Как называют граничные точки вектора
Вектор. Виды векторов.
Вектор — в самом элементарном случае это математический объект, который характеризуется
величиной и направлением.
В геометрии вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая
из его граничных точек является началом, а какая — концом.
У вектора есть длина и определенное направление. Графически вектора изображаются как
направленные отрезки прямой конкретной длины. Длина вектора – это и есть длина этого отрезка.
Для обозначения длины вектора используются две вертикальные линии по обоим сторонам: |AB|.
Как видно на рисунке, начало отрезка – это точка А, концом отрезка является
точка В, а непосредственно вектор обозначен через . У направления
вектора существенное значение, если переместить стрелку на другую
сторону отрезка, то получим вектор, но абсолютно другой. Понятие вектора
удобно сравнивать с движением физического тела: подумайте, ехать на
рыбалку и с рыбалки – разница огромная.
Понятия «больше» и «меньше» для векторов не имеет значения — так как направления их могут быть
разными. Сравнивают лишь длины векторов. Зато есть понятие равенства для векторов.
Виды векторов.
Единичным называется вектор, длина которого равна 1.
Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором.
У такого вектора конец и начало совпадают.
Нулевой вектор обычно обозначается как . Длина нулевого вектора, или его модуль равен нулю.
Коллинеарные вектора – вектора, которые параллельны одной прямой
или которые лежат на одной прямой.
Сонаправленные вектора. Два коллинеарных вектора a и b называются
сонаправленными векторами только тогда, когда их направления
соответствуют друг другу: a↑↑b
Противоположно направленные вектора – два коллинеарных вектора
a и b называются противоположно направленными векторами, только
когда они направлены в разные стороны: a↑↓b.
Компланарные вектора – это те вектора, которые параллельны одной
плоскости или те, которые лежат на общей плоскости.
В любое мгновение существует плоскость одновременно параллельную
двум любым векторам, поэтому два произвольных вектора являются
Равные вектора. Вектора a и b будут равными, если они будут лежать на
одной либо параллельных прямых и их направления и длины одинаковые.
То есть, такой вектор можно перенести параллельно ему в каждое место
Таким образом, два вектора равны, если они коллинеарные, сонаправленые
и имеют одинаковые длины:
Для координатного представления векторов огромное значение
оказывает понятие проекции вектора на ось (направленную
прямую).
проекциями точек начала и конца вектора на заданную прямую,
при этом проекции добавляется знак “+”, но когда направление
проекции соответственно направлению оси, иначе — знак “–”.
Проекция – это длина заданного вектора, умноженная на cos угла исходного вектора и оси; проекция
вектора на ось, которая перпендикулярна ему = 0.
Когда работают с векторами, зачастую вводят так называемую
декартову систему координат и уже в этой системе находят
координаты вектора по базисным векторам.
Разложение по базису геометрически можно показать проекцией
вектора на координатные оси. Когда известны координаты начала и
конца вектора, то координаты данного вектора получают вычитая
из координат конца вектора координат начала вектора.
За базис зачастую выбираются координатные орты, которые обозначаются как , соответственно
осям x, y, z. Исходя из этого, вектор можно записать в таком виде:
Каждое геометрическое свойство есть возможность записать в координатах, и далее исследование
из геометрического переходит в алгебраическое и на этом этапе в основном упрощается. Обратное,
кстати, неверно: не у любого соотношения в координатах есть геометрическое толкование, но только
те соотношения, которые выполняются в любой декартовой системе координат (инвариантные).
Как называют граничные точки вектора
1. Основные определения
Вектор представляет собой направленный отрезок прямой, для которого определены правила (законы) сложения с другими векторами, правило вычитания векторов, правило умножения вектора на число, скалярное произведение двух векторов и некоторые другие операции.
Число, выражающее длину направленного отрезка, называют модулем вектора и обозначают той же буквой, что и сам вектор, но без стрелки наверху, например: модулем вектора `vec v` является число `v`. Часто для обозначения модуля вектора прибегают к помощи знака абсолютной величины и пишут, например, `|vec v|` или `|vec F|`.
Вектор называется нулевым, если его начало и конец совпадают. Нулевой вектор не имеет определённого направления и его длина (модуль) равна нулю.
Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Так, например, на рис. 3 векторы `vec a`, `vec b` и `vec c` коллинеарны.
Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и одинаковое направление.
В физике точка приложения вектора иногда имеет принципиальное значение. Достаточно вспомнить рычаг: две равные по модулю силы, направленные в одну и ту же сторону, производят на рычаг разное действие, если плечи сил не равны друг другу. И всё же сами силы равны друг другу! Бывают и случаи, когда вектору трудно приписать конкретную точку приложения. Например, если одна система отсчёта движется относительно другой со скоростью `vec v`, то какой точке приписать эту скорость? Всем точкам движущейся системы!
2. Сложение двух векторов.
Пусть даны два произвольных вектора `vec a` и `vec b` (рис. 5а).
Описанное правило есть просто определение суммы векторов. Как и в случае с числами, сумма векторов не зависит от порядка слагаемых, и поэтому можно записать
Оба способа сложения дают идентичный результат и одинаково часто применяются на практике. Когда речь идёт о нахождении суммы трёх и более векторов, часто последовательно используют правило треугольника. Поясним сказанное.
3. Сложение трёх и более векторов.
Пусть нужно сложить три вектора `vec a`, `vec b` и `vec d` (рис. 6).
Для этого по правилу треугольника сначала находится сумма любых двух векторов, например `vec a` и `vec b`, потом полученный вектор `vec c = vec a + vec b` по тому же правилу складывается с третьим вектором `vec d`. Тогда полученный вектор `vec f = vec c + vec d` и будет представлять собой сумму трёх векторов `vec a`, `vec b` и `vec d`: `vec f = vec a + vec b + vec d`. Как и в случае с двумя векторами, порядок слагаемых не влияет на конечный результат.
Так, на рис. 7 вектор `vec g` представляет собой сумму векторов `vec a`, `vec b`, `vec d`, `vec e`, найденную по правилу многоугольника: `vec g = vec a + vec b + vec d + vec e`.
Не всякая векторная сумма может иметь физический смысл. Не всякие величины вообще имеет смысл складывать. Так, например, бессмысленно говорить, что, если у меня температура `36,6^@` и у вас тоже `36,6^@`, то вместе у нас температура `73,2^@`, хотя складывать температуры (числа) никто не запрещает. Всё же чаще всего сумма температур представляет собой никому не нужную величину; она редко входит в какие-либо уравнения (входит почти случайно).
Иное дело – с массой. Если система состоит из тел с массами `m_1`, `m_2`, `m_3` и т. д., то масса всей системы равна `m = m_1 + m_2 + m_3 + ` и т. д. (Если на лифте написано, что максимальный груз, перевозимый лифтом, равен `500` кг, то перед входом в лифт нужно убедиться, что сумма масс вносимых в лифт грузов не превышает `500` кг.) Говорят, что масса – есть аддитивная величина (от английского слова add – добавлять, прибавлять, складывать). А вот температура – не аддитивная величина.
В последнем равенстве мы встречаемся с умножением вектора на скаляр. Поясним эту процедуру.
4. Умножение вектора на скаляр.
Произведением вектора `vec a` на число `k` называют новый вектор `vec b = k vec a`, коллинеарный вектору `vec a`, направленный в ту же сторону, что и вектор `vec a`, если `k > 0`, и в противоположную сторону, если `k
Определение вектора
В статье пойдет речь о том, что такое вектор, что он из себя представляет в геометрическом смысле, введем вытекающие понятия.
Для начала дадим определение:
Вектор – это направленный отрезок прямой.
Исходя из определения, под вектором в геометрии отрезок на плоскости или в пространстве, который имеет направление, и это направление задается началом и концом.
Нулевой вектор
Под нулевым вектором 0 → будем понимать любую точку плоскости или пространства.
Из определения становится очевидным, что нулевой вектор может иметь любое направление на плоскости и в пространстве.
Длина вектора
Под длиной вектора A B → понимается число, большее либо равное 0, и равное длине отрезка АВ.
Понятия модуль вектора и длина вектора равносильны, потому что его обозначение совпадает со знаком модуля. Поэтому длину вектора также называют его модулем. Однако грамотнее использовать термин «длина вектора». Очевидно, что длина нулевого вектора принимает значение ноль.
Коллинеарность векторов
Два вектора лежащие на одной прямой или на параллельных прямых называются коллинеарными.
Два вектора не лежащие на одной прямой или на параллельных прямых называются неколлинеарными.
Следует запомнить, что Нулевой вектор всегда коллинеарен любому другому вектору, так как он может принимать любое направление.
Коллиниарные векторы в свою очередь тоже можно разделить на два класса: сонаправленные и противоположно направленные.
Направление векторов
Считается, что нулевой вектор является сонаправленым к любым другим векторам.
Равные и противоположные векторы
Равными называются сонаправленные вектора, у которых длины равны.
Противопожными называются противоположно направленные вектора, у которых их длины равны.
Введенные выше понятия позволяют нам рассматривать векторы без привязки к конкретным точкам. Иначе говоря, можно заменить вектор равным ему вектором, отложенным от любой точки.
Углы между векторами
Угол φ = ∠ A O B называется углом между векторами a → = O A → и b → = O B → .
Очевидно, что угол между сонаправленными векторами равен нулю градусам (или нулю радиан), так как сонаправленные векторы лежат на одной или на параллельных прямых и имеют одинаковое направление, а угол между противоположно направленными векторами равен 180 градусам (или π радиан), так как противоположно направленные векторы лежат на одной или на параллельных прямых, но имеют противоположные направления.
Перпендикулярными называются два вектора, угол между которыми равен 90 градусам (или π 2 радиан).
Вектор. Виды векторов.
Вектор — в самом элементарном случае это математический объект, который характеризуется
величиной и направлением.
В геометрии вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая
из его граничных точек является началом, а какая — концом.
У вектора есть длина и определенное направление. Графически вектора изображаются как
направленные отрезки прямой конкретной длины. Длина вектора – это и есть длина этого отрезка.
Для обозначения длины вектора используются две вертикальные линии по обоим сторонам: |AB|.
Как видно на рисунке, начало отрезка – это точка А, концом отрезка является
точка В, а непосредственно вектор обозначен через . У направления
вектора существенное значение, если переместить стрелку на другую
сторону отрезка, то получим вектор, но абсолютно другой. Понятие вектора
удобно сравнивать с движением физического тела: подумайте, ехать на
рыбалку и с рыбалки – разница огромная.
Понятия «больше» и «меньше» для векторов не имеет значения — так как направления их могут быть
разными. Сравнивают лишь длины векторов. Зато есть понятие равенства для векторов.
Виды векторов.
Единичным называется вектор, длина которого равна 1.
Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором.
У такого вектора конец и начало совпадают.
Нулевой вектор обычно обозначается как . Длина нулевого вектора, или его модуль равен нулю.
Коллинеарные вектора – вектора, которые параллельны одной прямой
или которые лежат на одной прямой.
Сонаправленные вектора. Два коллинеарных вектора a и b называются
сонаправленными векторами только тогда, когда их направления
соответствуют друг другу: a↑↑b
Противоположно направленные вектора – два коллинеарных вектора
a и b называются противоположно направленными векторами, только
когда они направлены в разные стороны: a↑↓b.
Компланарные вектора – это те вектора, которые параллельны одной
плоскости или те, которые лежат на общей плоскости.
В любое мгновение существует плоскость одновременно параллельную
двум любым векторам, поэтому два произвольных вектора являются
Равные вектора. Вектора a и b будут равными, если они будут лежать на
одной либо параллельных прямых и их направления и длины одинаковые.
То есть, такой вектор можно перенести параллельно ему в каждое место
Таким образом, два вектора равны, если они коллинеарные, сонаправленые
и имеют одинаковые длины:
Для координатного представления векторов огромное значение
оказывает понятие проекции вектора на ось (направленную
прямую).
проекциями точек начала и конца вектора на заданную прямую,
при этом проекции добавляется знак “+”, но когда направление
проекции соответственно направлению оси, иначе — знак “–”.
Проекция – это длина заданного вектора, умноженная на cos угла исходного вектора и оси; проекция
вектора на ось, которая перпендикулярна ему = 0.
Когда работают с векторами, зачастую вводят так называемую
декартову систему координат и уже в этой системе находят
координаты вектора по базисным векторам.
Разложение по базису геометрически можно показать проекцией
вектора на координатные оси. Когда известны координаты начала и
конца вектора, то координаты данного вектора получают вычитая
из координат конца вектора координат начала вектора.
За базис зачастую выбираются координатные орты, которые обозначаются как , соответственно
осям x, y, z. Исходя из этого, вектор можно записать в таком виде:
Каждое геометрическое свойство есть возможность записать в координатах, и далее исследование
из геометрического переходит в алгебраическое и на этом этапе в основном упрощается. Обратное,
кстати, неверно: не у любого соотношения в координатах есть геометрическое толкование, но только
те соотношения, которые выполняются в любой декартовой системе координат (инвариантные).
Векторы. Начальные сведения
Определения
Если длина вектора равна нулю (совпадают начало и конец), то такой вектор называют нулевым.
Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых ( \(\overrightarrow a, \overrightarrow b\) и \(\overrightarrow c\) ).
В противном случае векторы называются неколлинеарными (например, \(\overrightarrow a\) и \(\overrightarrow d\) ).
Векторы называются равными, если они сонаправлены и их длины равны.
Правила сложения коллинеарных векторов:
\(\blacktriangleright\) Для того, чтобы сложить два сонаправленных вектора, можно отложить второй вектор от конца первого. Тогда их сумма – вектор, начало которого совпадает с началом первого вектора, а конец – с концом второго (рис. 1).
\(\blacktriangleright\) Для того, чтобы сложить два противоположно направленных вектора, можно отложить второй вектор от начала первого. Тогда их сумма – вектор, начало которого совпадает с началом обоих векторов, длина равна разности длин векторов, направление совпадает с направлением большего по длине вектора (рис. 2).
Правила сложения неколлинеарных векторов \(\overrightarrow \) и \(\overrightarrow\) :
\(\blacktriangleright\) Правило треугольника (рис. 3).
\(\blacktriangleright\) Правило параллелограмма (рис. 4).
Определение
Вектор \(\overrightarrow <-b>\) – это вектор, противоположно направленный с вектором \(\overrightarrow \) и совпадающий с ним по длине.
Свойства сложения векторов
Замечание
Для того, чтобы сложить несколько вектором, можно отложить их последовательно: каждый следующий от конца предыдущего. Тогда суммой этих векторов будет вектор, начало которого совпадает с началом первого вектора, а конец — с концом последнего: \[\overrightarrow
Определение
Свойства произведения вектора на число
1. Сочетательный закон: \(k(\lambda\overrightarrow )=(k\lambda)\overrightarrow \) ;
Теорема