Как называется простейшая форма нервной регуляции
Биология. 6 класс
Конспект урока
Урок 14. Гуморальная и нейрогуморальная регуляция
Перечень вопросов, рассматриваемых на уроке
Рефлекс – ответная реакция организма на раздражитель с участием нервной системы.
Нервная регуляция – это способ регуляции функций организма при помощи нервных импульсов, поступающих к органам из головного и спинного мозга.
Гуморальная регуляция – это способ регуляции процессов жизнедеятельности в организме, осуществляемый через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью гормонов, выделяемых особыми органами – желёзами.
*Нейрон – это структурно–функциональная единица нервной ткани (нервная клетка).
*Гормоны – биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь.
Основная и дополнительная литература по теме урока
Теоретический материал для самостоятельного изучения
Все жизненно важные процессы жизнедеятельности организма растений и животных осуществляются во взаимосвязи и в соответствии с процессами, происходящими во внешней среде регулируются двумя способами: нервным и гуморальным. Любые изменения в окружающей среде тотчас влияют на живые организмы, и они перестраивают свою деятельность в соответствии с условиями окружающей среды.
Гуморальная и нервная регуляции
Тело человека, как и многих животных имеет очень сложное строение. От клеток до систем органов организм представляет собой взаимосвязанную систему, для нормального функционирования которой должен быть создан четкий механизм регулирования. Он осуществляется двумя путями. Первый способ является самым быстрым. Он называется нервной регуляцией. Данный процесс воплощает в жизнь одноименная система. Существует ошибочное мнение, что гуморальная регуляция осуществляется с помощью нервных импульсов. Однако это совсем не так. Гуморальная регуляция осуществляется с помощью гормонов, которые поступают в жидкостные среды организма.
Гуморальная регуляция функции осуществляется с помощью специализированных органов. Они называются железами и объединяются в отдельную систему, которая называется эндокринной. Эти органы образованы особым видом эпителиальной ткани и способны к регенерации. Действие гормонов носит долгосрочный характер и продолжается на протяжении всей организма.
Железами выделяются гормоны. Благодаря особой структуре эти вещества ускоряют или нормализуют различные физиологические процессы в организме. К примеру, в основании головного мозга находится железа гипофиз. Она продуцирует гормон роста, в результате действия, которого организм увеличивается в размерах.
Особенности нервной регуляции
Данная система включает центральный и периферический отдел. Если гуморальная регуляция функций организма осуществляется с помощью химических веществ, то данный способ представляет собой «транспортную магистраль», связывающую организм в единое целое. Происходит этот процесс достаточно быстро. Только представьте, что вы дотронулись рукой до горячего утюга или зимой босиком вышли на снег. Реакция организма будет практически мгновенной. Это имеет важнейшее защитное значение, способствует и адаптации, и выживанию в различных условиях. Нервная система лежит в основе врожденных и приобретённых реакций организма. Первыми являются безусловные рефлексы. К ним относятся дыхательный, сосательный, мигательный. А с течением времени у человека формируются приобретенные реакции. Это безусловные рефлексы.
Примеры и разбор решения заданий тренировочного модуля:
Задание 1. Выберите три верных утверждения. Гормоны в организме млекопитающих образуются в:
Правильный вариант ответа:
Задание 2. Выделите цветом правильные суждения. Нервная регуляция – это регуляция функций организма при помощи нервных импульсов, поступающих из центральной нервной системы. Основные функции нервной системы:
Как называется простейшая форма нервной регуляции
Письмо с инструкцией по восстановлению пароля
будет отправлено на вашу почту
Организм человека функционирует как единое целое, и все физиологические процессы протекают согласованно благодаря существованию регуляторных систем: нервной и гуморальной.
Гуморальная регуляция – это древнейшая форма взаимодействия между клетками многоклеточных организмов; осуществляется с помощью химических веществ (гормонов) через жидкие среды организма: кровь, лимфу и тканевую жидкость.
Гормоны включаются в работу на ранних этапах индивидуального развития организма. Они начинают действовать задолго до его рождения, направляя развитие органов. Это продолжается и после рождения.
Действие гормонов строго специфично: одни действуют на определенные
органы – мишени, другие на определенный тип обменных процессов.
Гормоны обладают высокой биологической активностью и оказывают действие в очень низких концентрациях.
В организме человека довольно много органов, вырабатывающих биологически активные вещества, которые в дальнейшем используются либо внутри организма, либо вне него. Такие органы называются железами.
Различают три вида желез. Это железы внешней (экзокринные), внутренней (эндокринные) и смешанной секреции.
Железы внешней секреции выделяют секреты в протоки органов, на поверхность тела или в полости органов.
К ним относятся потовые, молочные, слезные, желудочные и другие железы. Эндокринные железы не имеют протоков.
Они выделяют гормоны прямо в кровь. Это гипофиз, щитовидная железа, надпочечники.
К железам смешанной секреции относятся поджелудочная железа и половые железы. Одни участки этих желез функционируют как железы внешней секреции, а
другие – как внутренней.
Например: поджелудочная железа как экзокринная железа выделяет поджелудочный сок в двенадцатиперстную кишку, участвующий в пищеварении, а для так называемых «островков Лангерганса» характерна эндокринная секреция, они выделяет гормоны инсулин и глюкагон, регулирующие уровень сахара в крови.
Гормоны регулируют рост и развитие организма, обменные процессы, поддерживают гомеостаз (относительное постоянство состава и физико-химических свойств организма), участвуют в переводе организма из состояния покоя к активной деятельности.
Увеличение или уменьшение концентрации гормона приводит к усилению или замедлению работы того или иного органа. Например, повышение количества адреналина в крови приводит к учащению сердцебиения, сужению просветов кровеносных сосудов и усилению дыхания.
Гуморальная регуляция может осуществляться и с помощью других веществ. Например, углекислый газ вызывает местное расширение капилляров и к этому месту больше притекает крови. Он также возбуждает дыхательный центр продолговатого мозга и дыхание усиливается.
Нервная регуляция – это регуляция функций организма посредством рефлексов, осуществляемых нервной системой.
Нервная система подразделяется на центральную и периферическую. К центральной нервной системе относят головной и спинной мозг, а к периферической – нервы, нервные узлы и нервные окончания.
Структурной единицей нервной ткани является нервная клетка – нейрон. Тела нейронов образуют серое вещество мозга. Оно расположено в центральной части спинного мозга и образует кору больших полушарий головного мозга, кору мозжечка и подкорковые ядра.
В процессе эволюции произошло функциональное деление нервной системы на соматический и автономный (или вегетативный) отделы.
Соматическая нервная система регулирует работу скелетной мускулатуры, она произвольная.
Вегетативная нервная система регулирует работу внутренних органов и гладких мышц. Она непроизвольна, то есть работа внутренних органов от наших желаний не зависит.
Рассмотрим пример простейшей рефлекторной дуги безусловного рефлекса.
При раздражении в рецепторе возникает нервный импульс, который передается по чувствительному нейрону в центральную нервную систему, где его принимает вставочный нейрон, который передает импульс двигательному нейрону, а от него возбуждение идет к рабочему органу.
Следовательно, компонентами рефлекторной дуги являются рецептор, чувствительный нейрон, участок центральной нервной системы, двигательный нейрон и рабочий орган.
Нервная регуляция осуществляется с помощью электрических импульсов, идущих по нервным волокнам. По сравнению с гуморальной регуляцией она происходит быстрее, ее ответ четко локализован, и эволюционно она более молодая.
Работой регуляторных системы нервной и гуморальной управляет
гипоталамус – отдел промежуточного мозга, который осуществляет сбор информации о составе биологически активных веществ в крови и получает информацию от нервной системы.
Гипоталамус посылает нервные импульсы, воздействующие на вегетативную нервную систему и нейрогормоны, которые влияют на гипофиз – железу всех желез. Гипофиз выделяет тропные гормоны, регулирующие работу всех эндокринных желез.
Таким образом, мы познакомились с регуляторными системами организма. Нервная и гуморальная система регуляции дополняют друг друга. Носителями информации при гуморальной регуляции являются гормоны, а при нервной – нервные импульсы. Нейрогуморальная регуляция позволяет организму быстро приспособиться к меняющимся условиям окружающей среды. Если сравнить работу организма с оркестром, то композитором в нем будет гипоталамус, дирижером – гипофиз, оркестранты – это железы внутренней секреции, а системы органов – это музыкальные инструменты.
Как называется простейшая форма нервной регуляции
3. Нервная регуляция функций организма
Значение нервной регуляции
Главная роль в регуляции функций организма и обеспечении его целостности принадлежит нервной системе. Этот механизм регуляции является более совершенным. Во-первых, нервные влияния передаются значительно быстрее, чем химические воздействия, и потому организм через нервную систему осуществляет быстрые ответные реакции на действие раздражителей. В связи со значительной скоростью проведения нервных импульсов взаимодействие между частями организма устанавливается быстро в соответствии с потребностями организма.
Во-вторых, нервные импульсы приходят к определенным органам, и потому ответные реакции, осуществляемые через нервную систему, не только более быстрые, но и более точные, чем при гуморальной регуляции функций.
Вся деятельность нервной системы осуществляется рефлекторным путем. С помощью рефлексов осуществляется взаимодействие различных систем целого организма и его приспособление к меняющимся условиям среды.
При повышении кровяного давления в аорте рефлекторно меняется деятельность сердца. В ответ на температурные воздействия внешней среды у человека суживаются или расширяются кровеносные сосуды кожи, под влиянием различных раздражителей рефлекторно меняется сердечная деятельность, интенсивность дыхания и т. д.
Благодаря рефлекторной деятельности организм быстро реагирует на различные воздействия внутренней и внешней среды.
При раздражении рецептора в нем возникает нервный импульс, который распространяется по центростремительному нервному волокну и достигает центральной нервной системы. О характере раздражения центральная нервная система «узнает» по силе и частоте нервных импульсов. В центральной нервной системе происходит сложный процесс переработки поступивших нервных импульсов, и уже по центробежным нервным волокнам импульсы от центральной нервной системы направляются к исполнительному органу (эффектору).
Для осуществления рефлекторного акта необходима целостность рефлекторной дуги (рис. 2).
Рис. 2. Схема простейшей рефлекторной дуги спинномозгового рефлекса
Опыт 2
Обездвижьте лягушку. Для этого заверните лягушку в марлевую или полотняную салфетку, оставив открытой лишь, голову. Задние лапки при этом должны быть вытянуты, а передние плотно прижаты к туловищу. Введите тупое лезвие ножниц в рот лягушки и отсеките верхнюю челюсть с черепной коробкой. Спинной мозг не разрушайте. Лягушку, у которой сохранен только спинной мозг, а вышележащие отделы центральной нервной системы удалены, называют спинальной. Укрепите лягушку в штативе, зажав зажимом нижнюю челюсть либо приколов булавками нижнюю челюсть к пробке, укрепленной в штативе. Оставьте лягушку висеть несколько минут. О восстановлении рефлекторной деятельности после удаления головного мозга судите по появлению ответной реакции на щипок. Лягушку во избежание подсыхания кожи периодически опускайте в стакан с водой. Налейте в маленький стаканчик 0,5-процентный раствор соляной кислоты, опустите в него заднюю лапку лягушки и наблюдайте рефлекторное отдергивание лапки. Смойте кислоту водой. На задней лапке, на середине голени, сделайте кольцевой разрез кожи и хирургическим пинцетом снимите ее с нижней части лапки, проследив за тем, чтобы кожа была тщательно снята со всех пальцев. Опустите лапку в раствор кислоты. Почему теперь лягушка не отдергивает конечность? В этот же раствор кислоты опустите другую лапку лягушки, с которой кожа не снята. Как реагирует лягушка теперь?
Разрушьте спинной мозг лягушки, введя в позвоночный канал препаровальную иглу. Опустите лапку, на которой сохранена кожа» в раствор кислоты. Почему теперь лягушка не отдергивает лапку?
Нервные импульсы при любом рефлекторном акте, приходя в центральную нервную систему, способны распространяться по разным ее отделам, вовлекая в процесс возбуждения многие нейроны. Поэтому правильнее говорить, что структурную основу рефлекторных реакций составляют нейронные цепи из центростремительных, центральных и центробежных нейронов.
Принцип обратных связей
Обратная связь очень важна в механизмах координации, которую осуществляет нервная система. У больных, у которых нарушена чувствительность мышц, движения, особенно ходьба, утрачивают плавность, становятся некоординированными.
Условные и безусловные рефлексы
Человек рождается с целым рядом готовых, врожденных рефлекторных реакций. Это безусловные рефлексы. К ним относятся акты глотания, сосания, чихания, жевания, слюноотделение, отделение желудочного сока, поддержание температуры тела и др. Количество врожденных безусловных рефлексов ограничено, и они не могут обеспечить приспособление организма к постоянно меняющимся условиям среды.
На базе врожденных безусловных реакций в процессе индивидуальной жизни формируются условные рефлексы. Эти рефлексы у высших животных и человека весьма многочисленны и играют огромную роль в приспособлении организмов к условиям существования. Условные рефлексы имеют сигнальное значение. Благодаря условным рефлексам организм заранее как бы предупреждается о приближении чего-то значимого. По запаху гари человек и животное узнают о приближающейся беде, пожаре; животные по запаху, звукам отыскивают добычу или, напротив, спасаются от нападения хищников. На основе многочисленных условных связей, образовавшихся в течение индивидуальной жизни, человек приобретает жизненный опыт, помогающий ему ориентироваться в окружающей среде.
Для того чтобы яснее стало различие между безусловными и условными рефлексами, давайте совершим (мысленно) экскурсию в родильный дом.
А вот пример условного рефлекса. Сначала, как только новорожденный проголодается, он начинает кричать. Однако через два-три дня в палате новорожденных наблюдается такая картина: подходит время кормления, и дети один за другим начинают просыпаться и плакать. Медицинская сестра по очереди берет их и пеленает, при необходимости подмывает, а затем укладывает на специальную каталку, чтобы везти к матерям. Очень интересно поведение детей: как только их перепеленали, уложили на каталку и вывезли в коридор, все они, как по команде, замолкают. Выработался условный рефлекс на время кормления, на обстановку перед кормлением.
Для выработки условного рефлекса необходимо подкрепление условного раздражителя безусловным рефлексом и их повторение. Стоило 5-6 раз совпасть пеленанию, подмыванию и укладыванию на каталку с последующим кормлением, которое здесь играет роль безусловного рефлекса, как выработался условный рефлекс: перестать кричать, несмотря на все возрастающий голод, ждать несколько минут, пока кормление начнется. Кстати, если вывезти детей в коридор и запоздать с кормлением, то через несколько минут они начинают кричать.
Рефлексы бывают простые и сложные. Все они находятся во взаимной связи и образуют систему рефлексов.
Опыт 3
Выработайте условный мигательный рефлекс у человека. Известно, что при попадании струи воздуха в глаз человек закрывает его. Это защитная, безусловнорефлекторная реакция. Если теперь несколько раз сочетать вдувание воздуха в глаз с каким-нибудь индифферентным раздражителем (стуком метронома, например), то этот индифферентный раздражитель станет сигналом поступления струи воздуха в глаз.
Для вдувания воздуха в глаз возьмите резиновую трубочку, соединенную с грушей для нагнетания воздуха. Рядом поставьте метроном. Метроном, грушу и руки экспериментатора закройте от испытуемого экраном. Включите метроном и через 3 сек нажмите на грушу, вдувая струю воздуха в глаз. Метроном при вдувании воздуха в глаз должен продолжать работу. Выключите метроном, как только наступит мигательная рефлекторная реакция. Через 5-7 мин повторите сочетание звука метронома с вдуванием воздуха в глаз. Опыт продолжайте до тех пор, пока мигание не будет наступать только при звуке метронома, без вдувания воздуха. Вместо метронома можно воспользоваться звонком, колокольчиком и т. п.
Сколько понадобилось сочетаний условного раздражителя с безусловным, чтобы образовался условный мигательный рефлекс?
Как называется простейшая форма нервной регуляции
Основными актами ротового пищеварения являются сосание, жевание и глотание, являющиеся двигательными или моторными актами, а также слюноотделение – секреторный акт.
Ротовая полость играет исключительно важную роль в обеспечении начальных этапов пищеварения, а также последующих этапов – желудочного и кишечного.
Пища находится в ротовой полости около 16–18 сек, за это время она механически измельчается, перетирается, смачивается слюной и трансформируется в пищевой комок-болюс. В ротовой полости осуществляется анализ и апробация вкусовых качеств пищи, начинается ее химическая обработка за счет различных ферментов, в частности амилолитических [1, 2, 3, 6, 7, 8].
В процессе ротового пищеварения раздражаются многочисленные рецепторы ротовой полости, что обеспечивает рефлекторную стимуляцию деятельности слюнных желез, пищеварительных желез желудка, поджелудочной железы, печени, двенадцатиперстной кишки, а также моторной и эвакуаторной деятельности желудочно-кишечного тракта. В ротовой полости начинается частично процесс всасывания воды, некоторых лекарственных препаратов [1, 3, 4, 5, 6, 7, 8].
Акт сосания – двигательный акт, соответствующий у новорожденных детей и детей грудного возраста акту жевания. У новорожденного он осуществляется по принципу безусловного рефлекса. Аппарат сосания обеспечивают поперечные складки губ, десны, жировые комочки или подушечки Биша в толще щек и языка. При раздражении тактильных, температурных, вкусовых рецепторов слизистой возникает поток афферентной импульсации, распространяющейся по чувствительным волокнам V пары черепно-мозговых нервов в продолговатый мозг, в частности в комплексный пищеварительный центр, в центр акта сосания. Оттуда импульсация распространяется по эфферентным волокнам в состав V, VII, XII пары черепно-мозговых к аппарату сосания, обеспечивая безусловно-рефлекторное сокращение мышц рта и языка. Язык выполняет функцию поршня в насосе. За счет сокращений его мышц он оттягивается вниз и назад, одновременно опускается нижняя челюсть, в связи с чем создается разрежение в ротовой полости в пределах 100–150 мм рт. ст. Снижение давления в ротовой полости ниже атмосферного обеспечивает присасывающее действие в момент акта сосания, способствует поступлению молока в ротовую полость. Акту сосания способствует также отрицательное внутригрудное давление, которое передается в ротовую полость по тонким стенкам пищевода. Через 7–10 дней после рождения вырабатываются первые условные рефлексы, в том числе и рефлекс сосания [1, 2, 3, 6, 7, 8].
У человека имеется три пары больших слюнных желез; околоушные, подъязычные и подчелюстные и большое количество мелких желез, рассеянных в слизистой оболочке рта, губ, щек. Выводные протоки околоушных желез открываются на уровне верхних вторых моляров в области небольшого бугорка, а выводные протоки двух других пар открываются на дне полости рта, позади нижних вторых резцов по обе стороны от уздечки языка. Значение слюнных желез неодинаково: мелкие железы постоянно выделяют секрет, который увлажняет слизистую и предохраняет ее от высыхания, а крупные железы выделяют свой секрет периодически и принимают участие в процессе пищеварения. Следует отметить, что слюнные железы функционируют как экзо- и эндокринные железы.
Экзокринная функция связана с образованием слюны, а эндокринная с выработкой гормоноподобных веществ, таких как:
а) паротин, обеспечивающий регуляцию фосфорно-кальциевого обмена в костной ткани и ткани зуба;
б) эритропоэтин, регулирующий процессы эритропоэза в костном мозге;
в) фактор роста и регенерации эпителия слизистой полости рта, пищевода, желудка;
г) фактор регенерации симпатических нервов;
д) инсулиноподобное вещество и др. Слюнные железы состоят из слизистых и серозных клеток, которые неравномерно распределены в составе желез [1, 3, 4, 5, 6, 7, 8].
В связи с функциональными особенностями можно выделить три группы желез:
1. Слизистые, или мукоидные, в составе секрета которых содержится много слизи или вязкого мукоидного секрета. К этой группе относятся мелкие железы корня языка, твердого и мягкого нёба.
2. Белковые железы – в их составе преобладают серозные клетки, а слюна содержит в значительном количестве белки-ферменты. К числу этих желез относится околоушная железа, мелкие слюнные железы боковой поверхности языка. Околоушные железы продуцируют жидкую слюну, содержащую большое количество хлоридов натрия, кальция, ферменты амилазу, каталазу, кислую фосфатазу.
3. Смешанные железы. В составе их секрета есть муцин, вода, соли, белок. К числу этих желез относятся подъязычная, подчелюстная слюнные железы,’ мелкие железы губ и кончика языка.
Подъязычная слюнная железа продуцирует слюну, богатую муцином вязкой консистенции, обладающую щелочной реакцией и высокой активностью кислой и щелочной фосфатазы.
Поднижнечелюстная слюнная железа выделяет секрет, содержащий большое количество муцина, амилазы, хлоридов натрия, кальция, фосфатов кальция и магния, незначительное количество роданистого калия.
Ротовая жидкость, чистая и смешанная слюна
Слюна – это смесь секретов трех пар больших и множества мелких слюнных желез. Такую слюну можно рассматривать как смешанную слюну.
Чистая слюна – это слюна, которая получена непосредственно из выводного протока слюнной железы и не успела выделиться в ротовую полость, где быстро смешивается и превращается в ротовую жидкость.
Ротовая жидкость образуется за счет примешивания к слюне клеток слущенного эпителия, частиц пищи, микроорганизмов полости рта, слюнных телец (нейтрофильных лейкоцитов, мигрирующих из кровеносных сосудов в полость рта), слизи, зубного налета. Ротовая жидкость имеет вязкую консистенцию, непрозрачна, состав ротовой жидкости может изменяться в зависимости от состояния ротовой полости, качества пищи, факторов внешней среды [3, 4, 5, 6, 7, 8].
Состав, свойства и функции слюны
Слюна – пищеварительный сок. В течение суток образуется у взрослого человека от 0,5 до 2,0 л слюны, которая имеет вид вязкой опалесцирующей жидкости, несколько мутноватой за счет наличия в ней клеточных элементов; pH смешанной слюны составляет от 5,8 до 8,0.
Смешанная слюна содержит около 99,5 % воды и соответственно около 0,5–0,6 % сухого вещества, включающего органические и неорганические компоненты [3, 4, 5, 6, 7, 8].
Неорганические вещества слюны – ионы натрия, калия, кальция, магния, железа, кальция, хлора, фтора, а также фосфаты, хлориды, сульфаты, бикарбонаты.
Органические вещества слюны:
а) гликопротеиды, трансферрин, церулоплазмин, альбумины, глобулины, свободные аминокислоты, иммуноглобулины;
б) небелковые азотсодержащие соединения – мочевина, аммиак, креатин;
в) вещества с бактерицидным действием – лизоцим, обладающий также и противокариесным эффектом, а также способностью стимулировать регенераторные процессы;
г) в смешанной слюне содержатся до 3 мг % свободных моносахаридов, а также продукты их превращений – лактат, пируват, цитрат;
д) вещества мукоидной природы, в частности муцин. Муцин – важнейший органический компонент слюны, обеспечивает вязкость слюны, способствует склеиванию частичек пищи и формированию пищевого комка, подготовляет его к проглатыванию;
е) гормоны: кортизон; кортизол, эстрогены, тестостерон, саливопаротин, урогастрон, инсулиноподобное вещество, глюкагон, тонин и др.
ё) в смешанной слюне в небольших количествах присутствуют холестерин и его эфиры, жирные кислоты глицерофосфолипиды;
ж) витамины: витамин С, никотиновая, пантотеновая, фолиевая кислота, тиамин, рибофлавин, пиридоксин;
Слюна – активный пищеварительный сок, в ней содержится около 50 различных ферментов, относящихся к гидролазам, оксиредуктазам, трансферазам, липазам, изомеразам. Оптимум действия ферментов слюны – слабощелочная среда. Основным ферментом слюны является альфа-амилаза, гидролитический фермент, обеспечивающий расщепление гликозидных связей в молекуле крахмала и гликогена с образованием декстринов, а затем мальтозы и сахарозы. Мальтаза слюны расщепляет мальтозу и сахарозу до моносахаров. Кроме амилолитических ферментов в слюне обнаружены протеолитические, напоминающие по субстратной специфике трипсин: саливаин, гландулаин, калликреиноподобная пептидаза. Оптимум действия саливаина при pH 9,2–9,9., а для гландулаина оптимальна кислая среда. Протеолитические ферменты слюны, попадая в системный кровоток, оказывают депрессорное действие. Важными ферментами слюны являются кислая и щелочная рибонуклеазы, трансаминазы, пероксидаза, обеспечивающие деградацию нуклеиновых кислот вирусов и соответственно противовирусную защиту слизистой оболочки полости рта, а также альдолаза, малат- и лактатдегидрогеназа. Источниками ферментов слюны могут быть лейкоциты, микробы, эпителий [1, 3, 4, 5, 6, 7, 8].
Слюна содержит комплекс веществ, регулирующих процессы местного гемостаза в полости рта, в частности прокоагулянтные и антикоагулянтные факторы, а также компоненты системы фибринолиза. Так, слюна содержит тромбопластин, антигепариновый фактор, а также факторы, идентичные V, VIII, X плазменным факторам свертывания крови. Естественными антикоагулянтами слюны являются антитромбопластины и антитромбины. Кроме того, в слюне содержатся плазминоген, проактиватор и активатор плазминогена, антиплазмин – соединение, стабилизирующее фибрин, идентичное XIII плазменному фактору [3, 4, 5, 6, 7, 8].
Кровотечение в ротовой полости быстро прекращается на фоне сбалансированного в условиях нормы содержания факторов прокоагулянтной, антикоагулянтной и фибринолитической систем. Факторы системы фибринолиза, содержащиеся в слюне, обладают и выраженным стимулирующим воздействием на процессы физиологической и патологической репарации слизистой рта [5, 7, 8].
Все многообразие функций слюны можно представить в виде трех основных: пищеварительной, защитной и трофической [1, 3, 4, 5, 6, 7, 8].
Пищеварительная функция слюны
1. За счет ферментов амилазы и мальтазы слюна обеспечивает химическую обработку пищи, в частности расщепление углеводов до ди- и моносахаров.
2. Слюна смачивает, увлажняет пищу и связывает ее отдельные частицы за счет муцина, т.е. принимает участие в формировании пищевого комка.
3. В слюне происходит растворение солей, сахаров и других компонентов пищи; в растворенном виде указанные соединения воздействуют на вкусовые рецепторы, и таким образом слюна принимает участие в формировании вкусовых ощущений.
4. Слюна необходима для осуществления физиологического акта – глотания. За счет наличия муцина пищевой комок становится более скользким и подвижным.
5. Слюна способствует рефлекторной секреции желудочного и других пищеварительных соков.
Защитная функция слюны проявляется в следующем:
1. Слюна постоянно увлажняет слизистую оболочку рта, предохраняет ее от высыхания, защищает зубы от воздействия физических и химических факторов.
2. Слюна способствует самоочищению полости рта и зубов, отмыванию налета.
3. Слюна обеспечивает регуляцию температуры полости рта и соответственно принимаемой пищи.
4. При попадании в ротовую полость кислых или отвергаемых веществ образуется большое количество жидкой слюны с высоким содержанием белка, обеспечивающей нейтрализацию кислот, снижение концентрации токсических факторов.
5. Слюна обладает выраженными буферными свойствами, является амфотерным электролитом, регулирует pH полости рта, связывая как излишки кислот, так и оснований.
6. Слюна повышает неспецифическую резистентность полости рта к воздействию инфекционных патогенных факторов за счет наличия в ней лизоцима, миелопероксидазы, лактоферрина, катионных белков, нуклеаз и т. д.
7. Слюна участвует в противовирусной и противобактериальной защите полости рта за счет иммуноглобулинов классов G, А, М, интерферона, комплемента, а также нейтрофилов и моноцитов, мигрирующих в слюну.
8. Защитное действие слюны обеспечивается наличием в ней факторов свертывания крови. При повреждении слизистой оболочки и тканей полости рта происходит быстрая остановка кровотечения, а за счет факторов фибринолитической системы обеспечивается быстрое очищение слизистой от фибриновых налетов, создаются благоприятные условия для регенерации.
9. Постоянная (резидентная) микрофлора слюны и тканей ротовой полости препятствует размножению случайной транзиторной микрофлоры, попадающей в полость рта с пищей, водой.
10. Слюна, являясь основным источником кальция и фосфора для эмали зуба, влияет на формирование резистентности зуба к кариесу.
Трофическая функция слюны
Слюна и ротовая жидкость могут оказывать выраженное влияние на проницаемость эмали зуба практически для всех веществ, которые могут поступать в полость рта с пищевыми продуктами и водой. Различная проницаемость эмали для органических и неорганических веществ, содержащихся в слюне, обусловлена их биологической активностью, способностью связываться с элементами эмали. Слюна является основным источником кальция, фосфора, цинка, используемых для образования эмали и других компонентов зуба, причем интенсивность поступления кальция в эмаль зуба из слюны максимальна при pH 7,0–8,0, когда слюна перенасыщена кальцием. При подкислении слюны и снижении pH ниже 6,5 в ротовой жидкости падает содержание ионов кальция, что способствует его выходу из эмали [1, 3, 4, 5, 6, 7, 8].
Трофическая функция слюны обеспечивается также за счет наличия в ней различных ферментов и гормонов. Такие ферменты, как калликреин и саливаин, регулируют микроциркуляторное кровообращение в тканях слюнных желез и слизистой оболочке полости рта. Между тем избыточное содержание в слюне нуклеаз может приводить к снижению регенеративного потенциала тканей и развитию дистрофии [5, 7, 8].
Из слюнных желез выделен гормон паротин, способствующий обызвествлению зубов и скелета при одновременном снижении содержания кальция в крови.
В слюне содержатся также фосфопротеины, кальцийсвязывающий белок с высоким сродством к гидрооксиапатиту, способствующий образованию зубного камня.
Экскреторная функция слюнных желез
В составе слюны могут выделяться некоторые конечные продукты обмена (мочевина, мочевая кислота, аммиак, креатин), лекарственные препараты, алкоголь, а также ионы металлов экзогенного происхождения, в частности ртути, свинца, висмута. Экскреторная функция слюнных желез заметно усиливается при почечной или печеночной недостаточности, эндокринопатиях, когда в организме человека начинают накапливаться различные токсические продукты эндогенной природы [5, 7, 8].
Кровоснабжение слюнных желез осуществляется от ветвей наружных сонных артерий, оттекает кровь в систему наружной и внутренней яремной вен. Особенностью кровеносной системы слюнных желез является наличие многочисленных анастамозов, по которым кровь из артерий и артериол попадает в венулы и вены, минуя капиллярное русло, что способствует перераспределению крови в железе. Лимфа оттекает в подподбородочные, поднижнечелюстные и глубокие шейные лимфатические узлы [5, 7].
Механизм слюноотделения. Слюноотделение является сложным рефлекторным актом, который осуществляется на базе условных и безусловных рефлексов. Безусловно-рефлекторный механизм осуществляется при непосредственном раздражении различными веществами, в том числе и пищевыми тактильных, температурных, вкусовых, болевых рецепторов полости рта. Афферентная импульсация поступает по чувствительным волокнам V, VII, IX, X пар черепно-мозговых нервов в продолговатый мозг, в частности в центр слюноотделения. Центр слюноотделения представлен верхним и нижним слюноотделительными ядрами, являющимися соответственно ядрами лицевого (VII пара) и языкоглоточного (IX пара) нервов. От этих ядер распространяется эфферентная холинергическая импульсация по парасимпатическим нервным волокнам к слюнным железам. Причем от верхнего слюноотделительного ядра возбуждение распространяется к подъязычной и подчелюстной железам по преганглионарным волокнам в составе барабанной струны (VII пара). Преганглионарные волокна заканчиваются в поднижнечелюстном и подъязычном ганглиях, расположенных в теле соответствующих желез. От нейронов этих ганглиев постганглионарные секреторные нервные волокна идут к секреторным клеткам и сосудам подчелюстной и подъязычной слюнных желез. От нижнего слюноотделительного ядра идут преганглионарные волокна в составе нерва Якобсона (ветвь IX пары) и прерываются в ушном ганглии. Отсюда импульсы идут по постганглионарным волокнам ушновисочного нерва к секреторным клеткам и сосудам околоушной железы [3, 5, 6, 7, 8].
Эфферентная симпатическая иннервация слюнных желез также является двухнейронной. Преганглионарные волокна выходят из боковых рогов II–VI грудных сегментов спинного мозга и заканчиваются в верхнем шейном симпатическом узле, от нейронов которого отходят подстганглионарные симпатические волокна к слюнным железам [7, 8].
Влияние симпатических и парасимпатических эффекторных воздействий на секреторную функцию слюнных желез и их кровоснабжение неодинаково. При усилении парасимпатических нервных влияний на слюнные железы наблюдается обильное выделение жидкой слюны, содержащей много солей, мало органических соединений. Парасимпатические нервы являются для слюнных желез секреторными [3, 5, 6, 7, 8].
Усиление холинергических нервных влияний и процесса слюноотделения сочетается с расширением кровеносных сосудов слюнных желез и интенсификацией в них кровообращения. Эти эффекты обусловлены освобождением ацетилхолина с постганглионарных нервных окончаний, а также воздействием кининов [5, 7, 8, 9].
Усиление адренергических нервных влияний на слюнные железы сопровождается выделением небольшого количества вязкой густой слюны с большим содержанием муцина, органических соединений и малым количеством солей, поэтому симпатические нервы называют трофическими для слюнных желез. Ограничение слюноотделения при усилении адренергических нервных влияний сочетается с сужением кровеносных сосудов слюнных желез и уменьшением в них интенсивности кровотока.
В момент ротового пищеварения при так называемой «пищевой секреции» парасимпатические нервные влияния на слюнные железы выражены в большей степени, чем симпатические [5, 7, 8].
Условно-рефлекторный механизм слюноотделения. Формирование данного механизма имеет место при раздражении зрительных, слуховых, обонятельных рецепторов под влиянием различных раздражителей: вида, запах пищи, разговоров о пище, звуков, связанных с приготовлением пищи, и т. д. При виде или запахе пищи раздражаются зрительные и обонятельные рецепторы, импульсы поступают в мозговые отделы этих сенсорных систем, а оттуда по принципу доминанты возбуждения за счет временных нервных связей поступают в корковое представительство комплексного пищевого центра, затем в продолговатый мозг в комплексный пищевой центр, в частности центр слюноотделения, и, наконец, по эфферентным секреторным волокнам к слюнным железам. У человека условнорефлекторная секреция слюны может начинаться также при воспоминании о вкусной пище [7, 8].
Помимо рефлекторной регуляции слюноотделения существуют и другие виды регуляции, в частности гуморальная регуляция.
Гуморальная регуляция слюноотделения. На секрецию слюны влияют многие гормоны и биологически активные соединения, в частности гормоны гипоталамо-гипофизарной системы, поджелудочной, щитовидной железы, половых желез, а также гистамин, калликреины, кинины, изменения концентрации питательных веществ, СО2 в крови. Так, кровь, богатая питательными веществами, тормозит деятельность центра слюноотделения, наоборот, усиление слюноотделения отмечается при уменьшении в крови уровня питательных веществ [5, 7, 8].
При увеличении концентрации СО2 в крови в случае развития асфиксии происходит повышение возбудимости нейронов комплексного пищевого центра. Интенсивность слюноотделения может изменяться на фоне приема некоторых лекарственных препаратов, например, при использовании холиномиметиков (пилокарпина, физиостигмина) интенсивность слюноотделения возрастает, а при введении холинолитика – атропина возникает гипосаливация. Гуморальные факторы могут двояко влиять на интенсивность слюноотделения: непосредственно на центры головного мозга или действовать на периферический аппарат – синаптические структуры или секреторные клетки [4, 5, 7, 8].