как поняли что вселенная расширяется

Спросите Итана: откуда нам известно, что расширяется именно пространство?

Если вы посмотрите на любые окружающие вас объекты Вселенной, и увидите, что все они будут двигаться в сторону от вас, что вы решите? Может, что у вас есть отталкивающая сила? Или что ткань пространства расширяется? Что вы находитесь в центре произошедшего когда-то взрыва и всё разлетается в стороны от его центра? Все эти и некоторые другие варианты могут казаться разумными, но учёные почему-то всё время говорят о «расширяющейся Вселенной», будто бы другие альтернативы не годятся. Почему? Наш читатель спрашивает об этом:

Откуда нам известно, что расширяется пространство? По отношению к чему? Красное смещение разлетающихся галактик могло бы быть и в бесконечном пространстве, а не обязательно в расширяющемся.

Ответ на этот вопрос вытекает непосредственно из наблюдений за Вселенной.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.
Пространство-время вблизи нашего местоположения искривлено из-за гравитационного воздействия Солнца и других масс

Один из самых невероятных фактов, связанных с Эйнштейновской Общей теорией относительности – лидирующей теорией гравитации – заключается в том, что она связывает пространство-время и материю с энергией. Материя и энергия сообщают пространству-времени, как нужно искривиться; пространство-время говорит материи, как двигаться. Если мы узнаем, как распределена вся материя и энергия во Вселенной в какой-то момент времени, и узнаем, как они движутся, мы сможем воссоздать кривизну пространства-времени и его эволюцию в течение жизни Вселенной.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.
Двумерный срез регионов повышенной (красный) и пониженной (синий/чёрный) плотности в нашем участке Вселенной. Линии и стрелочки показывают направление пекулярных скоростей, но всё это также вписывается в ткань расширяющегося пространства

Наблюдая за галактиками Вселенной, мы видим, что на самые близкие к нам галактики больше всего влияет гравитационная динамика других соседних галактик. Млечный путь и Андромеда направляются навстречу друг другу, другие галактики местной группы в итоге также сольются с нами. Остальные галактики притягиваются в другим близлежащим массам – крупным галактикам, галактическим группам и скоплениям. В любом относительно небольшом участке пространства, размером от нескольких миллионов до десятков миллионов световых лет, массы этого пространства определяют, как именно будут двигаться галактики.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.
Ультрадальний снимок Вселенной показывает, как галактики движутся в направлении от нас с экстремально большими скоростями. На таких расстояниях галактик больше, они выглядят меньше по размеру и менее развитыми, и удаляются от нас с большим красным смещением по сравнению с соседними с нами

На крупных масштабах всё происходит не так. Мелкомасштабные движения, известные, как пекулярные скорости, могут достигать нескольких тысяч километров в секунду. Но они накладываются на более сильный эффект, который можно увидеть только на более крупных масштабах: чем дальше от нас галактика, тем быстрее она от нас отдаляется.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.
Красное смещение вызывается не просто удалением галактик от нас, а тем, что пространство между нами и галактиками смещает свет в красную часть спектра, пока он перемещается к нам от отдалённой точки пространства.

Это эмпирическое наблюдение известно, как закон Хаббла, и постулирует, что наблюдаемая скорость убегания от нас галактики пропорциональна расстоянию от неё до нас. Константа пропорциональности известна как постоянная Хаббла, и её довольно точно измерили, получив значение порядка 70 (км/с)/Мпк [66,93 ± 0,62 (км/с)/Мпк – данные 2016 года / прим. перев.] с погрешностью в 3-4 (км/с)/Мпк – зависит от того, как измерять.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.
Зависимость красного смещения от расстояния до далёких галактик. У не попадающих на линию точек разница в скорости объясняется пекулярными скоростями, но они отвечают лишь за небольшое отклонение от общего расширения. Первичные данные, изучавшиеся Эдвином Хабблом, и впервые использовавшиеся для демонстрации расширения Вселенной, уместились в красный прямоугольник слева внизу.

Но отчего так происходит? Почему всё убегает друг от друга, если не имеет гравитационной связи? Вернёмся к основам ОТО, к тому самому откровению, которое испытал Эйнштейн перед публикацией своей наиболее мощной идеи.

Выдвинув свою ОТО, Эйнштейн быстро понял, что у неё имеется последствие, которое ему не нравится: Вселенная, повсеместно наполненная материей, была бы нестабильна и подвержена гравитационному коллапсу. Эйнштейн решил этот поправить, введя невидимую расталкивающую силу, предотвращавшую коллапс, космологическую константу. Другие поняли, что, если не учитывать эту константу, можно получить Вселенную, не статичную во времени – в ней сама ткань пространства будет расширяться или сжиматься.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.
Аналогия расширения Вселенной на примере шарика с монетками. Отдельные структуры (монетки) не расширяются, но расстояния между ними увеличиваются.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.
Вселенная, подчиняющаяся законам относительности, и изотропно и гомогенно заполненная материей и излучением, не может быть статичной. Она должна расширяться или сжиматься, в зависимости от содержимого и его количества.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.
Разница между объяснением красного смещения только через движение галактик (пунктир) и предсказаниями ОТО (сплошная) для расстояний в расширяющейся Вселенной. С нашими наблюдениями однозначно совпадают лишь предсказания ОТО.

Довольно быстро стало понятно – ещё в 1930-х – что тут двух вариантов быть не может: Вселенная в самом деле расширяется. Это помог подтвердить тот факт, что красное смещение объекта очень хорошо совпадало с расчётным, полученным через расстояние, и с наблюдаемой скоростью расширения, вне зависимости от расстояния до объекта.

Но тому есть ещё больше доказательств. Если бы Вселенная расширялась, можно было бы ожидать наблюдения ещё нескольких явлений. Мы бы увидели, что чем дальше заглядываем в удалённое прошлое, тем плотнее становится материя Вселенной. Мы бы увидели, что скопления галактик оказываются плотнее, чем сегодня. Мы бы увидели, что спектр света от объектов со свойствами абсолютно чёрного тела таким бы и оставался, и не испытывал сдвига в энергии. А ещё мы бы увидели, что температура реликтового излучения раньше была выше, чем сегодняшние 2,7 К.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.
Исследование от 2011 года (красные точки) даёт наилучшие на сегодня доказательства того, что температура реликтового излучения в прошлом была выше. Спектральные и температурные свойства пришедшего издалека света подтверждают тот факт, что мы живём в расширяющемся пространстве.

Все эти свидетельства совместно учат нас тому, что Вселенная расширяется, и именно в этом причина красного смещения. Это не движение, не уставший свет, не результат взрыва. Само пространство расширяется, и та часть Вселенной, что мы можем видеть и изучать, со временем становится всё больше и больше. И хотя прошло всего 13,8 млрд лет с момента Большого взрыва, самые удалённые объекты, от которых до нас дошёл свет, сейчас удалены от нас уже на 46 млрд световых лет.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.
Наблюдаемая часть Вселенной простирается на 46 млрд световых лет во всех направлениях с нашей точки зрения, но за этими пределами определённо существует гораздо больше пространства, точно такое же, как наше,- возможно, даже бесконечное количество.

А что находится за этими пределами? Мы почти уверены, что там есть ещё больше «Вселенной», но свету оттуда просто не хватило времени, чтобы дойти до нас. Ненаблюдаемая Вселенная, расположенная за пределами наблюдаемой, может быть конечной или бесконечной; нам это просто неизвестно. Но даже если она уже бесконечная, она всё равно может расширяться! С расширением Вселенной мы просто умножаем её размер на множитель роста, поэтому если она изначально была конечной, она останется конечной (просто больше по размеру), а если она была бесконечной, она останется бесконечной. Мы уверены, что Вселенная меняется, расширяется и растягивается – и все эти эффекты непротиворечивы и неоспоримы. Но что находится за пределами наблюдаемой Вселенной? Мы работаем над тем, чтобы это выяснить. Как обычно, в науке есть ещё много того, что нужно сделать!

Источник

Почему вселенная расширяется? И как долго?

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.

Наша вселенная расширяется. С ускорением. Каждую секунду пространство между космическими галактиками растет все быстрее и быстрее.

Когда в 1929 году американский астроном Эдвин Хаббл открыл так называемую красное смещение галактик, становится ясно, что кажется, что все другие галактики в космосе «убегают» от нас.

Когда автомобиль движется к нам, его звук меняется, а когда галактика движется, ее «цвет» меняется, и мы можем определить, приближается ли он к Земле или удаляется от нее.

Хаббл наблюдает за смещением видимого света галактик в красный спектр, что означает, что объект удаляется, и мы можем измерить его скорость. Это так называемый закон Хаббла, и скорость расширения сегодня известна как постоянная Хаббла (около 72 км в секунду на мегапарсек, равная 1 парсек = 31 триллион километров или 206 265 раз расстояния между Землей и Солнцем, и 1 мегапарсек = 1 миллион парсек).

Поэтому единственно возможное объяснение состоит в том, что пространство вселенной расширяется и не может быть статичным. И хотя эксперименты Хаббла являются эмпирическим доказательством, математическое изложение этого факта было сделано еще раньше бельгийским математиком Жоржем Ломмером в 1927 году. Перед лицом этого доказательства Эйнштейн отказался от космологической постоянной и даже назвал ее «самой большой ошибкой в его карьера».

Сегодня, однако, совершенно неожиданно, что нам снова нужна космологическая константа, хотя и немного другим способом.

Теория большого взрыва и эволюция вселенной

Как только станет ясно, что галактики убегают друг от друга, логично предположить, что в начале все они были сгруппированы в одном месте. Более того, мы можем предположить, что в самом начале вселенная была сжата в одну взорвавшуюся точку. Так рождается теория большого взрыва.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.

Сегодня это одна из широко признанных и проверенных теорий развития вселенной. Причина в ее огромной объяснительной силе. Действительно, если все когда-либо было собрано в одной точке, то это состояние должно быть с огромной температурой и невероятной плотностью. Моделирование таких условий является одной из задач современных ускорителей частиц, таких как Большой адронный ускоритель в ЦЕРНе. Объясняя появление химических элементов в результате Большого взрыва, Первичный нуклеосинтез, также является одним из больших успехов теоретической ядерной физики.

Космическое микроволновое фоновое излучение

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.

Он взаимодействует только гравитационно, и мы не можем установить или доказать это каким-либо другим способом. По оценкам, его содержание составляет около 25 процентов от общей плотности вселенной, в то время как обычная, наша материя, составляет всего 4-5 процентов.

Хотя темную материю нельзя наблюдать непосредственно, ее присутствие было предложено Фрицем Цвицким в 1934 году для объяснения так называемой «Проблема с недостающей массой».

Оказывается, что галактики не могут быть стабильными и вращаться, как они это делают, если не существует огромного количества скрытой массы, удерживающей звезды в соединенной галактике. Результаты исследования космического фонового излучения однозначно подтверждают наличие большого количества темной материи.

Сегодня мы знаем, что Вселенная плоская с точностью до 0,5 процента. Это хорошо, но это также означает, что в зависимости от плотности вещества и энергии во вселенной у нас может быть другой конец эволюции пространства. Если общая плотность (так называемый космологический параметр Омеги) превышает критическую массу, Вселенная может сжаться в так называемую Большой крах, прямо противоположный большому взрыву. Или, наоборот, мы можем расширяться до бесконечности, пока сама вселенная не станет довольно холодной, пустынной и относительно скучной. Это теория Большого охлаждения.

Темная энергия и конечная судьба Вселенной

На самом деле, как мы можем знать, что произошло с пространством Вселенной, и что будет с ним в будущем? Поскольку скорость света ограничена, чем дальше находится объект, тем дольше свет должен будет добраться до нас. Например, путь света от нашего Солнца до Земли составляет чуть более 8 минут. Наблюдая с помощью наших телескопов далеких звезд, мы на самом деле видим прошлое, когда ловим свет, который давно покинул их и только сейчас достигает нас. Тогда, если мы знаем, что наблюдаем два одинаковых объекта, но на разном расстоянии, мы можем вывести изменение пространства между ними во времени.

Объекты, которые относительно «идентичны» в космосе, известны как стандартные свечи.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.

В частности, в 1997 году исследования сверхновых показали, что Вселенная расширяется с ускорением. Поскольку энергия вспышки всегда одна и та же, разница, которую мы наблюдаем (более тусклые или более яркие вспышки), обусловлена ​​исключительно разницей в динамике пространства. Таким образом, мы можем получить карту эволюции пространства во времени. Оказывается, что в первые 8-9 миллиардов лет после взрыва Вселенная замедляется, как и следовало ожидать, а затем внезапно начинает расширяться с ускорением!

Тем не менее похоже, что Эйнштейн не так сильно ошибался.

Сегодня мы знаем, что темная энергия занимает около 70 процентов от общей плотности энергии Вселенной. Мы понятия не имеем, почему он начинает свое действие или какова его природа. Вполне возможно, что его сила будет уменьшаться или увеличиваться со временем.

В зависимости от этого, есть два сценария конца нашей вселенной. Если космологическая постоянная продолжает работать и расти, мы будем расширяться вечно. Если, наоборот, его сила уменьшается и гравитация побеждает, тогда концом нашего космоса может стать Великое Падение. Тогда, почему бы и нет, возможно, новая вселенная родится в новом космическом Большом Взрыве. Но пока это просто загадки, ответы на которые скоро будут раскрыты.

Источник

Как открывали расширение Вселенной

Всего лишь сто лет назад ученые обнаружили, что наше Мироздание стремительно увеличивается в размерах.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется. как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил — он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.

Красное смещение

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.

Четверть века спустя эту возможность по-новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера–Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.

В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).

Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.

В 1924 году он опубликовал монографию по теории относительности, куда включил перечень найденных Слайфером радиальных скоростей 41 туманности. Там присутствовала все та же четверка туманностей с голубым смещением, в то время как у остальных 37 спектральные линии были сдвинуты в красную сторону. Их радиальные скорости варьировали в пределах 150–1800 км/с и в среднем в 25 раз превышали известные к тому времени скорости звезд Млечного Пути. Это наводило на мысль, что туманности участвуют в иных движениях, нежели «классические» светила.

Космические острова

В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.

Эту задачу решил Эдвин Хаббл, работавший на 100-дюймовом телескопе-рефлекторе калифорнийской обсерватории Маунт-Вилсон. В 1923–1924 годах он обнаружил, что туманность Андромеды состоит из множества светящихся объектов, среди которых есть переменные звезды семейства цефеид. Тогда уже было известно, что период изменения их видимого блеска связан с абсолютной светимостью, и поэтому цефеиды пригодны для калибровки космических дистанций. С их помощью Хаббл оценил расстояние до Андромеды в 285 000 парсек (по современным данным, оно составляет 800 000 парсек). Диаметр Млечного Пути тогда полагали приблизительно равным 100 000 парсек (в действительности он втрое меньше). Отсюда следовало, что Андромеду и Млечный Путь необходимо считать независимыми звездными скоплениями. Вскоре Хаббл идентифицировал еще две самостоятельные галактики, чем окончательно подтвердил гипотезу «островных вселенных».

Законы Хаббла

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.

Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера–Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями.

Хаббл не знал, как эти закономерности связаны друг с другом, но что об этом говорит сегодняшняя наука?

Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера–Физо справедлива только для небольших смещений спектра.

А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V = Hd), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V — вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить, только если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла H в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают H0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.

Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z, покинул ее, когда все космологические дистанции были в 1 + z раз меньшими, нежели в нашу эпоху. Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна—де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А если сделать распространенную ошибку и просто уравнять V/c и z, то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.

Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат — 450 000 парсек — был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.

К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.

Модельеры космоса

Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.

Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую — голландский астроном Виллем де Ситтер.

Эйнштейн в духе времени считал, что Вселенная как целое статична (он пытался сделать ее еще и бесконечной в пространстве, но не смог найти корректные граничные условия для своих уравнений). В итоге он построил модель замкнутой Вселенной, пространство которой обладает постоянной положительной кривизной (и поэтому она имеет постоянный конечный радиус). Время в этой Вселенной, напротив, течет по-ньютоновски, в одном направлении и с одинаковой скоростью. Пространство-время этой модели искривлено за счет пространственной компоненты, в то время как временная никак не деформирована. Статичность этого мира обеспечивает специальный «вкладыш» в основное уравнение, препятствующий гравитационному схлопыванию и тем самым действующий как вездесущее антигравитационное поле. Его интенсивность пропорциональна особой константе, которую Эйнштейн назвал универсальной (сейчас ее называют космологической постоянной).

Эйнштейновская модель позволила вычислить размер Вселенной, общее количество материи и даже значение космологической постоянной. Для этого нужна лишь средняя плотность космического вещества, которую, в принципе, можно определить из наблюдений. Не случайно этой моделью восхищался Эддингтон и использовал на практике Хаббл. Однако ее губит неустойчивость, которую Эйнштейн просто не заметил: при малейшем отклонении радиуса от равновесного значения эйнштейновский мир либо расширяется, либо претерпевает гравитационный коллапс. Поэтому к реальной Вселенной такая модель отношения не имеет.

Пустой мир

Де Ситтер тоже построил, как он сам считал, статичный мир постоянной положительной кривизны. В нем присутствует эйнштейновская космологическая константа, но зато полностью отсутствует материя. При введении пробных частиц сколь угодно малой массы они разбегаются и уходят в бесконечность. Кроме того, время на периферии вселенной де Ситтера течет медленней, нежели в ее центре. Из-за этого с больших расстояний световые волны приходят с красным смещением, даже если их источник неподвижен относительно наблюдателя. Поэтому в 1920-е годы Эддингтон и другие астрономы задались вопросом: не имеет ли модель де Ситтера чего-нибудь общего с реальностью, отраженной в наблюдениях Слайфера?

Эти подозрения подтвердились, хоть и в ином плане. Статичность вселенной де Ситтера оказалась мнимой, поскольку была связана с неудачным выбором координатной системы. После исправления этой ошибки пространство де Ситтера оказалось плоским, евклидовым, но нестатичным. Благодаря антигравитационной космологической константе оно расширяется, сохраняя при этом нулевую кривизну. Из-за этого расширения длины волн фотонов возрастают, что и влечет за собой предсказанный де Ситтером сдвиг спектральных линий. Стоит отметить, что именно так сегодня объясняют космологическое красное смещение далеких галактик.

Сопутствующие координаты

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.

В космологических вычислениях удобно пользоваться сопутствующими координатными системами, которые расширяются в унисон с расширением Вселенной.

В идеализированной модели, где галактики и галактические кластеры не участвуют ни в каких собственных движениях, их сопутствующие координаты не меняются. А вот дистанция между двумя объектами в данный момент времени равна их постоянной дистанции в сопутствующих координатах, умноженной на величину масштабного фактора для этого момента. Такую ситуацию легко проиллюстрировать на надувном глобусе: широта и долгота каждой точки не меняются, а расстояние между любой парой точек увеличивается с ростом радиуса.

Использование сопутствующих координат помогает осознать глубокие различия между космологией расширяющейся Вселенной, специальной теорией относительности и ньютоновской физикой. Так, в ньютоновской механике все движения относительны, и абсолютная неподвижность не имеет физического смысла. Напротив, в космологии неподвижность в сопутствующих координатах абсолютна и в принципе может быть подтверждена наблюдениями.

Специальная теория относительности описывает процессы в пространстве-времени, из которого можно с помощью преобразований Лоренца бесконечным числом способов вычленять пространственные и временные компоненты. Космологическое пространство-время, напротив, естественно распадается на искривленное расширяющееся пространство и единое космическое время. При этом скорость разбегания далеких галактик может многократно превышать скорость света.

От статистики к динамике

История открыто нестатичных космологических теорий начинается с двух работ советского физика Александра Фридмана, опубликованных в немецком журнале Zeitschrift fur Physik в 1922 и 1924 годах. Фридман просчитал модели вселенных с переменной во времени положительной и отрицательной кривизной, которые стали золотым фондом теоретической космологии. Однако современники эти работы почти не заметили (Эйнштейн сначала даже счел первую статью Фридмана математически ошибочной). Сам Фридман полагал, что астрономия еще не обладает арсеналом наблюдений, позволяющим решить, какая из космологических моделей более соответствует реальности, и потому ограничился чистой математикой. Возможно, он действовал бы иначе, если бы ознакомился с результатами Слайфера, однако этого не случилось.

По-другому мыслил крупнейший космолог первой половины XX века Жорж Леметр. На родине, в Бельгии, он защитил диссертацию по математике, а затем в середине 1920-х изучал астрономию — в Кембридже под руководством Эддингтона и в Гарвардcкой обсерватории у Харлоу Шепли (во время пребывания в США, где он подготовил вторую диссертацию в МIT, он познакомился со Слайфером и Хабблом). Еще в 1925 году Леметру впервые удалось показать, что статичность модели де Ситтера мнимая. По возвращении на родину в качестве профессора Лувенского университета Леметр построил первую модель расширяющейся вселенной, обладающую четким астрономическим обоснованием. Без преувеличения, эта работа стала революционным прорывом в науке о космосе.

Вселенская революция

как поняли что вселенная расширяется. картинка как поняли что вселенная расширяется. как поняли что вселенная расширяется фото. как поняли что вселенная расширяется видео. как поняли что вселенная расширяется смотреть картинку онлайн. смотреть картинку как поняли что вселенная расширяется.

В своей модели Леметр сохранил космологическую константу с эйнштейновским численным значением. Поэтому его вселенная начинается статичным состоянием, но со временем из-за флуктуаций вступает на путь постоянного расширения с возрастающей скоростью. На этой стадии она сохраняет положительную кривизну, которая уменьшается по мере роста радиуса. Леметр включил в состав своей вселенной не только вещество, но и электромагнитное излучение. Этого не сделали ни Эйнштейн, ни де Ситтер, чьи работы были Леметру известны, ни Фридман, о котором он тогда ничего не знал.

Леметр еще в США предположил, что красные смещения далеких галактик возникают из-за расширения пространства, которое «растягивает» световые волны. Теперь же он доказал это математически. Он также продемонстрировал, что небольшие (много меньшие единицы) красные смещения пропорциональны расстояниям до источника света, причем коэффициент пропорциональности зависит только от времени и несет информацию о текущем темпе расширения Вселенной. Поскольку из формулы Допплера–Физо следовало, что радиальная скорость галактики пропорциональна красному смещению, Леметр пришел к выводу, что эта скорость также пропорциональна ее удаленности. Проанализировав скорости и дистанции 42 галактик из списка Хаббла и приняв во внимание внутригалактическую скорость Солнца, он установил значения коэффициентов пропорциональности.

Незамеченная работа

Свою работу Леметр опубликовал в 1927 году на французском языке в малочитаемом журнале «Анналы Брюссельского научного общества». Считают, что это послужило основной причиной, из-за которой она поначалу осталась практически незамеченной (даже его учителем Эддингтоном). Правда, осенью того же года Леметр смог обсудить свои выводы с Эйнштейном и узнал от него о результатах Фридмана. У создателя ОТО не было технических возражений, однако он решительно не поверил в физическую реальность леметровской модели (подобно тому, как раньше не принял фридмановские выводы).

Графики Хаббла

Между тем в конце 1920-х годов Хаббл и Хьюмасон выявили линейную корреляцию между расстояниями до 24 галактик и их радиальными скоростями, вычисленными (в основном еще Слайфером) по красным смещениям. Хаббл сделал из этого вывод о прямой пропорциональности радиальной скорости галактики расстоянию до нее. Коэффициент этой пропорциональности сейчас обозначают H0 и называют параметром Хаббла (по последним данным, он немного превышает 70 (км/с)/мегапарсек).

Статья Хаббла с графиком линейной зависимости между галактическими скоростями и дистанциями была опубликована в начале 1929 года. Годом ранее молодой американский математик Хауард Робертсон вслед за Леметром вывел эту зависимость из модели расширяющейся Вселенной, о чем Хаббл, возможно, знал. Однако в его знаменитой статье эта модель ни прямо, ни косвенно не упоминалась. Позднее Хаббл высказывал сомнения, что фигурирующие в его формуле скорости реально описывают движения галактик в космическом пространстве, однако всегда воздерживался от их конкретной интерпретации. Смысл своего открытия он видел в демонстрации пропорциональности галактических расстояний и красных смещений, остальное предоставлял теоретикам. Поэтому при всем уважении к Хабблу считать его первооткрывателем расширения Вселенной нет никаких оснований.

И все-таки она расширяется!

Тем не менее Хаббл подготовил почву для признания расширения Вселенной и модели Леметра. Уже в 1930 году ей воздали должное такие мэтры космологии, как Эддингтон и де Ситтер; немногим позже ученые заметили и по достоинству оценили работы Фридмана. В 1931 году с подачи Эддингтона Леметр перевел на английский свою статью (с небольшими купюрами) для «Ежемесячных известий Королевского астрономического общества». В этом же году Эйнштейн согласился с выводами Леметра, а годом позже совместно с де Ситтером построил модель расширяющейся Вселенной с плоским пространством и искривленным временем. Эта модель из-за своей простоты долгое время была очень популярна среди космологов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *