какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях

Какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях

Исходный фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):

5’ — ЦГТАТАГЦГТАТАТЦ — 3’

3’ — ГЦАТАТЦГЦАТАТАГ — 5’

В результате замены одного нуклеотида в ДНК вторая аминокислота во фрагменте полипептида заменилась на аминокислоту Тре. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните. Для выполнения задания используйте таблицу генетического кода.

Генетический код (иРНК)

основание Второе основание Третье

основание У Ц А Г

1. Второй триплет исходного фрагмента смысловой цепи ДНК — АТА (транскрибируемой цепи ДНК — ТАТ), определяем триплет иРНК: АУА, по таблице генетического кода определяем, что он кодирует аминокислоту Иле;

2. Во фрагменте ДНК во втором триплете смысловой цепи АТА второй нуклеотид Т заменился на Ц (в транскрибируемой цепи в триплете ТАТ нуклеотид А заменился на Г), а в иРНК во втором кодоне (АУА) нуклеотид У заменился на Ц (АЦА);

3. Свойство генетического кода — универсальность.

Источник

Какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях

Фрагмент молекулы ДНК имеет последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):

5’ − ТАТТЦЦТАЦГГАААА − 3’

3’ − АТААГГАТГЦЦТТТТ − 5’

Определите последовательность аминокислот во фрагменте полипептидной цепи и обоснуйте свой ответ. Какие изменения могли произойти в результате генной мутации во фрагменте молекулы ДНК, если третья аминокислота в полипептиде заменилась на аминокислоту Цис? Какое свойство генетического кода определяет возможность существования разных фрагментов мутированной молекулы ДНК? Ответ обоснуйте. Для выполнения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда, второй — из верхнего горизонтального ряда и третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.

1. Последовательность аминокислот в полипептиде: Тир-Сер-Тир-Гли-Лиз определяется по последовательности нуклеотидов в молекуле иРНК:

5’ − УАУУЦЦУАЦГГАААА − 3’.

2. Во фрагменте белка третья аминокислота Тир заменилась на Цис что возможно при замене третьего триплета в смысловой цепи ДНК ТАЦ на триплеты ТГТ или ТГЦ (в третьем кодоне и РНК УАЦ на кодон УГУ, или УГЦ).

3. Свойство генетического кода — избыточность (вырожденность), так как одной аминокислоте (Цис) соответствует более одного триплета (два триплета).

Примечание. Алгоритм выполнения задания.

1. По принципу комплементарности на основе транскрибируемой цепи ДНК находим иРНК:

ДНК:3’ − АТА-АГГ-АТГ-ЦЦТ-ТТТ − 5’

иРНК: 5’ − УАУ-УЦЦ-УАЦ-ГГА-ААА − 3’

Последовательность аминокислот в полипептиде определяется по последовательности нуклеотидов в молекуле иРНК:

иРНК: 5’ − УАУ-УЦЦ-УАЦ-ГГА-ААА − 3’

2. Во фрагменте белка третья аминокислота Тир заменилась на Цис, что возможно при замене третьего кодона в иРНК 5’-УАЦ-3’ на кодон 5’- УГУ-3’ или 5’-УГЦ-3’ → кодоны находим по таблице генетического кода

Третий триплет в смысловой цепи ДНК 5’-ТАЦ-3’ заменился на триплет 5’-ТГТ-3’ или 5’-ТГЦ-3’.

3. Свойство генетического кода — избыточность (вырожденность), так как одной аминокислоте (Цис) соответствует более одного триплета (два триплета).

Источник

Ситуационная задача № 26.

Участок цепи белковой молекулы контролируется полинуклеотидной цепью ДНК – ТАЦАТАГЦАТЦГАЦЦ. Произошла замена в пятом нуклеотиде основания Т на А. Используя таблицу генетического кода, укажите какие изменения произойдут в строении белковой молекулы (таблица прилагается).

1. Что такое генетический код?

2. Назовите и объясните свойства генетического кода.

3. В каком случае замена нуклеотида не повлияет на первичную структуру белка и как это объяснить?

4. Может ли нарушение последовательности нуклеотидов привести к остановке синтеза белка, и в каком случае?

5. К какому виду мутаций относятся подобные изменения ДНК, каково их медицинское значение? Приведите примеры генных болезней, причиной которых были подобные мутации.

Ответ к ситуационной задаче № 26:

Генетический код – ключ для перевода последовательности нуклеотидов в аминокислотную последовательность. Свойства кода: триплетность, специфичность, вырожденность, универсальность.

В приведенном примере последовательность аминокислот будет следующая:

Аминокислоты мет – тир – арг – сер – гли

При замене пятого нуклеотида, аминокислотная последовательность изменилась: мет-фен-арг-сер-гли, т.е. произошла точковая мутация. Замена нуклеотида не всегда приводит к нарушению последовательности аминокислот благодаря свойствам генетического кода : триплетности и вырожденности. Мутация в виде замены нуклеотидов, может привести к возникновению кодона-синонима и изменений в первичной структуре белка не произойдет. Отдельные замены приводят к образованию укороченного полипептида в связи с преждевременной терминацией синтеза и-РНК. Подобные изменения ДНК относятся к генным мутациям (делеции, вставки, замены, инверсии нуклеотидов ДНК). Они являются причиной моногенных или генных болезней.

Примеры генных болезней: энзимопатии, связанные с нарушением ферментных систем (галактоземия, фенилкетонурия, альбинизм), гемоглобинопатии, обусловленные первичным дефектом пептидных цепей гемоглобина, коллагеновые болезни и др.

Ситуационная задача №27.

Действие некоторых внешних факторов (мутагенов) может вызвать у человека мутации.

1. Какие виды генетических нарушений могут вызывать такие факторы?

2. Чем характеризуются разные виды генетических нарушений (мутаций)?

3. Какие методы генетики позволяют выявить генетические нарушения человека, полученные при действии мутагенов?

4. К каким медицинским последствиям может привести действие мутагенов?

5. Какие меры позволяют снизить риск развития генетических патологий?

Ответ к ситуационной задаче № 27.

Ситуационная задача №28.

У здоровых родителей родился ребёнок с наследственным заболеванием фенилкетонурией (аутосомно-рецессивный тип наследования).

1. Объясните причину рождения больного ребёнка.

2. Какой вид изменчивости проявился в данном случае? Назовите все возможные механизмы возникновения такой изменчивости.

3. Назовите другие виды изменчивости и охарактеризуйте их.

4. Определите вероятность рождения здорового ребёнка у этих родителей.

5. Применение какого метода генетики человека поможет точно установить гомозиготность новорожденного по гену фенилкетонурии?

Источник

Генетика и ее методология

Предмет генетики

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному распределению генетического материала.

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

Ген и генетический код

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

Это происходит потому, что в разных клетках одни гены «выключены», а другие «активны»: транскрипция идет только с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются нонсенс кодонами (стоп-кодонами)

Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного триплета.

Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.

Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.

Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе трансляции.

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

Генетический код един для всех живых организмов, что свидетельствует о единстве происхождения всего живого.

Аллельные гены

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

Гаметы

К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитываться исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 2 4 = 16 гамет.

К примеру, у особи «AA» мы напишем только одну гамету «А» и не будем повторяться, а у особи «Aa» напишем два типа гамет «A» и «a», так как они различаются между собой.

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

Гибридологический метод

Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания. С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных генов.

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

Цитогенетический метод

С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии наследственных заболеваний.

Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера, Клайнфельтера).

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

Генеалогический метод (греч. γενεαλογία — родословная)

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: «рецессивный он или доминантный?», «сцеплен с полом или не сцеплен?»

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного) рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:

Близнецовый метод

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

32. Клетка как биологическая система какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.Читать 0 мин.

32.275. Генетический код и его свойства

Ранее мы подчёркивали, что нуклеотиды имеют важную для формирования жизни на Земле особенность ― при наличии в растворе одной полинуклеотидной цепочки спонтанно происходит процесс образования второй (параллельной) цепочки на основании комплементарного соединения родственных нуклеотидов. Одинаковое число нуклеотидов, в обоих цепочках и их химическое родство, является непременным условием для осуществления такого рода реакций. Однако при синтезе белка, когда информация с иРНК реализуется в структуру белка никакой речи о соблюдении принципа комплементарности идти не может. Это связано с тем, что в иРНК, и в синтезированном белке различно не только число мономеров, но и, что особенно важно, отсутствует структурное сходство между ними (с одной стороны нуклеотиды, с другой аминокислоты). Понятно, что в этом случае возникает необходимость создания нового принципа точного перевода информации с полинуклеотида в структуру полипептида. В эволюции такой принцип был создан и в его основу был заложен генетический код.

Генетический код ― это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке.

Генетический код имеет несколько свойств:

Следует отметить, что некоторые авторы предлагают ещё и другие свойства кода, связанные с химическими особенностями входящих в код нуклеотидов или с частотой встречаемости отдельных аминокислот в белках организма и т.д. Однако эти свойство вытекают из вышеперечисленных, поэтому там мы их и рассмотрим.

Генетический код, как и многое сложно организованные система имеет наименьшую структурную и наименьшую функциональную единицу. Триплет ― наименьшая структурная единица генетического кода. Состоит она из трёх нуклеотидов. Кодон ― наименьшая функциональная единица генетического кода. Как правило, кодонами называют триплеты иРНК. В генетическом коде кодон выполняет несколько функций. Во-первых, главная его функция заключается в том, что он кодирует одну аминокислоту. Во-вторых, кодон может не кодировать аминокислоту, но, в этом случае, он выполняет другую функцию (см. далее). Как видно из определения, триплет ― это понятие, которое характеризует элементарную структурную единицу генетического кода (три нуклеотидов). Кодон ― характеризует элементарную смысловую единицу генома ― три нуклеотида определяют присоединение к полипептидной цепочки одной аминокислоты.

Элементарную структурную единицу вначале расшифровали теоретически, а затем её существование подтвердили экспериментально. И действительно, 20 аминокислот невозможно закодировать одним или двумя нуклеотидом т.к. последних всего 4. Три нуклеотида из четырёх дают 43 = 64 варианта, что с избытком перекрывает число имеющихся у живых организмах аминокислот (см.табл. 1).

Представленные в таблице 64 сочетания нуклеотидов имеют две особенности. Во-первых, из 64 вариантов триплетов только 61 являются кодонами и кодируют какую-либо аминокислоту, их называют смысловые кодоны. Три триплета не кодируют.

Таблица 1.

какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. картинка какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях фото. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях видео. какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях смотреть картинку онлайн. смотреть картинку какое свойство генетического кода позволяет сохранять первичную структуру белка при генных мутациях.

Кодоны информационной РНК и соответствующие им аминокислотыявляются стоп-сигналами, обозначающие конец трансляции. Таких триплетов три ― УАА, УАГ, УГА, их ещё называют «бессмысленные» (нонсенс кодоны). В результате мутации, которая связана с заменой в триплете одного нуклеотида на другой, из смыслового кодона может возникнуть бессмысленный кодон. Такой тип мутации называют нонсенс-мутация. Если такой стоп-сигнал сформировался внутри гена (в его информационной части), то при синтезе белка в этом месте процесс будет постоянно прерываться ― синтезироваться будет только первая (до стоп-сигнала) часть белка. У человека с такой патологией будет ощущаться нехватка белка и возникнут симптомы, связанные с этой нехваткой. Например, такого рода мутация выявлена в гене, кодирующем бета-цепь гемоглобина. Синтезируется укороченная неактивная цепь гемоглобина, которая быстро разрушается. В результате формируется молекула гемоглобина, лишённая бета-цепи. Понятно, что такая молекула вряд ли будет полноценно выполнять свои обязанности. Возникает тяжёлое заболевания, развивающееся по типу гемолитической анемии (бета-ноль талассемия, от греческого слова «Таласа» ― Средиземное море, где эта болезнь впервые обнаружена).

Механизм действия стоп-кодонов отличается от механизма действия смысловых кодонов. Это следует из того, что для всех кодоны, кодирующие аминокислоты, найдены соответствующие тРНК. Для нонсенс-кодонов тРНК не найдены. Следовательно, в процессе остановки синтеза белка тРНК не принимает участие.

Кодон АУГ (у бактерий иногда ГУГ) не только кодируют аминокислоту метионин и валин, но и является инициатором трансляции.

61 из 64 триплетов кодируют 20 аминокислот. Такое трёхразовое превышение числа триплетов над количеством аминокислот позволяет предположить, что в переносе информации могут быть использованы два варианта кодирования. Во-первых, не все 64 кодона могут быть задействованы в кодировании 20 аминокислот, а только 20 и, во-вторых, аминокислоты могут кодироваться несколькими кодонами. Исследования показали, что природа использовала последний вариант.

Код, при котором одна аминокислота кодируется несколькими триплетами, называется вырожденным или избыточным. Почти каждой аминокислоте соответствует несколько кодонов. Так, аминокислота лейцин может кодироваться шестью триплетами — УУА, УУГ, ЦУУ, ЦУЦ, ЦУА, ЦУГ. Валин кодируется четырьмя триплетами, фенилаланин — двумя и только триптофан и метионин кодируются одним кодоном. Свойство, которое связано с записью одной и той же информации разными символами носит название вырожденность.

Число кодонов, предназначенных для одной аминокислоты, хорошо коррелируется с частотой встречаемости аминокислоты в белках. И это, скорее всего, не случайно. Чем больше частота встречаемости аминокислоты в белке, тем чаще представлен кодон этой аминокислоты в геноме, тем выше вероятность его повреждения мутагенными факторами. Поэтому понятно, что мутированный кодон имеет больше шансов кодировать туже аминокислоту при высокой его вырожденности. С этих позиций вырожденность генетического кода является механизмом защищающим геном человека от повреждений.

Необходимо отметить, что термин вырожденность используется в молекулярной генетики и в другом смысле. Так основная часть информации в кодоне приходится на первые два нуклеотида, основание в третьем положении кодона оказывается малосущественным. Этот феномен называют “вырожденностью третьего основания”. Последняя особенность сводит до минимума эффект мутаций. Например, известно, что основной функцией эритроцитов крови является перенос кислорода от легких к тканям и углекислого газа от тканей к легким. Осуществляет эту функцию дыхательный пигмент — гемоглобин, который заполняет всю цитоплазму эритроцита. Состоит он из белковой части ― глобина, который кодируется соответствующим геном. Кроме белка в молекулу гемоглобина входит ген, содержащий железо. Мутации в глобиновых генах приводят к появлению различных вариантов гемоглобинов. Чаще всего мутации связаны с заменой одного нуклеотида на другой и появлением в гене нового кодона, который может кодировать новую аминокислоту в полипептидной цепи гемоглобина. В триплете, в результате мутации может быть заменён любой нуклеотид ― первый, второй или третий.

Известно несколько сотен мутаций, затрагивающих целостность генов глобина. Около 400 из них связаны с заменой единичных нуклеотидов в гене и соответствующей аминокислотной заменой в полипептиде. Из них только 100 замен приводят к нестабильности гемоглобина и различного рода заболеваниям от легких до очень тяжелых. 300 (примерно 64%) мутаций-замен не влияют на функцию гемоглобина и не приводят к патологии. Одной из причин этого является упомянутая выше “вырожденность третьего основания”, когда замена третьего нуклеотида в триплете, кодирующем серин, лейцин, пролин, аргинин и некоторые другие аминокислоты приводит к появлению кодона-синонима, кодирующего ту же аминокислоту. Фенотипически такая мутация не проявится. В отличие от этого любая замена первого или второго нуклеотида в триплете в 100 % случаях приводит к появлению нового варианта гемоглобина. Но и в этом случае тяжёлых фенотипических нарушений может и не быть. Причиной этому является замена аминокислоты в гемоглобине на другую сходную с первой по физико-химическим свойствам. Например, если аминокислота, обладающая гидрофильными свойствами, заменена на другую аминокислоту, но с такими же свойствами.

Гемоглобин состоит из железопорфириновой группы гема (к ней и присоединяются молекулы кислорода и углекислоты) и белка — глобина. Гемоглобин взрослого человека (НвА) содержит две идентичные a-цепи и две b-цепи. Замена в гене, кодирующем b-цепь гемоглобина первого или второго нуклеотида практически всегда приводит к появлению в белка новых аминокислот, нарушению функций гемоглобина и тяжёлым последствия для больного. Например, замена “Ц” в одном из триплетов ЦАУ (гистидин) на “У” — приведет к появлению нового триплета УАУ, кодирующего другую аминокислоту — тирозин. Фенотипически это проявится в тяжёлом заболевании. Аналогичная замена в 63 положении b-цепи полипептида гистидина на тирозин приведет к дестабилизации гемоглобина. Развивается заболевание метгемоглобинемия. Замена, в результате мутации, глутаминовой кислоты на валин в 6-м положении b-цепи является причиной тяжелейшего заболевания — серповидно-клеточной анемии. Не будем продолжать печальный список. Отметим только, что при замене первых двух нуклеотидов может появится аминокислота по физико-химическим свойствам похожая на прежнюю. Так, замена 2-го нуклеотида в одном из триплетов, кодирующего глутаминовую кислоту (ГАА) в b-цепи на “У” приводит к появлению нового триплета (ГУА), кодирующего валин, а замена первого нуклеотида на “А” формирует триплет ААА, кодирующий аминокислоту лизин. Глутаминовая кислота и лизин сходны по физико-химическим свойствам — они обе гидрофильны. Валин — гидрофобная аминокислота. Поэтому, замена гидрофильной глютаминовой кислоты на гидрофобный валин, значительно меняет свойства гемоглобина, что, в конечном итоге, приводит к развитию серповидноклеточной анемии, замена же гидрофильной глютаминовой кислоты на гидрофильный лизин в меньшей степени меняет функцию гемоглобина — у больных возникает легкая форма малокровия. В результате замены третьего основания новый триплет может кодировать туже аминокислоты, что и прежней. Например, если в триплете ЦАУ урацил был заменён на цитозин и возник триплет ЦАЦ, то практически никаких фенотипических изменений у человека выявлено не будет. Это понятно, т.к. оба триплета кодируют одну и туже аминокислоту ― гистидин.

В заключении уместно подчеркнуть, что вырожденность генетического кода и вырожденность третьего основания с общебиологических позиция являются защитными механизмами, которые заложены в эволюции в уникальной структуре ДНК и РНК.

Каждый триплет (кроме бессмысленных) кодирует только одну аминокислоту. Таким образом, в направлении кодон ― аминокислота генетический код однозначен, в направлении аминокислота ― кодон ― неоднозначен (вырожденный).

И в этом случае необходимость однозначности в генетическом коде очевидна. При другом варианте при трансляции одного и того же кодона в белковую цепочку встраивались бы разные аминокислоты и в итоге формировались белков с различной первичной структурой и разной функцией. Метаболизм клетки перешёл бы в режим работы «один ген ― несколько поипептидов». Понятно, что в такой ситуации регулирующая функция генов была бы полностью утрачена.

Считывание информации с ДНК и с иРНК происходит только в одном направлении. Полярность имеет важное значение для определения структур высшего порядка (вторичной, третичной и т.д.). Ранее мы говорили о том, что структуры низшего порядка определяют структуры более высшего порядка. Третичная структура и структуры более высокого порядка у белков, формируются сразу же как только синтезированная цепочка РНК отходит от молекулы ДНК или цепочка полипептида отходит от рибосомы. В то время, когда свободный конец РНК или полипептида приобретает третичную структуру, другой конец цепочки ещё продолжает синтезироваться на ДНК (если транскрибируется РНК) или рибосоме (если транскрибируется полипептид).

Поэтому однонаправленный процесс считывания информации (при синтезе РНК и белка) имеет существенное значение не только для определения последовательности нуклеотидов или аминокислот в синтезируемом веществе, но для жёсткой детерминации вторичной, третичной и т.д. структур.

Код может быть перекрывающимся и не перекрывающимся. У большинства организмов код не перекрывающийся. Перекрывающийся код найден у некоторых фагов.

Сущность не перекрывающего кода заключается в том, что нуклеотид одного кодона не может быть одновременно нуклеотидом другого кодона. Если бы код был перекрывающим, то последовательность из семи нуклеотидов (ГЦУГЦУГ) могла кодировать не две аминокислоты (аланин-аланин) (рис.33, А) как в случае с не перекрывающимся кодом, а три (если общим является один нуклеотид) (рис. 33, Б) или пять (если общими являются два нуклеотида) (см. рис. 33, В). В последних двух случаях мутация любого нуклеотида привела бы к нарушению в последовательности двух, трёх и т.д. аминокислот.

Однако установлено, что мутация одного нуклеотида всегда нарушает включение в полипептид одной аминокислоты. Это существенный довод в пользу того, что код является не перекрывающимся. Неперекрываемость генетического кода связана с ещё одним свойством ― считывание информации начинается с определённой точки ― сигнала инициации. Таким сигналом инициации в иРНК является кодон, кодирующий метионин АУГ. Следует отметить, что у человека всё-таки имеется небольшое число генов, которые отступают от общего правила и перекрываются.

Между кодонами нет знаков препинания. Иными словами триплеты не отделены друг от друга, например, одним ничего не значащим нуклеотидом. Отсутствие в генетической коде «знаков препинания» было доказано в экспериментах.

Код един для всех организмов, живущих на Земле. Прямое доказательство универсальности генетического кода было получено при сравнении последовательностей ДНК с соответствующими белковыми последовательностями. Оказалось, что во всех бактериальных и эукариотических геномах используется одни и те же наборы кодовых значений. Есть и исключения, но их не много.

Первые исключения из универсальности генетического кода были обнаружены в митохондриях некоторых видов животных. Это касалось кодона терминатора УГА, который читался так же как кодон УГГ, кодирующий аминокислоту триптофан. Были найдены и другие более редкие отклонения от универсальности.

Для повторения:

Генетический код ― это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке. Генетический код имеет несколько свойств.

1. Триплетность. Триплет состоит из трёх нуклеотидов. 61 кодон ― смысловые, т.е. кодируют какую-либо аминокислоту, три ― бессмысленные, т.е. не кодируют аминокислоты.

2. Вырожденность или избыточность. Одна аминокислота может кодироваться несколькими кодонами.

3. Однозначность. Один кодон кодирует только одну аминокислоту.

4. Полярность. Считывание информации с ДНК и с иРНК происходит только в одном направлении.

5. Неперекрываемость. Генетический код является не перекрывающимся.

6. Компактность. Между кодонами нет знаков препинания.

7. Универсальность. Код един для всех живущих на земле организмов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *