Как называется результат арифметического действия

Основные арифметические действия: определения, примеры

В данной публикации мы рассмотрим определения, общие формулы и примеры 4 основных арифметических (математических) действий с числами: сложения, вычитания, умножения и деления.

Сложение

Сложение – это математическое действие, в результате которого находится сумма.

Обозначается сложение специальным знаком + (плюс), а сумма – Σ.

Пример: найдем сумму чисел.
1) 3, 5 и 23.
2) 12, 25, 30, 44.

Ответы:
1) 3 + 5 + 23 = 31
2) 12 + 25 + 30 + 44 = 111.

Вычитание

Вычитание чисел – это обратное сложению математическое действие, в результате коротого находится разность ( c ). Например:

Обозначается вычитание специальным знаком (минус).

Пример: найдем разность чисел.
1) 62 минус 32 и 14.
2) 100 минус 49, 21 и 6.

Ответы:
1) 62 – 32 – 14 = 16.
2) 100 – 49 – 21 – 6 = 24.

Умножение

Умножение – это арифметическое действие, в результате которого вычисляется произведение.

Обозначается умножение специальными знаками · или x.

Пример: найдем произведение чисел.
1) 3, 10 и 12.
2) 7, 1, 9 и 15.

Ответы:
1) 3 · 10 · 12 = 360.
2) 7 · 1 · 9 · 15 = 945.

Деление

Деление чисел – это обратное умножению действие, в результате коротого вычисляется частное ( d ). Например:

Обозначается деление специальными знаками : или /.

Пример: найдем частное чисел.
1) 56 разделим на 8.
2) 100 разделим на 5, затем на 2.

Ответы:
1) 56 : 8 = 7.
2) 100 : 5 : 2 = 10 (, ).

Источник

Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.

Сочетай, перемещай, свойства действий

Как найти значение выражения используя свойства арифметических действий?

Напомним известные уже из арифметики главнейшие свойства действий сложения, вычитания, умножения и деления, так
как этими свойствами придется часто пользоваться и в алгебре.

Свойства сложения

Переместительный закон сложения

Пример:
3 + 8 = 8 + 3; 5 + 2 + 4 = 2 + 5 + 4 = 4 + 2 + 5.
В общем случае:

a+b+c=c+a+b
Стоит иметь ввиду, что число слагаемых может быть и более трёх.

Сочетательный закон сложения

Пример:
3 + 5 + 7 = 3 + (5 + 7) = 3 + 12 = 15;
4 + 7+11+6 + 5 = 7 +(4+ 5)+ (11+6) = 7 + 9+17 = 33.
В общем случае:
а + b + с = а+(b + с) = b+(а + с) и т. п.
Иногда этот закон выражают так: слагаемые можно соединять в какие угодно группы.

Чтобы прибавить к какому-либо числу сумму нескольких чисел, можно прибавить отдельно каждое слагаемое одно за другим.

Пример:
5 + (7 + 3) = (5 + 7) + 3 = 12 + 3 = 15.
В общем случае:

Свойства вычитания

Свойство вычитания суммы из числа

Чтобы вычесть из какого-нибудь числа сумму нескольких чисел, можно вычесть отдельно каждое слагаемое одно за другим.

Например:
20 — (5+ 8) = (20 — 5) — 8 = 15 — 8 = 7.
В общем случае:
а — (b + с + d+ …) = а — Ь — с — d — …

Свойство сложения разности чисел

Чтобы прибавить разность двух чисел, можно прибавить уменьшаемое и затем вычесть вычитаемое.

Свойство вычитания разности из числа

Чтобы вычесть разность, можно сначала прибавить вычитаемое и затем вычесть уменьшаемое.

Например:
18-(9-5) = 18 + 5-9= 14.
Вообще:
а — (Ь — с) = а + с — b.

Свойства умножения

Переместительный закон умножения

Сочетательный закон умножения

Так:
7*3*5 = 5*(3*7) = 5*21 = 105.

Вообще:
abc = а(bс) = b(ас) и т. п.

Умножение числа на произведение чисел

Чтобы умножить какое-либо число на произведение нескольких сомножителей, можно умножить это число на
первый сомножитель, полученный результат умножить на второй сомножитель и т. д.

Так:
3*(5*4) = (3*5)*4= 15*4 = 60.
Вообще:
a•(bcd…) = <[(a·b)•c]•d>…
Чтобы умножить произведение нескольких сомножителей на какое-либо число, можно умножить на это число один
из сомножителей, оставив другие без изменения.

Так:
3 • 2 • 5 • 3 = (3 • 3) • 2 • 5 = 3 • (2 • 3) • 5 = 3 • 2 • (5 • 3).
Вообще:
(abc.. )m = (аm)bс… = а(bm)с… и т. п.

Умножение числа на сумму чисел

Чтобы умножить сумму на какое-либо число, можно каждое слагаемое умножить на это число и полученные ре-
результаты сложить.

В силу переместительного закона умножения это же свойство можно выразить так: чтобы умножить какое-либо число на
сумму нескольких чисел, можно умножить это число на каждое слагаемое отдельно и полученные результаты сложить.

Так:
5·(4 + 6) = 5·4 + 5·6.
Вообще:
r·(а + Ь + с +…) = rа + rb + rс + …

Это свойство называется распределительным законом умножения, так как умножение, производимое над суммой, распределяется на каждое слагаемое в отдельности.

Распределительный закон умножения для разности чисел

Распределительный закон можно применять и к разности.

Так:
(8 — 5) • 4 = 8 • 4 — 5 • 4;

7 • (9 — 6) = 7 • 9 — 7 • 6.

Вообще:
(а — b)с = ас — bc,

а(b — с) = ab — ас,
т. е. чтобы умножить разность на какое-либо число, можно умножить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй; чтобы умножить какое-либо число на разность, можно это число умножить
отдельно на уменьшаемое и вычитаемое и из первого результата вычесть второй.

Свойства деления

Деление суммы на число

Чтобы разделить сумму на какое-либо число, можно разделить на это число каждое слагаемое отдельно и полученные результаты сложить:

Деление разности на число

Чтобы разделить разность на какое-либо число, можно разделить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй:

Деление произведения на число

Чтобы разделить произведение нескольких сомножителей на какое-либо число, можно разделить на это число один
из сомножителей, оставив другие без изменения:

(40 • 12 • 8) : 4 = (40:4) • 12 • 8 = 10 • 12 • 8 = 40 • 12 • 2.
Вообще:

(a·b·c…) : t = (а : t)bс… = а(b : t)с… и т. д.

Деление числа на произведение

Чтобы разделить какое-либо число на произведение нескольких сомножителей, можно разделить это число на
первый сомножитель, полученный результат разделить на второй сомножитель и т.д.:

120 : (12 • 5 • 3) = [(120 : 2) : 5] : 3 = (60 : 5) : 3 = 12 : 3 = 4.

а : (bcd …) = [(а : b) : с] : d… и т. п.

Укажем еще следующее свойство деления:

Если делимое и делитель умножим (или разделим) на одно и то же число, то частное не изменится.
Поясним это свойство на следующих двух примерах:
1)8:3 = 8/3|,
умножим делимое и делитель, положим, на 5; тогда получим
новое частное: (8*5)/(3*5)
которое по сокращении дроби на 5 даст прежнее частное — 8/3

Вообще, какие бы числа a, b и m ни были, всегда
(am) : (bm) = а : b, что можно написать и так:
am/bm= a/b

Источник

Арифметика. Арифметические действия

Содержание

Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.Арифметика. Арифметические действия
Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.Обратные арифметические действия
Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.Свойства арифметических действий
Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.Порядок выполнения арифметических действий
Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.Умножение натуральных чисел на 10, 100, 1000; и т.д.

Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.

Арифметика. Арифметические действия

Арифметическим действием называют операцию, удовлетворяющую ряду свойств и позволяющую по нескольким данным числам найти новое число.

Арифметикой называют науку, изучающую простейшие свойства чисел и арифметических действий.

Существуют шесть арифметических действий: сложение, вычитание, умножение, деление, возведение в степень, извлечение корня.

Обратные арифметические действия

Вычитание – это арифметическое действие, обратное к сложению, деление – действие, обратное к умножению, извлечение корня – действие, обратное к возведению в степень.

Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.

Свойства арифметических действий

Порядок выполнения арифметических действий

Сложение и вычитание называют действиями первой ступени, умножение и деление – действиями второй ступени, возведение в степень и извлечение корня – действиями третьей ступени.

Действия одной ступени выполняются в том же порядке, в каком они записаны в формуле.

Если в формуле содержатся действия разных ступеней, то сначала выполняют действия высших ступеней, а затем низших ступеней.

Если формула содержит скобки, то сначала выполняют действия в скобках. Скобки бывают круглыми, квадратными и фигурными, причем между ними нет никакой разницы.

Если скобки содержат другие скобки, то сначала выполняют действия во «внутренних» скобках.

Умножение натуральных чисел на 10, 100, 1000 и т.д.

Действительно, например, число 3610 состоит из трёх тысяч, шести сотен и одного десятка, поэтому

Источник

Свойства сложения и вычитания

Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Свойства сложения

Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число

Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.

Слагаемые — это числа, единицы которых складываются.

Сумма — это число, которое получается в результате сложения.

Рассмотрим пример 2 + 5 = 7, в котором:

При этом саму запись (2 + 5) можно тоже назвать суммой.

Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.

Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.

Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.

Свойства вычитания

Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.

Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.

Уменьшаемое — это число, из которого вычитают.

Вычитаемое — это число, которое вычитают.

Разность — это число, которое получается в результате вычитания.

Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Примеры использования свойств сложения и вычитания

Мы узнали основные свойства сложения и вычитания — осталось попрактиковаться. Чтобы ничего не забыть, используйте эту шпаргалку:

Как называется результат арифметического действия. картинка Как называется результат арифметического действия. Как называется результат арифметического действия фото. Как называется результат арифметического действия видео. Как называется результат арифметического действия смотреть картинку онлайн. смотреть картинку Как называется результат арифметического действия.

Пример 1

Вычислить сумму слагаемых с использованием разных свойств:

а) 4 + 3 + 8 = (4 + 3) + 8 = 7 + 8 = 15

б) 9 + 11 + 2 = (9 + 2) + 11 = 11 + 11 = 22

в) 30 + 0 + 13 = 30 + 13 = 43

Пример 2

Применить разные свойства при вычислении разности:

Пример 3

Найти значение выражения удобным способом:

а) 11 + 10 + 3 + 9 = (11 + 10) + (3 + 9) = 21 + 11 = 32

Источник

Классификация вычислительных приемов. Методы работы педагога по формированию вы¬числительного навыка

Классификация вычислительных приемов. Методы работы педагога по формированию вы­числительного навыка

Классификация вычислительных приёмов.
1. Приемы, теоретическая основа которых — конкретный смысл арифметических действий. К ним относятся: приемы сложения и вычитания чисел в пределах 10 для случаев вида а + 2, а + 3, а + 4, а + 0; приемы табличного сложения и вычитания с переходом через десяток в
пределах 20; прием нахождения табличных результатов умножения, прием нахождения табличных результатов деления.
2. Приемы, теоретической основой которых служат свойства арифметических действий. К этой группе относится большинство вычислительных приемов. Это приемы сложения и вычитания для случаев вида 53 ± 20, 47 ± 3, 30 – 6, 9 + 3, 12 – 3, 35 ± 7, 40 ± 23, 57 ± 32, 64 ± 18; аналогичные приемы для случаев сложения и вычитания чисел больших,
чем 100, а также приемы письменного сложения и вычитания; приемы умножения и деления для случаев вида 14 × 5, 5 × 14, 81 : 3, 18 Ч 40, 180 : 20, аналогичные приемы умножения и деления для чисел больших 100 и приемы письменного умножения и деления.
Общая схема введения этих приемов одинакова: сначала изучаются соответствующие свойства, а затем на их основе вводятся приемы вычислений.
3. Приемы, теоретическая основа которых — связи между компонентами и результатами арифметических действий. К ним относятся приемы для случаев вида 9 × 7, 21 : 3, 60 : 20, 54 : 18, 9 : 1, 0 : 6.
При введении этих приемов сначала рассматриваются связи между компонентами и результатом соответствующего арифметического действия, затем на этой основе вводится вычислительный прием.
4. Приемы, теоретическая основа которых — изменение результатов арифметических действий в зависимости от изменения одного из компонентов. Это приемы округления при выполнении сложения и вычитания чисел (46 + 19, 512 – 298) и приемы умножения и деления на 5, 25, 50. Введение этих приемов также требует предварительного изучения
соответствующих зависимостей.
5. Приемы, теоретическая основа которых — вопросы нумерации чисел. Это приемы для случаев вида а ± 1, 10 + 6, 16 – 10, 16 – 6, 57 Ч 10, 1200 : 100; аналогичные приемы для больших чисел. Введение этих приемов предусматривается после изучения соответствующих вопросов нумерации (натуральной последовательности, десятичного состава чисел,
позиционного принципа записи чисел).
6. Приемы, теоретическая основа которых — правила. К ним относятся приемы для двух случаев: а × 1, а × 0. Поскольку правила умножения чисел на единицу и нуль есть следствия из определения действия умножения целых неотрицательных чисел, то они просто
сообщаются учащимся и в соответствии с ними выполняются вычисления.

В век компьютерной грамотности значимость навыков письменных вычислений, несомненно, уменьшилась. Вместе с тем, научиться быстро и правильно выполнять письменные вычисления важно для младших школьников как в плане продолжающейся работы с числами, так и в плане практической значимости этих навыков для дальнейшего обучения в школе.

Приоритетными задачами в развитии российского образования являются формирование у учащихся личностных качеств, а также универсальных учебных умений, а также и способностей к самостоятельной учебной деятельности.

Формирование у младших школьников вычислительных навыков остаётся одной из главных задач начального обучения математике, поскольку вычислительные навыки необходимы при изучении арифметических действий.

Вычислительный навык – это высокая степень овладения вычислительными приёмами, это вычислительный приём, доведенный до автоматизма. Приобрести вычислительный навык – значит, для каждого случая знать какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро. В качестве сформированности полноценного вычислительного навыка можно выделить следующие критерии: правильность; осознанность; рациональность; обобщённость; автоматизм; прочность.

О сформированности любого умственного действия можно говорить лишь тогда, когда ученик сам, без вмешательства со стороны, выполняет все операции приводящие к решению.

Формирование всякого вычислительного навыка включает в себя ряд этапов:

I – подготовительный этап;

II – ознакомление с новым вычислительным приемом;

III – усвоение вычислительного приема и формирование вычислительного умения и навыка.

В процессе работы важно предусмотреть ряд стадий в формировании у учащихся вычислительных навыков.

На первой стадии закрепляется знание приема: учащиеся самостоятельно выполняют все операции, составляющие прием, комментируя выполнение каждой из них вслух и одновременно производя развернутую запись, если она была предусмотрена на предыдущем этапе.

На второй стадии происходит частичное свертывание выполнения операций: учащиеся про себя выделяют операции, обосновывают выбор и порядок их выполнения, вслух же они проговаривают выполнение основных операций, то есть промежуточных вычислений.

На третьей стадии происходит полное свертывание выполнения операций: учащиеся про себя выделяют и выполняют все операции, то есть здесь происходит свертывание и основных операций. Четвертая стадия характеризуется предельным свертыванием выполнения операций: учащиеся выполняют все операции в свернутом плане предельно быстро, то есть они овладевают вычислительными навыками. Это достигается в результате выполнения достаточного числа тренировочных упражнений.

Названные стадии не имеют четких границ: одна постепенно переходит в другую.

Выбирая методы работы по формированию вычислительных навыков на уроках математики, перед учителями встаёт вопрос, как сделать привычную и, казалось бы, однообразную работу эффективной, а значит интересной и увлекательной. Именно это и заставляет учителей постоянно придумывать что-то новое, совершенствовать уже известное.

Решению указанных задач способствует применение в образовательном процессе технологии деятельностного метода, благодаря которому учитель имеет возможность на уроках независимо от их предметного содержания организовывать выполнение учащимися всего комплекса УУД, определенных ФГОС. При деятельностном подходе к обучению главная задача учителя – не «донести», «преподнести» и показать учащимся, а организовать совместный поиск решения, возникший перед ними задачи.

Теперь процесс обучения представляет собой сложную динамическую систему, в которой в органичном единстве происходит взаимосвязанная деятельность учителя и ученика.

В этой системе под руководством учителя учащиеся овладевают основами наук, способами деятельности и рациональными приемами работы. Задача учителя состоит не только в том, чтобы сообщать знания, а и управлять процессом усвоения знаний и способов деятельности. Задача ученика- овладевать системой знаний, способами их приобретения, переработки, сохранения и применения, воспитывая в себе необходимые качества личности.

За основную структурную единицу процесса мышления принимается действие. Действие, как единица анализа деятельности учащегося. Учитель должен уметь не только выделять действия, которые входят в разные виды познавательной деятельности учащихся, но и найти их структуру, функциональные части, основные свойства и закономерности их становления.

Избежать быстрой утомляемости и снижения внимания при выполнении вычислений поможет чередование различных видов деятельности, отказ от однообразных тренировочных упражнений, обучение приёмам действия контроля. Действие контроля должно присутствовать на каждом этапе выполнения вычислительного приёма. Только в этом случае возможно постоянное прослеживание хода выполнения учебных действий, своевременное обнаружение различных больших и малых погрешностей в их выполнении, а также внесение необходимых корректив в них. Обнаруженная ошибка в процессе вычислений позволит сохранить ребёнку внутренние силы, предотвратить преждевременную усталость. Для контроля в выполнении письменных вычислений целесообразно показать ученикам, как использовать опорные сигнал, например точки, напоминающие о том, что следует учесть перенесённую через разряд единицу. В связи с этим необходимо больше внимания уделять формированию действия контроля в процессе работы над вычислительными приёмами и навыками, так как организационное на уроке математики действие контроля, приводит к концентрации внимания всех учащихся, формирует в практической деятельности каждого ученика умение рассуждать, исключает ошибки в тетрадях, что позволяет совершенствовать умения осознанно выполнять вычислительные приёмы.

Присутствие в вычислительных упражнениях элемента занимательности, игры, догадки, сообразительности, использование интересного наглядного материала – вот те основные приёмы активизации познавательной деятельности, реализация которых позволит решить в практике обучения и задачу формирования прочных вычислительных навыков, и задачу развития познавательных способностей учащихся.

Использование на уроках математики заданий различного типа возбуждает у детей интерес, стимулирует их к активной деятельности и позволяет более прочно сформировать вычислительные навыки.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *