как называется таблица в которой каждой букве цифре служебному символу присвоен какой либо код
Как называется таблица в которой каждой букве цифре служебному символу присвоен какой либо код
Тексты вводятся в память компьютера с помощью клавиатуры. На клавишах написаны привычные нам буквы, цифры, знаки препинания и другие символы. В оперативную память они попадают в двоичном коде. Это значит, что каждый символ представляется 8-разрядным двоичным кодом.
Теперь возникает вопрос, какой именно восьмиразрядный двоичный код поставить в соответствие каждому символу.
Понятно, что это дело условное, можно придумать множество способов кодировки.
Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код просто порядковый номер символа в двоичной системе счисления.
Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.
Для разных типов ЭВМ используются различные таблицы кодировки.
Международным стандартом для ПК стала таблица ASCII (читается аски) (Американский стандартный код для информационного обмена).
Таблица кодов ASCII делится на две части.
Международным стандартом является лишь первая половина таблицы, т.е. символы с номерами от 0(00000000), до 127 (01111111).
Структура таблицы кодировки ASCII
Порядковый номер
Символ
Символы с номерами от 0 до 31 принято называть управляющими.
Их функция – управление процессом вывода текста на экран или печать, подача звукового сигнала, разметка текста и т.п.
Альтернативная часть таблицы (русская).
Вторая половина кодовой таблицы ASCII, называемая кодовой страницей (128 кодов, начиная с 10000000 и кончая 11111111), может иметь различные варианты, каждый вариант имеет свой номер.
Кодовая страница в первую очередь используется для размещения национальных алфавитов, отличных от латинского. В русских национальных кодировках в этой части таблицы размещаются символы русского алфавита.
Первая половина таблицы кодов ASCII
Обращаю ваше внимание на то, что в таблице кодировки буквы (прописные и строчные) располагаются в алфавитном порядке, а цифры упорядочены по возрастанию значений. Такое соблюдение лексикографического порядка в расположении символов называется принципом последовательного кодирования алфавита.
Для букв русского алфавита также соблюдается принцип последовательного кодирования.
Вторая половина таблицы кодов ASCII
К сожалению, в настоящее время существуют пять различных кодировок кириллицы (КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за этого часто возникают проблемы с переносом русского текста с одного компьютера на другой, из одной программной системы в другую.
Хронологически одним из первых стандартов кодирования русских букв на компьютерах был КОИ8 («Код обмена информацией, 8-битный»). Эта кодировка применялась еще в 70-ые годы на компьютерах серии ЕС ЭВМ, а с середины 80-х стала использоваться в первых русифицированных версиях операционной системы UNIX.
От начала 90-х годов, времени господства операционной системы MS DOS, остается кодировка CP866 («CP» означает «Code Page», «кодовая страница»).
Компьютеры фирмы Apple, работающие под управлением операционной системы Mac OS, используют свою собственную кодировку Mac.
Кроме того, Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка еще одну кодировку под названием ISO 8859-5.
Наиболее распространенной в настоящее время является кодировка Microsoft Windows, обозначаемая сокращением CP1251.
С конца 90-х годов проблема стандартизации символьного кодирования решается введением нового международного стандарта, который называется Unicode. Это 16-разрядная кодировка, т.е. в ней на каждый символ отводится 2 байта памяти. Конечно, при этом объем занимаемой памяти увеличивается в 2 раза. Но зато такая кодовая таблица допускает включение до 65536 символов. Полная спецификация стандарта Unicode включает в себя все существующие, вымершие и искусственно созданные алфавиты мира, а также множество математических, музыкальных, химических и прочих символов.
Кодовая таблица
Всего получено оценок: 118.
Всего получено оценок: 118.
Для представления букв в вычислительной технике используют кодовые таблицы. Кратко о видах таблиц символов и их использовании рассказано в данной статье.
Что такое кодовая таблица
Известно, что числа в ЭВМ представляются в двоичной форме, в виде набора нулей и единиц. Для этого разработаны специальные приемы перевода числовых значений в двоичную последовательность. А как же компьютером обрабатываются текстовая информация – предложение, слова и буквы? Точно также как и числа – в виде последовательности нулей и единиц.
Для представления буквы в компьютере ее заменяют числовым эквивалентом, а затем переводят в двоичный код. Каждой букве соответствует своя цифра. Все буквы с их числовыми эквивалентами сведены в кодовую таблицу символов, которая может называться ASCII, Unicode, КОИ-7, КОИ-8, Windows-1251.
Таблица ASCII
Самой первой системой кодирования текстовой информации была ASCII (американский стандартный код для обмена информацией).
Таблица ASCII была разработана в США в шестидесятые годы прошлого столетия. Появление такой единой унифицированной системы кодировки символов было продиктовано необходимостью реализации компьютерного взаимодействия и обмена информацией. В то время каждый производитель вычислительной техники самостоятельно представлял буквы, цифры и управляющие коды. Только специалистами корпорации IBM применялись девять различных наборов кодировки символов.
Идея создания единой стандартизированной системы кодирования символов в виде числовых эквивалентов принадлежит американскому специалисту в области информационных технологий Роберту Уильяму Бемеру. Это он придумал экранирующий символ «Esc», обозначающий то, что следующий после него символ, имеет некоторое другое значение, не такое как ему назначено в таблице ASCII.
Первоначально таблица использовалась для кодировки только 128 знаков, затем была расширена до 256 символов. Первые тридцать два символа в таблице ASCI не имеют печатных эквивалентов и используются для управления. Числа в диапазоне 32 –127 предназначены для кодирования прописных и строчных латинских букв, цифр и знаков препинания.
Знак пробела имеет код 32 и также является печатным символом. Проверить соответствие символа печатному коду легко. Для этого можно воспользоваться простейшим текстовым редактором Блокнот в группе программ Стандартные операционной системы Windows. Нажав одновременно функциональную клавишу Alt и введя код символа – десятичное число, в окне редактора на месте расположения курсора будет напечатан соответствующий символ.
Национальные версии таблицы ASCII
Таблица ASCII в интервале символов от 0 до 127 остается неизменной для любых программ. Диапазон кодовых значений от 128 до 255 может варьироваться в зависимости от языковых и национальных особенностей.
Существуют различные национальные варианты системы кодирования. Для кодирования букв русского алфавита используются:
Unicode
Unicode представляет собой промышленный стандарт для кодирования символов всех письменных языков мира. Он был предложен в 1991 году некоммерческой организацией Unicode Consortium.
Кодовое пространство Unicode разделено на несколько областей. Диапазон кодовых значений от 0 до 127 полностью дублирует кодовую систему ASCII. Затем располагаются области знаков разных языков, пунктуационные знаки и некоторые технические символы.
Unicode имеет несколько форм представления: UTF-8, UTF-16 и UTF-32.
Что мы узнали?
Для представления символьных значений в ЭВМ используются таблицы кодирования символов. Каждому символу в такой таблице соответствует числовое значение. Использование стандартизированных кодовых таблиц позволило обеспечить взаимодействие и информационный обмен между средствами вычислительной техники.
Представление символов, таблицы кодировок
Содержание
Представление символов в вычислительных машинах [ править ]
В вычислительных машинах символы не могут храниться иначе, как в виде последовательностей бит (как и числа). Для передачи символа и его корректного отображения ему должна соответствовать уникальная последовательность нулей и единиц. Для этого были разработаны таблицы кодировок.
Таблицы кодировок [ править ]
На заре компьютерной эры на каждый символ было отведено по пять бит. Это было связано с малым количеством оперативной памяти на компьютерах тех лет. В эти [math]32[/math] символа входили только управляющие символы и строчные буквы английского алфавита.
С ростом производительности компьютеров стали появляться таблицы кодировок с большим количеством символов. Первой семибитной кодировкой стала ASCII7. В нее уже вошли прописные буквы английского алфавита, арабские цифры, знаки препинания. Затем на ее базе была разработана ASCII8, в которым уже стало возможным хранение [math]256[/math] символов: [math]128[/math] основных и еще столько же расширенных. Первая часть таблицы осталась без изменений, а вторая может иметь различные варианты (каждый имеет свой номер). Эта часть таблицы стала заполняться символами национальных алфавитов.
Но для многих языков (например, арабского, японского, китайского) [math]256[/math] символов недостаточно, поэтому развитие кодировок продолжалось, что привело к появлению UNICODE.
Кодировки стандарта ASCII [ править ]
Определение: |
ASCII — таблицы кодировок, в которых содержатся основные символы (английский алфавит, цифры, знаки препинания, символы национальных алфавитов(свои для каждого региона), служебные символы) и длина кода каждого символа [math]n = 8[/math] бит. |
Кодировки стандарта ASCII ( [math]8[/math] бит):
Структурные свойства таблицы [ править ]
Кодировки стандарта UNICODE [ править ]
Юникод или Уникод (англ. Unicode) — это промышленный стандарт обеспечивающий цифровое представление символов всех письменностей мира, и специальных символов.
Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium, Unicode Inc.). Применение этого стандарта позволяет закодировать очень большое число символов из разных письменностей. Стандарт состоит из двух основных разделов: универсальный набор символов (англ. UCS, universal character set) и семейство кодировок (англ. UTF, Unicode transformation format). Универсальный набор символов задаёт однозначное соответствие символов кодам — элементам кодового пространства, представляющим неотрицательные целые числа.Семейство кодировок определяет машинное представление последовательности кодов UCS.
Коды в стандарте Unicode разделены на несколько областей. Область с кодами от U+0000 до U+007F содержит символы набора ASCII с соответствующими кодами. Далее расположены области знаков различных письменностей, знаки пунктуации и технические символы. Под символы кириллицы выделены области знаков с кодами от U+0400 до U+052F, от U+2DE0 до U+2DFF, от U+A640 до U+A69F. Часть кодов зарезервирована для использования в будущем.
Кодовое пространство [ править ]
Хотя формы записи UTF-8 и UTF-32 позволяют кодировать до [math]2^<31>[/math] [math](2\ 147\ 483\ 648)[/math] кодовых позиций, было принято решение использовать лишь [math]1\ 112\ 064[/math] для совместимости с UTF-16. Впрочем, даже и этого на текущий момент более чем достаточно — в версии 6.0 используется чуть менее [math]110\ 000[/math] кодовых позиций ( [math]109\ 242[/math] графических и [math]273[/math] прочих символов).
Кодовое пространство разбито на [math]17[/math] плоскостей (англ. planes) по [math]2^<16>[/math] [math](65\ 536)[/math] символов. Нулевая плоскость называется базовой, в ней расположены символы наиболее употребительных письменностей. Первая плоскость используется, в основном, для исторических письменностей, вторая — для для редко используемых иероглифов китайского письма, третья зарезервирована для архаичных китайских иероглифов. Плоскости [math]15[/math] и [math]16[/math] выделены для частного употребления.
Плоскости Юникода | ||
---|---|---|
Плоскость | Название | Диапазон символов |
Plane 0 | Basic multilingual plane (BMP) | U+0000…U+FFFF |
Plane 1 | Supplementary multilingual plane (SMP) | U+10000…U+1FFFF |
Plane 2 | Supplementary ideographic plane (SIP) | U+20000…U+2FFFF |
Planes 3-13 | Unassigned | U+30000…U+DFFFF |
Plane 14 | Supplementary special-purpose plane (SSP) | U+E0000…U+EFFFF |
Planes 15-16 | Supplementary private use area (S PUA A/B) | U+F0000…U+10FFFF |
Модифицирующие символы [ править ]
Графические символы в Юникоде делятся на протяжённые и непротяжённые. Непротяжённые символы при отображении не занимают дополнительного места в строке. К примеру, к ним относятся знак ударения. Протяжённые и непротяжённые символы имеют собственные коды, но последние не могут встречаться самостоятельно. Протяжённые символы называются базовыми (англ. base characters), а непротяженные — модифицирующими (англ. combining characters). Например символ «Й» (U+0419) может быть представлен в виде базового символа «И» (U+0418) и модифицирующего символа « ̆» (U+0306).
Способы представления [ править ]
Юникод имеет несколько форм представления (англ. Unicode Transformation Format, UTF): UTF-8, UTF-16 (UTF-16BE, UTF-16LE) и UTF-32 (UTF-32BE, UTF-32LE). Была разработана также форма представления UTF-7 для передачи по семибитным каналам, но из-за несовместимости с ASCII она не получила распространения и не включена в стандарт.
UTF-8 [ править ]
Символы UTF-8 получаются из Unicode cледующим образом:
Unicode | UTF-8 | Представленные символы |
---|---|---|
0x00000000 — 0x0000007F | 0xxxxxxx | ASCII, в том числе английский алфавит, простейшие знаки препинания и арабские цифры |
0x00000080 — 0x000007FF | 110xxxxx 10xxxxxx | кириллица, расширенная латиница, арабский алфавит, армянский алфавит, греческий алфавит, еврейский алфавит и коптский алфавит; сирийское письмо, тана, нко; Международный фонетический алфавит; некоторые знаки препинания |
0x00000800 — 0x0000FFFF | 1110xxxx 10xxxxxx 10xxxxxx | все другие современные формы письменности, в том числе грузинский алфавит, индийское, китайское, корейское и японское письмо; сложные знаки препинания; математические и другие специальные символы |
0x00010000 — 0x001FFFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx | музыкальные символы, редкие китайские иероглифы, вымершие формы письменности |
111111xx | служебные символы c, d, e, f |
Несмотря на то, что UTF-8 позволяет указать один и тот же символ несколькими способами, только наиболее короткий из них правильный. Остальные формы, называемые overlong sequence, отвергаются по соображениям безопасности.
Принцип кодирования [ править ]
Правила записи кода одного символа в UTF-8 [ править ]
1. Если размер символа в кодировке UTF-8 = [math]1[/math] байт
Код имеет вид (0aaa aaaa), где «0» — просто ноль, остальные биты «a» — это код символа в кодировке ASCII;
2. Если размер символа в кодировке в UTF-8 [math]\gt 1[/math] байт (то есть от [math]2[/math] до [math]6[/math] ):
2.1 Первый байт содержит количество байт символа, закодированное в единичной системе счисления; 2.2 «0» — бит терминатор, означающий завершение кода размера 2.3 далее идут значащие байты кода, которые имеют вид (10xx xxxx), где «10» — биты признака продолжения, а «x» — значащие биты.
В общем случае варианты представления одного символа в кодировке UTF-8 выглядят так:
Определение длины кода в UTF-8 [ править ]
Количество байт UTF-8 | Количество значащих бит |
---|---|
[math]1[/math] | [math]7[/math] |
[math]2[/math] | [math]11[/math] |
[math]3[/math] | [math]16[/math] |
[math]4[/math] | [math]21[/math] |
[math]5[/math] | [math]26[/math] |
[math]6[/math] | [math]31[/math] |
[math]C = 7[/math] при [math]n=1[/math]
[math]C = n\cdot5+1[/math] при [math]n\gt 1[/math]
UTF-16 [ править ]
UTF-16LE и UTF-16BE [ править ]
Один символ кодировки UTF-16 представлен последовательностью двух байт или двух пар байт. Который из двух байт в словах идёт впереди, старший или младший, зависит от порядка байт. Подробнее об этом будет сказано ниже.
UTF-32 [ править ]
UTF-32 — один из способов кодирования символов из Юникод, использующий для кодирования любого символа ровно [math]32[/math] бита. Остальные кодировки, UTF-8 и UTF-16, используют для представления символов переменное число байт. Символ UTF-32 является прямым представлением его кодовой позиции (англ. code point).
Главный недостаток UTF-32 — это неэффективное использование пространства, так как для хранения символа используется четыре байта. Символы, лежащие за пределами нулевой (базовой) плоскости кодового пространства редко используются в большинстве текстов. Поэтому удвоение, в сравнении с UTF-16, занимаемого строками в UTF-32 пространства не оправдано.
Порядок байт [ править ]
В современной вычислительной технике и цифровых системах связи информация обычно представлена в виде последовательности байт. В том случае, если число не может быть представлено одним байтом, имеет значение в каком порядке байты записываются в памяти компьютера или передаются по линиям связи. Часто выбор порядка записи байт произволен и определяется только соглашениями.
[math]M = \sum_^
Варианты записи [ править ]
Порядок от старшего к младшему [ править ]
В этом же виде (используя представление в десятичной системе счисления) записываются числа индийско-арабскими цифрами в письменностях с порядком знаков слева направо (латиница, кириллица). Для письменностей с обратным порядком (арабская) та же запись числа воспринимается как «от младшего к старшему».
Порядок байт от старшего к младшему применяется во многих форматах файлов — например, PNG, FLV, EBML.
Порядок от младшего к старшему [ править ]
В противоположность порядку big-endian, соглашение little-endian поддерживают меньше кросс-платформенных протоколов и форматов данных; существенные исключения: USB, конфигурация PCI, таблица разделов GUID, рекомендации FidoNet.
Переключаемый порядок [ править ]
Многие процессоры могут работать и в порядке от младшего к старшему, и в обратном, например, ARM, PowerPC (но не PowerPC 970), DEC Alpha, MIPS, PA-RISC и IA-64. Обычно порядок байт выбирается программно во время инициализации операционной системы, но может быть выбран и аппаратно перемычками на материнской плате. В этом случае правильнее говорить о порядке байт операционной системы. Переключаемый порядок байт иногда называют англ. bi-endian.
Смешанный порядок [ править ]
Смешанный порядок байт (англ. middle-endian) иногда используется при работе с числами, длина которых превышает машинное слово. Число представляется последовательностью машинных слов, которые записываются в формате, естественном для данной архитектуры, но сами слова следуют в обратном порядке.
В процессорах VAX и ARM используется смешанное представление для длинных вещественных чисел.
Различия [ править ]
Для записи длинных чисел (чисел, длина которых существенно превышает разрядность машины) обычно предпочтительнее порядок слов в числе little-endian (поскольку арифметические операции над длинными числами производятся от младших разрядов к старшим). Порядок байт в слове — обычный для данной архитектуры.
Маркер последовательности байт [ править ]
Для определения формата представления Юникода в начало текстового файла записывается сигнатура — символ U+FEFF (неразрывный пробел с нулевой шириной), также именуемый маркером последовательности байт (англ. byte order mark (BOM)). Это позволяет различать UTF-16LE и UTF-16BE, поскольку символа U+FFFE не существует.
Кодирование | Представление (Шестнадцатеричное) |
---|---|
UTF-8 | EF BB BF |
UTF-16 (BE) | FE FF |
UTF-16 (LE) | FF FE |
UTF-32 (BE) | 00 00 FE FF |
UTF-32 (LE) | FF FE 00 00 |
В кодировке UTF-8, наличие BOM не является существенным, поскольку, нет альтернативной последовательности байт. Когда BOM используется на страницах или редакторах для контента закодированного в UTF-8, иногда он может представить пробелы или короткие последовательности символов, имеющие странный вид (такие как ). Именно поэтому, при наличии выбора, для совместимости, как правило, лучше упустить BOM в UTF-8 контенте.Однако BOM могут еще встречаться в тексте закодированном в UTF-8, как побочный продукт перекодирования или потому, что он был добавлен редактором. В этом случае BOM часто называют подписью UTF-8.
Когда символ закодирован в UTF-16, его [math]2[/math] или [math]4[/math] байта можно упорядочить двумя разными способами (little-endian или big-endian). Изображение справа показывает это. Byte order mark указывает, какой порядок используется, так что приложения могут немедленно расшифровать контент. UTF-16 контент должен всегда начинатся с BOM.
BOM также используется для текста обозначенного как UTF-32. Аналогично UTF-16 существует два варианта четырёхбайтной кодировки — UTF-32BE и UTF-32LE. К сожалению, этот способ не позволяет надёжно различать UTF-16LE и UTF-32LE, поскольку символ U+0000 допускается Юникодом
Проблемы Юникода [ править ]
В Юникоде английское «a» и польское «a» — один и тот же символ. Точно так же одним символом (но отличающимся от «a» латинского) считаются русское «а» и сербское «а». Такой принцип кодирования не универсален; по-видимому, решения «на все случаи жизни» вообще не может существовать.
Примеры [ править ]
Краткое объяснение кодирования текстовой информации. Информатика
Содержание:
Кодирование текстовой информации — очень распространенное явление. Один и тот же текст может быть закодирован в нескольких форматах. Принято считать, что кодирование текстовой информации появилось с приходом компьютеров. Это и так и не так одновременно. Кодировка в том виде, в котором мы ее знаем, действительно к нам пришла с приходом компьютеров. Но над самим процессом кодирования люди бьются уже много сотен лет. Ведь, по большому счету, сама письменность уже является способом закодировать человеческую речь, для ее дальнейшего использования. Вот и получается, что любая окружающая нас информация никогда не бывает представленной в чистом виде, потому что она уже каким-то образом закодирована. Но сейчас не об этом.
Кодирование текстовой информации
Самый распространенный способ кодирования текстовой информации — это ее двоичное представление, которое сплошь и рядом используется в каждом компьютере, роботе, станке и т. д. Все кодируется в виде слов в двоичном представлении.
Сама технология двоичного представления информации зародилась еще задолго до появления первых компьютеров. Среди первых устройств, которые использовали двоичный метод кодирования, был аппарат Бодо — телеграфный аппарат, который кодировал информацию в 5 битах в двоичном представлении. Суть кодировки заключалась в простой последовательности электрических импульсов:
В компьютерный мир такая кодировка пришла вместе с персонализацией самих компьютеров. То есть в первых компьютерах не было такой кодировки. Но как только компьютеры стали уходить «в массы», то резко обнаружилась потребность обрабатывать компьютерами большое количество именно текстовой информации, которую нужно было как-то кодировать. Тенденция обрабатывать большое количество текстовой информации сохранилась и в современных устройствах.
Так получилось, что двоичное кодирование в компьютерах связано только с двумя символами «0» и «1», которые выстраиваются в определенной логической последовательности. А сам язык подобной кодировки стал называться машинным.
Кодирование текстовой информации и компьютеры
Для справки. Есть уникальный язык программирования, который в качестве своих операторов использует только пробелы, табуляции и переносы строки. Практического применения этот язык не имеет, но он есть.
Мы вводим текст в компьютер при помощи клавиатуры, символы которой мы прекрасно понимаем. Нажимая на какую-то букву, мы отправляем в оперативную память компьютера двоичное представление нажатых клавиш. Каждый отдельный символ будет представлен 8-битной кодировкой. Например буква «А» — это «11000000». Получается, что один символ — это 1 байт или 8 бит. При такой кодировке, путем нехитрых подсчетов можно посчитать, что мы можем зашифровать 256 символов. Для кодирования текстовой информации данного количества символов более чем предостаточно.
Кодирование текстовой информации в компьютерных устройствах сводится к тому, что каждому отдельному символу присваивается уникальное десятичное значение от 0 и до 255 или его эквивалент в двоичной форме от 00000000 и до 11111111. Люди могут различать символы по их внешнему виду, а компьютерное устройство только по их уникальному коду.
Рассмотрите, как происходит процесс. Мы нажимаем нужный нам символ на клавиатуре, ориентируясь на их внешний вид. В оперативную память компьютера он попадает в двоичном представлении, а когда компьютер его выводит нам на экран, то происходит процесс декодирования, чтобы мы увидели знакомый нам символ.
Кодирование текстовой информации и таблицы кодировок
Таблица кодировки — это место, где прописано какому символу какой код относится. Все таблицы кодировки являются согласованными — это нужно, чтобы не возникало путаницы между документами, закодированными по одной таблице, но на разных устройствах.
На сегодняшний день существует множество таблиц кодировок. Из-за этого часто возникают проблемы с переносом текстовых документов между устройствами. Так получается, что если текстовая информация была закодирована по одной какой-то таблице, то и раскодирована она может быть только по этой таблице. Если попытаться раскодировать другой таблицей, то в результате получим только набор непонятных символов, но никак не читабельный текст.