены на рис. 6, при низких энергиях происходит гораздо больше, чем при высоких. И это количество продолжает расти до тех пор, пока уже невозможно становится различать джеты. В протоне содержится очень много низкоэнергетических частиц, и мало какие из них переносят ощутимую долю его энергии.
Что насчёт наличия в протоне антикварков? Три из самых интересных процессов, не похожих на столкновение, изображённое на рис. 6, иногда происходящие на БАК (в одном из нескольких миллионов столкновений протон-протон) включают процесс:
Они показаны на рис. 8.
Соответствующие данные с CMS даны на рис. 9 и 10. Рис. 9 показывает, что количество столкновений, в результате которых появляется электрон или позитрон (слева) и нечто необнаружимое (вероятно, нейтрино или антинейтрино), или же мюон и антимюон (справа), предсказано правильно. Предсказание делается комбинированием Стандартной Модели (уравнений, предсказывающих поведение известных элементарных частиц) и структуры протона. Большие пики данных возникают из-за появления частиц W и Z. Теория прекрасно совпадает с данными.
Рис. 9: чёрные точки – данные, жёлтое – предсказания. Количество событий указано в тысячах. Слева: центральный пик появляется из-за нейтрино в частицах W. Справа комбинируются лептон и антилептон, появляющиеся в столкновении, и подразумевается масса частицы, из которой они появились. Пик появляется из-за получающихся частиц Z.
Ещё больше деталей можно видеть на рис. 10, где показано, что теория по количеству не только указанных, но и многих связанных с ними измерений – большинство из которых связаны со столкновениями кварков с антикварками – прекрасно совпадает с данными. Данные (красные точки) и теория (синие отрезки) никогда не совпадают точно из-за статистических флуктуаций, по той же причине, по которой вы, десять раз подбросив монету, не получите обязательно пять «орлов» и пять «решек». Поэтому точки-данные размещаются в пределах «полосы ошибки», вертикальной красной полоски. Размер полосы такой, что для 30% измерений полоса ошибки должна граничить с теорией, и всего для 5% измерений она должна отстоять от теории на две полосы. Видно, что все свидетельства подтверждают, что в протоне содержится множество антикварков. И мы правильно понимаем количество антикварков, переносящих определённую долю энергии протона.
Наконец, давайте подтвердим тот факт, что большая часть частиц в протоне – это глюоны.
Рис. 13: данные (чёрные точки) соответствуют теоретическим предсказаниям (красные колонки). Получено из измерения энергии электронов в столкновениях.
Получается, что данные вполне хорошо совпадают с теоретическими ожиданиями. Поэтому мы можем подтвердить, что, в самом деле, большая часть частиц в протоне – это глюоны, переносящие малую долю энергии протона.