Как называется первичный продукт фотосинтеза
Процесс фотосинтеза в биологии
Фотосинтез представляет собой биосинтез, состоящий в превращении световой энергии в органические соединения. Свет в виде фотонов захватывается цветным пигментом, связанным с неорганическим или органическим донором электронов, и позволяет использовать минеральный материал для синтеза (производства) органических соединений.
Иными словами, что такое фотосинтез – это процесс синтеза органического вещества (сахара) из солнечного света. Эта реакция происходит на уровне хлоропластов, которые являются специализированными клеточными органеллами, и позволяют потреблять углекислый газ и воду для получения диоксигена и органических молекул, таких как глюкоза.
Фазы фотосинтеза
Он происходит в две фазы:
Световая фаза (фотофосфорилирование) – представляет собой набор светозависимых фотохимических (т. е. светозахватывающих) реакций, в которых электроны транспортируются через обе фотосистемы (PSI и PSII) для получения АТФ (богатая энергией молекула) и NADPHH (восстанавливающий потенциал).
Таким образом, светлая фаза фотосинтеза позволяет непосредственно превращать световую энергию в химическую энергию. Именно через этот процесс наша планета теперь имеет атмосферу, богатую кислородом. В результате высшие растения сумели доминировать на поверхности Земли, обеспечивая пищу многим другим организмам, которые питаются или находят убежище через неё. Первоначальная атмосфера содержала такие газы, как аммоний, азот и углекислый газ, но очень мало кислорода. Растения нашли способ превратить этот CO настолько обильно в пищу, используя солнечный свет.
Темновая фаза – соответствует полностью ферментативному и не зависящему от света циклу Кальвина, в котором аденозинтрифосфат (АТФ) и НАДФН+Н+ (никотин амид адениндинуклеотидфосфат) используются для конверсии углекислого газа и воды в углеводы. Эта вторая фаза позволяет усвоить углекислый газ.
То есть в этой фазе фотосинтеза, примерно через пятнадцать секунд после поглощения CO происходит реакция синтеза и появляются первые продукты фотосинтеза — сахара: триосы, пентозы, гексозы, гептозы. Из определённых гексоз образуются сахароза и крахмал. Помимо углеводов, могут также развиваться липидами и белками путём связывания с молекулой азота.
Этот цикл существует в водорослях, умеренных растениях и всех деревьях, эти растения называются «растениями С3», наиболее важными промежуточными телами биохимического цикла, имеющими молекулу три атома углерода (С3).
В этой фазе хлорофилл после поглощения фотона имеет энергию 41 ккал на моль, некоторые из которых преобразуются в теплоту или флуоресценцию. Использование изотопных маркеров (18O) показало, что кислород, высвобождаемый во время этого процесса, происходит из разложенной воды, а не из поглощённого диоксида углерода.
Как происходит фотосинтез
Фотосинтез происходит главным образом в листьях растений и редко (когда-либо) в стеблях и т. д. Части типичного листа включают: верхний и нижний эпидермис,
Если клетки верхнего и нижнего эпидермиса не являются хлоропластами, фотосинтез не происходит. Фактически они служат прежде всего в качестве защиты для остальной части листа.
Устьица — это дыры, существующие главным образом в нижнем эпидермисе, и позволяют проводить обмен воздуха (CO и O2). Сосудистые пучки (или вены) в листе составляют часть транспортной системы растения, при необходимости перемещая воду и питательные вещества вокруг растения. Клетки мезофилла имеют хлоропласты, вот это и есть место фотосинтеза.
Механизм фотосинтеза очень сложный. Однако эти процессы в биологии имеют особое значение. При энергичном воздействии света хлоропласты (части растительной клетки, содержащие хлорофилл), вступая в реакцию фотосинтеза, объединяют углекислый газ (СО) с пресной водой с образованием сахаров C6H12O6.
Они в процессе реакции превращаются в крахмал C6H12O5, для квадратного дециметра поверхности листа, в среднем 0,2 г крахмала в день. Вся операция сопровождается сильным высвобождением кислорода.
Фактически процесс фотосинтеза состоит в основном из фотолиза молекулы воды.
Формула этого процесса:
6 Н 2 О + 6 СО 2 + свет = 6 O 2 + С 6 Н 12 О 6
Вода + углекислый газ + свет = кислород + глюкоза
В переводе этот процесс означает: растению для вступления в реакцию нужны шесть молекул воды + шесть молекул углекислого газа и света. Это приводит к образованию шести молекул кислорода и глюкозы в химическом процессе. Глюкоза — это глюкоза, которую растение использует в качестве исходного материала для синтеза жиров и белков. Шесть молекул кислорода являются всего лишь «необходимым злом» для растения, которое он доставляет в окружающую среду через закрывающие клетки.
Основные продукты фотосинтеза
Как уже было сказано, углеводы являются наиболее важным прямым органическим продуктом фотосинтеза в большинстве зелёных растений. В растениях образуется мало свободной глюкозы, вместо этого глюкозные единицы связаны с образованием крахмала или соединены с фруктозой, другим сахаром, с образованием сахарозы.
При фотосинтезе синтезируются не только углеводы, как это когда-то считалось, но также:
Минералы поставляют элементы (например, азот, N, фосфор, Р, серы, S), необходимых для образования этих соединений.
Химические связи разрушаются между кислородом (O) и углеродом (С), водородом (Н), азотом и серы, а новые соединения образуются в продуктах, которые включают газообразный кислород (O 2) и органические соединения. Для разрушения связей между кислородом и другими элементами (например, в воде, нитрате и сульфате) требуется больше энергии, чем высвобождается, когда в продуктах образуются новые связи. Это различие в энергии связи объясняет большую часть световой энергии, хранящейся в виде химической энергии в органических продуктах, образующихся при фотосинтезе. Дополнительная энергия хранится при создании сложных молекул из простых.
Факторы, влияющие на скорость фотосинтеза
Скорость фотосинтеза определяется в зависимости от скорости производства кислорода либо на единицу массы (или площади) зелёных растительных тканей, либо на единицу веса всего хлорофилла.
Количество света, подача углекислого газа, температура, водоснабжение и наличие полезных ископаемых являются наиболее важными факторами окружающей среды, которые влияют на скорость реакции фотосинтеза на наземных установках. Его скорость определяется также видами растений и его физиологическим состоянием, например, его здоровьем, зрелостью и цветением.
Место фотосинтеза
Фотосинтез происходит исключительно в хлоропластах (греческий хлор = зелёный, пластообразный) растения. Хлоропласты преимущественно обнаруживаются в палисадах, но также и в губчатой ткани. На нижней стороне листа находятся блокирующие ячейки, которые координируют обмен газами. CO 2 течёт в межклеточные клетки снаружи.
Вода, необходимая для фотосинтеза, транспортирует растение изнутри через ксилему в клетки. Зелёный хлорофилл обеспечивает поглощение солнечного света. После того как углекислый газ и вода превращаются в кислород и глюкозу, закрывающие клетки открывают и выделяют кислород в окружающую среду. Глюкоза остаётся в клетке и превращается растением среди других в крахмал. Сила сравниваются с полисахаридом глюкозы и лишь слегка растворимой, так что даже в высоких потерях воды в прочности растительных остатков.
Важность фотосинтеза в биологии
Из света, полученного листом, отражается 20%, 10% передаются и 70% фактически поглощаются, из которых 20% рассеивается в тепле, 48% теряется при флуоресценции. Около 2% остаётся для фотосинтеза.
Благодаря этому процессу растения играют незаменимую роль на поверхности Земли, на самом деле зелёные растения с некоторыми группами бактерий являются единственными живыми существами, способными выработать органические вещества из минеральных элементов. По оценкам, каждый год 20 миллиардов тонн углерода фиксируются наземными растениями из углекислого газа в атмосфере и 15 миллиардов водорослями.
Зелёные растения являются основными первичными производителями, первое звено в пищевой цепи, не хлорофилловые растения и травоядные и плотоядные животные (включая людей) полностью зависят от реакции фотосинтеза.
Упрощённое определение фотосинтеза заключается в том, чтобы преобразовать световую энергию от солнца в химическую энергию. Этот фотонный биосинтез углевода производится из углекислого газа СО2 с помощью световой энергии.
То есть фотосинтез является результатом химической активности (синтеза) растений хлорофилла, которые продуцируют основные биохимические органические вещества из воды и минеральных солей благодаря способности хлоропластов захватывать часть энергии солнца.
Фотосинтез – определение, уравнение и продукты
Определение фотосинтеза
Фотосинтез – это биохимический путь, который преобразует энергию света в связи молекул глюкозы. Процесс фотосинтеза происходит в два этапа. На первом этапе энергия света сохраняется в связях аденозинтрифосфата (АТФ) и никотинамидадениндинуклеотидфосфата (NADPH ). Эти два сохраняющих энергию кофактора затем используются на втором этапе фотосинтеза для получения органических молекул путем объединения молекул углерода, полученных из диоксида углерода (CO2). Второй этап фотосинтеза известен как Calvin Cycle, Эти органические молекулы могут быть использованы митохондрии для производства АТФ, или они могут быть объединены с образованием глюкозы, сахароза и другие углеводы. Химическое уравнение для всего процесса можно увидеть ниже.
Уравнение фотосинтеза
Выше общая реакция на фотосинтез. Используя энергию света, а также водороды и электроны из воды, растение объединяет углерод, содержащийся в углекислом газе, в более сложные молекулы. В то время как 3-углеродный молекула является прямым результатом фотосинтеза, глюкоза – это просто две из этих молекул, вместе взятых, и часто представляется как прямой результат фотосинтеза из-за того, что глюкоза является основной молекулой во многих клеточных системах. Вы также заметите, что в качестве побочного продукта образуется 6 газообразных молекул кислорода. Растение может использовать этот кислород в своих митохондриях во время окислительного фосфорилирования, Хотя некоторое количество кислорода используется для этой цели, большая часть выбрасывается в атмосферу и позволяет нам дышать и подвергаться нашему собственному окислительному фосфорилированию на молекулах сахара, полученных из растений. Вы также заметите, что это уравнение показывает воду с обеих сторон. Это связано с тем, что 12 молекул воды расщепляются во время световых реакций, а 6 новых молекул образуются во время и после цикла Кальвина. Хотя это общее уравнение для всего процесса, есть много отдельных реакций, которые способствуют этому пути.
Этапы фотосинтеза
Легкие Реакции
Световые реакции происходят в тилакоидных мембранах хлоропластов растительных клеток. Тилакоиды имеют плотно упакованные кластеры белков и ферментов, известные как фотосистемы. Существуют две из этих систем, которые работают совместно друг с другом для удаления электронов и водородов из воды и передачи их в кофакторы ADP и NADP +. Эти фотосистемы были названы в том порядке, в котором они были обнаружены, что противоположно тому, как электроны проходят через них. Как видно на изображении ниже, электроны, возбуждаемые световой энергией, протекают сначала через фотосистему II (PSII), а затем через фотосистему I (PSI), создавая NADPH. АТФ создается белком АТФ-синтаза, который использует накопление атомов водорода, чтобы стимулировать добавление фосфатных групп к ADP.
Вся система работает следующим образом. Фотосистема состоит из различных белков, которые окружают и связывают ряд молекул пигмента. Пигменты – это молекулы, которые поглощают различные фотоны, позволяя их электронам возбуждаться. хлорофилл а является основным пигментом, используемым в этих системах, и собирает окончательный перенос энергии перед высвобождением электрона. Фотосистема II запускает этот процесс электронов, используя световую энергию для расщепления молекулы воды, которая выделяет водород и откачивает электроны. Затем электроны пропускаются через пластохинон, ферментный комплекс, который выделяет больше водорода в тилакоидное пространство. Затем электроны протекают через комплекс цитохрома и пластоцианина, чтобы достичь фотосистемы I. Эти три комплекса образуют цепь переноса электронов во многом как тот, который видели в митохондриях. Фотосистема I затем использует эти электроны, чтобы стимулировать восстановление NADP + до NADPH. Дополнительный АТФ, образующийся во время световых реакций, происходит из АТФ-синтазы, которая использует большой градиент молекул водорода для управления образованием АТФ.
Цикл Кальвина
С его электронными носителями NADPH и ATP, загруженными электронами, завод теперь готов к производству запасной энергии. Это происходит во время цикла Кальвина, который очень похож на цикл лимонной кислоты, наблюдаемый в митохондриях. Тем не менее, цикл лимонной кислоты создает АТФ других электронных носителей из 3-углеродных молекул, в то время как цикл Кальвина производит эти продукты с использованием НАДФН и АТФ. Цикл состоит из 3 фаз, как показано на рисунке ниже.
На первом этапе углерод добавляется к 5-углеродному сахару, создавая нестабильный 6-углеродный сахар. На втором этапе этот сахар восстанавливается в две стабильные молекулы углерода с 3 углеродами. Некоторые из этих молекул могут использоваться в других метаболических путях и экспортироваться. Остальные остаются для продолжения цикла по циклу Кальвина. На третьем этапе пятиуглеродный сахар регенерируется, чтобы начать процесс заново. Цикл Кальвина происходит в строма из хлоропласт, Хотя они не считаются частью цикла Кельвина, эти продукты могут быть использованы для создания различных сахаров и структурных молекул.
Продукты фотосинтеза
Непосредственными продуктами световых реакций и цикла Кальвина являются 3-фосфоглицерат и G3P, две разные формы молекулы сахара с 3 углеродами. Две из этих объединенных молекул равняются одной молекуле глюкозы, продукт, видимый в уравнении фотосинтеза. Хотя это основной источник питания для растений и животных, эти 3-углеродные скелеты могут быть объединены во многие различные формы. Структурной формой, заслуживающей внимания, является целлюлоза и чрезвычайно прочный волокнистый материал, состоящий в основном из нитей глюкозы. Помимо сахаров и молекул на основе сахара, кислород является другим основным продуктом фотосинтеза. Кислород, созданный из фотосинтеза, питает каждое дыхание организм на планете.
викторина
1. Для завершения цикла Кельвина требуется углекислый газ. Углекислый газ попадает внутрь растения через устьица или через небольшие отверстия на поверхности лист, Чтобы избежать потери воды и полного обезвоживания в жаркие дни, растения закрывают свои устьица. Могут ли растения продолжать проходить фотосинтез?A. Да, пока есть светB. Нет, без CO2 процесс не может продолжатьсяC. Только легкая реакция будет продолжаться
Ответ на вопрос № 1
В верно. Без способности обменивать кислород с углекислым газом цикл Кальвина завода остановится. Белок, ответственный за фиксацию углекислого газа, вместо этого начнет связываться с кислородом. Без места для ATP и NADPH эти концентрации станут перенасыщенными и могут начать снижать pH в клетка, Растения развили много ответов на это, таких как фотодыхание, путь C4 и путь CAM.
2. Почему продукты фотосинтеза важны для нефотосинтезирующих организмов?A. Это основа большинства энергии на ЗемлеB. Им нужны второстепенные питательные вещества, собранные растениямиC. Они не важны для облигатных хищников
Ответ на вопрос № 2
верно. При изучении экологических пищевых сетей организмы, обладающие способностью к фотосинтезу, известны как первичные продуценты. Даже обязательные хищники, или животные, которые едят только мясо, получают энергию от солнца. Помимо странной серы бактерии и другие незначительные группы первичных производителей, большая часть накопленной химической энергии, на которую полагаются животные, поступает непосредственно из фотосинтеза.
3. Зачем растениям вода?A. Для фотосинтезаB. Для структурыC. Для переноса питательных веществD. Все вышеперечисленное
Ответ на вопрос № 3
D верно. Растения используют воду для всех вышеперечисленных целей. Постоянный поток воды от корней к листьям переносит необходимые питательные вещества. Затем молекулы воды расщепляются, а различные компоненты используются для выработки химической энергии. Кроме того, когда вода проталкивается в клетки, клеточные стенки сдвигаются вместе, чтобы дать растению поддержку и структуру.
Что такое фотосинтез? История открытия процесса, фазы фотосинтеза и его значение.
Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.
История открытия фотосинтеза
В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.
Но еще 300-400 лет назад ответ на вопрос «откуда растения берут питательные вещества для строительства своих клеток?» занимал умы ученых во всем мире.
Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.
Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.
Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.
После ван Гельмонта различные ученые повторили его опыт, и сложилась так называемая «водная теория питания растений».
Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.
И как часто бывает в науке, помог его величество случай.
Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.
Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.
В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.
И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.
Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.
Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.
Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.
А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.
Именно эти опыты положили начало изучению фотосинтеза.
Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.
Значение фотосинтеза для жизни на Земле
И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.
Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.
Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.
Подробнее о «великой кислородной революции» можно прочитать в учебнике «Биология 10-11 классы» под редакцией А.А. Каменского на портале LECTA.
К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.
Определение и формула фотосинтеза
Определение и формула фотосинтеза
Слово фотосинтез состоит из двух частей: фото — «свет» и синтез — «соединение», «создание». Если подходить к определению упрощенно, то фотосинтез — это превращение энергии света в энергию сложных химических связей органических веществ при участии фотосинтетических пигментов. У зеленых растений фотосинтез происходит в хлоропластах.
Схема фотосинтеза, на первый взгляд, проста:
Вода + квант света + углекислый газ → кислород + углевод
или (на языке формул):
Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.
Фазы фотосинтеза
К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.
Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:
Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.
Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.
Световая фаза фотосинтеза
Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.
Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.
Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.
Гидроксильные ионы идут на производство кислорода:
Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.
Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.
На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.
Повторим ключевые процессы световой фазы фотосинтеза:
У некоторых растений фотосинтез идет по упрощенному варианту, который называется «циклическое фосфорилирование» и разбирается этот процесс в учебнике «Биология 10-11 классы» под редакцией А. А. Каменского на портале LECTA.