Ортогональнальная проекция прямой на плоскость. Угол между прямой и плоскостью. Теорема о трех перпендикулярах
Проекция прямой на плоскость
Определение 1. Ортогональной проекцией точки на плоскость называют основание перпендикуляра, опущенного из этой точки на плоскость.
Рассмотрим рисунок 1, на котором изображены прямая p, перпендикулярная к плоскости α и пересекающая плоскость α в точке O.
Точка O является ортогональной проекцией на плоскость α каждой точки прямой p.
Замечание 1. Рассматриваемый в данном разделе случай ортогонального проектирования точки на плоскость α представляет собой частный случай более общего понятия проектирования точки на плоскость параллельно некоторой прямой, необязательно перпендикулярной к плоскости. Такое проектирование используется в нашем справочнике при определении понятия «призма».
Замечание 2. Если это не приводит к разночтениям, для упрощения формулировок термин «ортогональная проекция на плоскость» часто сокращают до термина «проекция на плоскость».
Определение 2. Проекцией фигуры a на плоскость α называют фигуру a’, образованную проекциями всех точек фигуры a на плоскость α.
Определение 3. Прямую, пересекающую плоскость и не являющуюся перпендикуляром к плоскости, называют наклонной к этой плоскости (рис. 2).
Все возможные случаи, возникающие при ортогональном проектировании прямой на плоскость представлены в следующей таблице
Фигура
Рисунок
Свойство проекции
Наклонная к плоскости α
Если прямая PO пересекает плоскость α в точке O и является наклонной к плоскости α, а точка P’ является проекцией произвольной точки P этой прямой на плоскость α, то прямая P’O, лежащая в плоскости α, является проекцией прямой PO на плоскость α.
На рисунке прямая PO, где P – любая точка прямой a, является перпендикуляром к плоскости α.
Если прямая PO пересекает плоскость α в точке O и является наклонной к плоскости α, а точка P’ является проекцией произвольной точки P этой прямой на плоскость α, то прямая P’O, лежащая в плоскости α, является проекцией прямой PO на плоскость α.
На рисунке прямая PO, где P – любая точка прямой a, является перпендикуляром к плоскости α.
Угол между прямой и плоскостью
Все возможные случаи, возникающие при определении понятия угла между прямой и плоскостью, представлены в следующей таблице.
Углом между наклонной к плоскости (прямая PO ) и плоскостью называют угол между этой наклонной и ее проекцией на плоскость (прямая P’O. )
На рисунке это угол φ
Если прямая параллельна плоскости, то угол между прямой и плоскостью считается равным нулю.
Если прямая лежит в плоскости, то угол между прямой и плоскостью считается равным нулю.
Если прямая перпендикулярна плоскости, то угол между прямой и плоскостью считается равным 90° ( радиан).
Углом между наклонной к плоскости (прямая PO ) и плоскостью называют угол между этой наклонной и ее проекцией на плоскость (прямая P’O )
На рисунке это угол φ
Если прямая параллельна плоскости, то угол между прямой и плоскостью считается равным нулю.
Если прямая лежит в плоскости, то угол между прямой и плоскостью считается равным нулю.
Если прямая перпендикулярна плоскости, то угол между прямой и плоскостью считается равным 90° ( радиан).
Теорема о трех перпендикулярах
Теорема о трех перпендикулярах. Если наклонная a к плоскости α перпендикулярна к прямой b, лежащей на плоскости α, то и проекция наклонной a’ на плоскость α перпендикулярна к прямой b.
Доказательство. Рассмотрим следующий рисунок 3.
На рисунке 3 буквой O обозначена точка пересечения наклонной a с плоскостью α. Точка P – произвольная точка на прямой a, а точка P’ – это проекция точки P на плоскость α. Проведем через точку O прямую b’, параллельную прямой параллельную прямой b. Если прямая b проходит через точку O, то прямая b’, совпадет с прямой b.
Поскольку PP’ – перпендикуляр к плоскости α, то прямая PP’ перпендикулярна к прямой b’. Прямая a перпендикулярна к прямой b’ по условию. Таким образом, прямая b’ перпендикулярна к двум пересекающимся прямым PO и PP’, лежащим в плоскости POP’. В силу признака перпендикулярности прямой и плоскости получаем, что прямая b’ перпендикулярна к плоскости POP’, откуда вытекает, что прямая b’ перпендикулярна и к прямой a’, лежащей на плоскости POP’.
Теорема, обратная теореме о трех перпендикулярах. Если проекция a’ наклонной a к плоскости α перпендикулярна к прямой b, лежащей на плоскости α, то и сама наклонная a перпендикулярна к прямой b.
Доказательство. Как и для доказательства прямой теоремы о трех перпендикулярах, воспользуемся рисунком 3.
Прямая a’ перпендикулярна к прямой b по условию обратной теоремы. Прямая PP’ перпендикулярна к прямой b’, поскольку PP’ – перпендикуляр к плоскости α. Таким образом, прямая b’, перпендикулярна к двум пересекающимся прямым P’O и PP’, лежащим в плоскости POP’. В силу признака перпендикулярности прямой и плоскости прямая b’ перпендикулярна к плоскости POP’. Тогда, в частности, прямая b’ перпендикулярна к прямой a, лежащей на плоскости POP’.
9.5. Наклонные и их проекции на плоскость. Угол наклонной с плоскостью
Прямая, пересекающая плоскость, но не перпендикулярная к ней, называется наклонной к этой плоскости.
Точка пересечения перпендикуляра (наклонной) с плоскостью называется основанием перпендикуляра (наклонной).
Отрезок, соединяющий основания наклонной и перпендикуляра, проведенных к плоскости из одной и той же точки вне ее, называется проекцией наклонной на эту плоскость.
Если из одной и той же точки, взятой вне плоскости, проведены к этой плоскости перпендикуляр и наклонные, то: 1) две наклонные, имеющие равные проекции, равны; 2) из двух наклонных та больше, проекция которой больше; 3) (обратная) равные наклонные имеют равные проекции; 4) (обратная) большей наклонной соответствует большая проекция.
Повернув прямоугольные треугольники вокруг общего их катета (перпендикуляра к плоскости) до совмещения их плоскостей, получим все наклонные (гипотенузы) и их проекции (другие катеты) в одной плоскости, где эти теоремы верны.
Перпендикуляр к плоскости меньше всякой наклонной, проведенной к той же плоскости из той же точки вне ее (катет меньше гипотенузы).
Расстоянием точки от плоскости называется длина перпендикуляра, опущенного из этой точки на данную плоскость.
Углом между наклонной и плоскостью называется острый угол между наклонной и ее проекцией на эту плоскость.
Угол между наклонной и ее проекцией на плоскость является наименьшим из всех углов, образуемых данной наклонной с прямыми, лежащими в данной плоскости.
С помощю этого онлайн калькулятора можно найти проекцию точки на заданную плоскость. Дается подробное решение с пояснениями. Для построения проекции точки на данную плоскость введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Проекция точки на плоскость − теория, примеры и решения
Для нахождения проекции точки M на плоскость α, необходимо:
Общее уравнение плоскости имеет вид:
(1)
где n(A,B,C)− называется нормальным вектором плоскости.
(2)
(3)
Для нахождения точку пересечения прямой L с плоскостью α, проще всего рассматривать параметрическое уравнение прямой. Составим ее
Выразим переменные x, y, z через рараметр t.
(4)
Подставим значения x,y,z из выражения (4) в (1) и решим относительно t.
A(At+x )+B(Bt+y )+C(At+z )+D=0,
A 2 t+Ax +B 2 t+By +C 2 t+Cz +D=0,
(5)
Подставляя значение параметра t в выражения (4), находим проекцию M1 точки M на плоскость (1).
(6)
Нормальный вектор плоскости имеет вид:
Подставляя координаты точки M и нормального вектора плоскости в (5), получим:
(7)
Из выражений (7) находим:
Проекция точки на плоскость. Проекция прямой на плоскость
Угол между прямой и плоскостью
Теорема о трех перпендикулярах. Обратная теорема
Проекция прямой на плоскость
Определение 1. Ортогональной проекцией точки на плоскость называют основание перпендикуляра, опущенного из этой точки на плоскость.
Рассмотрим рисунок 1, на котором изображены прямая p, перпендикулярная к плоскости α и пересекающая плоскость α в точке O.
Точка O является ортогональной проекцией на плоскость α каждой точки прямой p.
Замечание 1. Рассматриваемый в данном разделе случай ортогонального проектирования точки на плоскость α представляет собой частный случай более общего понятия проектирования точки на плоскость параллельно некоторой прямой, необязательно перпендикулярной к плоскости. Такое проектирование используется в нашем справочнике при определении понятия «призма».
Замечание 2. Если это не приводит к разночтениям, для упрощения формулировок термин «ортогональная проекция на плоскость» часто сокращают до термина «проекция на плоскость».
Определение 2. Проекцией фигуры a на плоскость α называют фигуру a’, образованную проекциями всех точек фигуры a на плоскость α.
Определение 3. Прямую, пересекающую плоскость и не являющуюся перпендикуляром к плоскости, называют наклонной к этой плоскости (рис. 2).
Все возможные случаи, возникающие при ортогональном проектировании прямой на плоскость представлены в следующей таблице
Фигура
Рисунок
Свойство проекции
Наклонная к плоскости α
Если прямая PO пересекает плоскость α в точке O и является наклонной к плоскости α, а точка P’ является проекцией произвольной точки P этой прямой на плоскость α, то прямая P’O, лежащая в плоскости α, является проекцией прямой PO на плоскость α.
Прямая, параллельная плоскости
На рисунке прямая PO, где P – любая точка прямой a, является перпендикуляром к плоскости α.
Прямая, лежащая на плоскости
Прямая, перпендикулярная к плоскости
Если прямая PO пересекает плоскость α в точке O и является наклонной к плоскости α, а точка P’ является проекцией произвольной точки P этой прямой на плоскость α, то прямая P’O, лежащая в плоскости α, является проекцией прямой PO на плоскость α.
На рисунке прямая PO, где P – любая точка прямой a, является перпендикуляром к плоскости α.
Угол между прямой и плоскостью
Все возможные случаи, возникающие при определении понятия угла между прямой и плоскостью, представлены в следующей таблице.
Фигура
Рисунок
Определение
Наклонная к плоскости α
Углом между наклонной к плоскости (прямая PO ) и плоскостью называют угол между этой наклонной и ее проекцией на плоскость (прямая P’O. )
На рисунке это угол φ
Прямая, параллельная плоскости
Если прямая параллельна плоскости, то угол между прямой и плоскостью считается равным нулю.
Прямая, лежащая на плоскости
Если прямая лежит в плоскости, то угол между прямой и плоскостью считается равным нулю.
Прямая, перпендикулярная к плоскости
Если прямая перпендикулярна плоскости, то угол между прямой и плоскостью считается равным 90° ( радиан).
Углом между наклонной к плоскости (прямая PO ) и плоскостью называют угол между этой наклонной и ее проекцией на плоскость (прямая P’O )
На рисунке это угол φ
Если прямая параллельна плоскости, то угол между прямой и плоскостью считается равным нулю.
Если прямая лежит в плоскости, то угол между прямой и плоскостью считается равным нулю.
Если прямая перпендикулярна плоскости, то угол между прямой и плоскостью считается равным 90° ( радиан).
Теорема о трех перпендикулярах
Теорема о трех перпендикулярах. Если наклонная a к плоскости α перпендикулярна к прямой b, лежащей на плоскости α, то и проекция наклонной a’ на плоскость α перпендикулярна к прямой b.
Доказательство. Рассмотрим следующий рисунок 3.
На рисунке 3 буквой O обозначена точка пересечения наклонной a с плоскостью α. Точка P – произвольная точка на прямой a, а точка P’ – это проекция точки P на плоскость α. Проведем через точку O прямую b’, параллельную прямой параллельную прямой b. Если прямая b проходит через точку O, то прямая b’, совпадет с прямой b.
Поскольку PP’ – перпендикуляр к плоскости α, то прямая PP’ перпендикулярна к прямой b’. Прямая a перпендикулярна к прямой b’ по условию. Таким образом, прямая b’ перпендикулярна к двум пересекающимся прямым PO и PP’, лежащим в плоскости POP’. В силу признака перпендикулярности прямой и плоскости получаем, что прямая b’ перпендикулярна к плоскости POP’, откуда вытекает, что прямая b’ перпендикулярна и к прямой a’, лежащей на плоскости POP’.
Теорема, обратная теореме о трех перпендикулярах. Если проекция a’ наклонной a к плоскости α перпендикулярна к прямой b, лежащей на плоскости α, то и сама наклонная a перпендикулярна к прямой b.
Доказательство. Как и для доказательства прямой теоремы о трех перпендикулярах, воспользуемся рисунком 3.
Прямая a’ перпендикулярна к прямой b по условию обратной теоремы. Прямая PP’ перпендикулярна к прямой b’, поскольку PP’ – перпендикуляр к плоскости α. Таким образом, прямая b’, перпендикулярна к двум пересекающимся прямым P’O и PP’, лежащим в плоскости POP’. В силу признака перпендикулярности прямой и плоскости прямая b’ перпендикулярна к плоскости POP’. Тогда, в частности, прямая b’ перпендикулярна к прямой a, лежащей на плоскости POP’.
Теорема о трех перпендикулярах: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.
Обратная теорема: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции.
Определение: углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.
Атанасян Л. С., Бутузов В. Ф. Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.
Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения
Рассмотрим плоскость α и точку А, не лежащую в этой плоскости (рис. 1). Проведем через точку А прямую, перпендикулярную к плоскости α, и обозначим буквой Н точку пересечения этой прямой с плоскостью α. Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости α, а точка Н — основанием перпендикуляра. Отметим в плоскости α какую-нибудь точку М, отличную от Н, и проведем отрезок AM. Он называется наклонной, проведенной из точки А к плоскости α, а точка М – основанием наклонной. Отрезок НМ называется проекцией наклонной на плоскость α.
Поставим задачу определить, в каком случае прямая может считаться перпендикулярной к плоскости. Докажем предварительно следующее предложение.
Теорема. Если прямая (АА1, черт. 15), пересекающаяся с плоскостью (МN), перпендикулярна к каким-нибудь двум прямым (ОВ и ОС), проведенным на этой плоскости через точку пересечения(O) данной прямой и плоскости, то она перпендикулярна и ко всякой третьей прямой (ОD), проведённой на плоскости через ту же точку пересечения (О).
Отложим на прямой АА1 произвольной длины, но равные отрезки ОА и ОА1 и проведём на плоскости какую-нибудь прямую, которая пересекала бы три прямые, исходящие из точки О, в каких-нибудь точках С, D и В. Эти точки соединим с точками А и А1. Мы получим тогда несколько треугольников. Рассмотрим их в такой последовательности.
Сначала возьмём треугольники АСВ и А1СВ; они равны, так как у них СВ—общая сторона, АС=А1С, как наклонные к прямой АА1, одинаково удалённые от основания О перпендикуляра ОС; по той же причине АВ = А1В. Из равенства этих треугольников следует, что ∠ АВС = ∠ А1BС.
После этого перейдём к треугольникам АОВ и А1ОВ; они равны, так как у них ОВ—общая сторона, АВ = А1В и ∠АВD = ∠А1ВD. Из равенства этих треугольников выводим, что АО = А1О.
Определение. Прямая называется перпендикулярной к плоскости, если она, пересекаясь с этой плоскостью, образует прямой угол с каждой прямой, проведённой на плоскости через точку пересечения. В этом случае говорят также, что плоскость перпендикулярна к прямой.
Из предыдущей теоремы следует, что прямая перпендикулярна к плоскости, если она перпендикулярна к двум прямым, лежащим в данной плоскости и проходящим через точку пересечении данной прямой и плоскости.
Прямая, пересекающая плоскость, но не перпендикулярная к ней, называется наклонной к этой плоскости. Точка пересечения прямой с плоскостью называется основанием перпендикуляра или наклонной.
Сравнительная длина перпендикуляра и наклонных. Когда из одной точки А (черт. 16) проведены к плоскости перпендикуляр АВ и наклонная АС, условимся называть, проекцией наклонной на плоскость Р отрезок ВС, соединяющий основание перпендикуляра и основание наклонной.
Для краткости термины «перпендикуляр» и «наклонная» употребляются вместо «отрезок перпендикуляра, ограниченный данной точкой и основанием перпендикуляра», и «отрезок наклонной, ограниченный данной точкой и основанием наклонной.
Таким образом, отрезок ВС есть проекция наклонной АС, отрезок ВD есть проекция наклонной АD и т. д.
1) две наклонные, имеющие равные проекции, равны;
2) из двух наклонных та больше, проекция которой больше,
Вращая прямоугольные треугольники ABC и ABD вокруг катета AB, мы можем совместить их плоскости с плоскостью \(\Delta\)ABE. Тогда все наклонные будут лежать в одной плоскости с перпендикуляром, а все проекции расположатся на одной прямой. Таким образом, доказываемые теоремы приводятся к аналогичным теоремам планиметрии.
Обратные теоремы. Если из одной и той же точки, взятой вне плоскости, проведены перпендикуляр и какие-нибудь наклонные, то:
1)равные наклонные имеют равные проекции;
2) из двух проекций та больше, которая соответствует большей наклонной.
Приведём ещё следующую теорему о перпендикулярах, которая понадобится нам впоследствии.
Теорема. Прямая (DЕ, черт. 17), проведённая на плоскости (Р) через основание наклонной(АС) перпендикулярно к её проекции (ВС), перпендикулярна и к самой наклонной.
Отложим произвольные, но равные отрезки СD и СЕ и соединим прямолинейными отрезками точки А и В с точками D и E. Тогда будем иметь:
ВD = ВЕ, как наклонные к прямой DЕ, одинаково удалённые от основания С перпендикуляра ВС;
АD = АЕ, как наклонные к плоскости Р, имеющие равные проекции ВD и ВЕ.
Вследствие этого \(\Delta\)АDЕ равнобедренный, и потому его медиана АС перпендикулярна к основанию DЕ.
Эта теорема носит название теоремы о трёх перпендикулярах. Действительно, в ней говорится о связи, соединяющей следующие три перпендикуляра:
1) АВ к плоскости Р,
2) ВС к прямой DE и
3) АС к той же прямой DE.
Обратная теорема. Прямая (ОЕ, черт. 17), проведённая на плоскости (Р) через основание наклонной (АС) перпендикулярно к этой наклонной, перпендикулярна и к её проекции.
Сделаем те же построения, что и при доказательстве прямой теоремы. Отложим произвольные, но равные отрезки СD и СЕ и соединим прямолинейными отрезками точки А и В с точками D и Е, тогда будем иметь:
АD = АЕ, как наклонные к прямой DЕ, одинаково удалённые от основания С перпендикуляра АС;
ВD = ВЕ, как проекции равных наклонных АD и АЕ.
Вследствие этого \(\Delta\)ВDЕ равнобедренный, и потому его медиана ВС перпендикулярна к основанию DЕ.