Как называется датчик давления турбины
Роль MAP-датчика на дизеле
Атмосферный двигатель внутреннего сгорания, потребляя воздух, создает разряжение во впускном коллекторе, а в случае двигателя с наддувом, наоборот, в коллекторе создается более высокое, по сравнению с атмосферным, давление. Так или иначе это давление должно быть измерено, ведь при оценке нагрузки на двигатель ЭБУ отталкивается именно от величины разряжения или наддува. Как следствие, должно быть впрыснуто строго определённое количество топлива, не больше (чтобы избежать перерасхода) и не меньше (чтобы избежать детонации).
Для измерения абсолютного давления во впускном коллекторе и создан MAP-sensor (manifold absolute pressure) или ДАД (датчик абсолютного давления в коллекторе). На бензиновых ДВС этот датчик совместно с ДМРВ (а иногда вместо него) является ключевым элементом, обеспечивающим правильную работу топливной системы, ведь бензиновый двигатель потребляет различное количество воздуха с нагрузкой и без нее. Дизель же, как мы все знаем, всегда потребляет строго определенное количество воздуха, определяемое в зависимости от своих оборотов.
Тем не менее, для современных дизельных двигателей (особенно турбированных) наличие MAP-датчика практически всегда обязательно. Все дело в том, что в отличие от датчика наддува (boost sensor) MAP-датчик «умеет» мерить как наддув (давление выше атмосферного), так и разряжение, что важно и для правильной работы турбины, и для правильного впрыска электронно-управляемых форсунок.
Как же работает MAP-датчик? Разберем на примере такого изделия от Delphi Technologies. MAP-датчик Delphi Technologies представляет из себя двухкамерный датчик мембранного типа с пьезорезистивным чувствительным элементом. Из одной камеры датчика на заводе откачивается воздух, таким образом в ней создается нулевое давление (вакуум). Вторая (рабочая) камера соединена со впускным коллектором, давление в ней и в коллекторе одинаково. Между камерами установлена гибкая мембрана с пьезорезистивными датчиками. При изменении давления в коллекторе мембрана изменяет свою форму, а пьезорезистор вследствие этого меняет свое сопротивление.Изменяется напряжение и датчик посылает сигнал об изменении давления на ЭБУ.
Мембрана, разделяющая камеры в датчиках Delphi Technologies, выполнена из поликремния и обладает большим ресурсом, а также продолжительное время сохраняет заводскую калибровку. Это позволяет MAP-сенсору дольше выдавать верный сигнал и быть менее склонным к деградации со временем. Для защиты мембраны предусмотрено покрытие из силиконового компаунда, не снижающее подвижность самой мембраны, но предотвращающее механические (пыль, грязь, частицы) или химические повреждения мембраны или датчиков.
Имея возможность измерять давление в широком диапазоне от 0 до 300 кПа (в зависимости от конкретной модели), MAP-датчик может измерить как разряжение, так и давление наддува во впускном коллекторе. Для дизелей, оборудованных турбокомпрессором (а это большинство современных двигателей), наличие MAP-датчика обязательно для правильного управления турбиной. В случае выхода датчика из строя водитель сразу же заметит уменьшение тяги, повышенное дымление двигателя, увеличение расхода топлива.
MAP-датчики производства Delphi Technologies позволяют ЭБУ точно дозировать впрыск топлива и управлять наддувом для обеспечения оптимального режима работы двигателя. Надежная конструкция и проверенный дизайн доказали свою долговечность и неприхотливость в любых условиях эксплуатации.
Принцип работы можно наглядно посмотреть здесь.
Электромагнитный клапан регулирования давления наддува. Принцип работы и ремонт. Часть I.
Эта история произошла лет пять назад. Написание темы сначала по разным причинам была отложена, а за тем и забыта. Систематизируя в компьютере свои давние файлы, наткнулся на материалы, связанные с одним ремонтом своего сигнума, которые и послужили основой для данной темы. Поэтому решил, что все же лучше написать позже, чем никогда.
И так, поехали.
Периодически при попытке резкого ускорения появилось не совсем адекватное поведение автомобиля – тупость при разгоне. Понятно, что одна из причин неисправности связана с турбонаддувом. А вот в чем конкретно, то ли самой турбине, актуаторе турбины, датчике давления, электромагнитном клапане регулирования турбонаддувом, недостатком вакуума, либо еще чего-то, нужно поискать.
Для того, что бы убедиться в правильности предположения о неисправности турбонаддува, достаточно подключить op-com, и посмотреть за показаниями датчика давления наддува.
Для этого войти в раздел “Тест исполнительных элементов”, выбрать “Клапан давления наддува”, и проследить за значениями “Управляющее давление наддува” и “Давление наддува”.
На фрагментах 3 и 4 фотографии видны следующие показатели:
Управляющее давление наддува – идеальное давление нагнетаемого воздуха в кПа, которое должно быть в определенный момент.
Давление наддува – показания датчика давления в кПа, то есть фактическое давление в этот же момент. Из-за небольшой инертности системы нагнетания воздуха может иметь незначительные отклонения от идеального значения.
Давление наддува – показания датчика давления в вольтах, то есть уровень сигнала, передаваемого датчиком давления электронному блоку управления двигателем.
Скважность электромагнитного клапана давления наддува – определяет уровень напряжения в % от значения напряжения в бортовой сети автомобиля, которое подается на клапан давления наддува, и которым задается состояние клапана. В зависимости от состояния клапана происходит управление турбиной, а, следовательно, и нагнетание необходимого количества воздуха. Любознательным про скважность, и каким образом происходит регулирование уровня напряжения, можно почитать в интернете по запросу “PWM или широтно-импульсная модуляция”.
Обороты двигателя — no comments.
Перед записью можно выбрать в строках желательные параметры, которые будут для наглядности отображаться на мониторе. Но можно такого выбора и не делать, так как все равно все параметры будут записаны и сохранены.
Записью всех параметров работы автомобиля происходит с частотой 100 раз за каждую секунду, и записываются значения этих параметров в табличном виде формата excel. Записи лучше делать небольшими по продолжительности в пределах одной минуты, например, перед резким набором скорости.
Разбираться в сотнях тысяч различных чисел, занятие еще то, тем более, что описание параметров и их значение в столбцах таблиц смещены относительно друг друга (есть программное решение вопроса смещение, но это не входит в необходимость излагать в данной теме).
Поэтому, для большей наглядности, есть палочка-выручалочка.
Заходим на сайт www.opcom.avtodiagnostika.by/. Регистрируемся. Далее необходимо загрузить файл и перейти по указанной ссылке для просмотра параметров в графическом виде. Слева выбираем пять различных параметров, которые будут отображены в графическом виде, а слева выбираем временной отрезок для построения.
Осталось только построить график, активировав кнопку “Построить”.
Останавливаться на анализе графика не буду. Кто захочет, то сможет сам рассмотреть зависимость параметра давление наддува в зависимости от скорости автомобиля, оборотов двигателя, скважности управляемого напряжения электромагнитным клапаном турбонаддува, а так же отклонения фактического давления наддува (желтая линия) от управляющего (желательного) давления наддува (зеленая линия).
Сохранить построенный график можно в одном из любых форматов PNG, JPEG, PDF, или векторной графики. Я же рекомендую сохранять в PDF формате, так как можно значительно увеличить отдельные фрагменты графика без потери качества изображения.
Несколько увлекся описанием способов определения параметров системы наддува. В моем же случае все выглядело более проще и нагляднее – все, что нужно отображалось на штатном дисплее:
Турбина просто не додавала аж целых 91 кПа давления нагнетаемого воздуха, а другим, более доступным языком, ни хрена не работала.
Осталось найти неисправность в таком поведении турбины.
И тут, кажучы па беларуску, пашанцавала.
Выключив зажигание, и открыв капот, услышал характерный тарахтящий звук в течении нескольких десятков секунд, как будто очень быстро щелкало какое-то реле. Полтергейст, ведь зажигание выключено. Даже с моим далеким от музыкального слуха виновник треска был установлен сразу же – электромагнитный клапан регулирования давления наддува. А треск, это следствие борьбы оставшегося вакуума в актуаторе и мембраны внутри клапана, пока мембрана не одерживала верх, и воздух полностью не заполнил актуатор.
Как работает электромагнитный клапан регулирования давления наддува.
При включении зажигания на клапан подается управляющее напряжение. Клапан открывает перепуск между двумя отделениями внутри клапана – отделение VAC, шланг от которого подсоединяется к вакуумному насосу, и отделением OUT, второй шланг от которого идет на актуатор турбины. При запуске двигателя создается разряжение в рабочей полости актуатора, то есть, часть воздуха, проходящего через клапан, откачивается вакуумным насосом (красные стрелки). В результате этого поднимается шток актуатора, который в свою очередь поворачивает лопатки турбины по касательной к ее вращению. Турбина работает в холостом режиме и практически не происходит дополнительного нагнетания воздуха.
При необходимости резкого ускорения автомобиля, а, соответственно, и большего объема подачи воздуха для образования топливной смеси, электронный блок управления двигателем за счет скважности уменьшает напряжение на соленоиде электромагнитного клапана, и тем самым перекрывая перепуск VAC-OUT, открывая доступ наружного воздуха через клапан в рабочую полость актутора (синие стрелки). Под воздействием пружины шток в актуаторе опускается, а заодно и поворачивая перпендикулярно оси вращения лопатки внутри турбины. Происходит рабочий цикл турбины, когда лопатки нагнетают необходимое количество воздуха.
При выключении зажигания и снятии напряжения с электромагнитного клапана, за счет мембраны шток внутри клапана возвращается в исходное положение, открывая тем самым доступ наружного воздуха в рабочую полость актуатора. Шток актуатора опускается.
Понятно, что если по каким либо причинам электромагнитный клапан регулирования давления наддува не работает, то и не будет работать и сама турбина. О тестировании работы клапана расскажу чуть позже (если, конечно, не забуду), в первой части остановлюсь на проверке управляющего напряжения, подаваемого на клапан. Проверять лучше всего вот таким нехитрым способом.
Обычно я в подобных случаях, дабы не портить изоляцию проводов и не засовывать иголки под контакты разъема, поступаю следующим образом. Разъединяю разъем. Все контакты на ответных частях разъемов между собой соединяю проводами с подходящими клеммами на концах проводов. Те провода, на которых необходимо выполнить измерения, имеют ответвления, через которые подсоединяются измерительные приборы.
Далее необходимо включить зажигание, произвести запуск двигателя и измерить мультиметром напряжение на электромагнитном клапане. Оно должно быть в районе 10В. Почему 10В, а не уровня напряжения бортовой сети, потому что за счет управляющей ЭБУ скважности напряжение на клапане уменьшается. Легко посчитать, что при скважности 80% подаваемое напряжение будет составлять 14В х 0,7 = 9,8В. И наоборот, замеряв напряжение на клапане и бортовой сети, можно посчитать скважность и сравнить с показаниями в TISе.
При резком увеличении оборотов, электронный блок управления двигателем резко уменьшает скважность, и тем самым уменьшается управляемое напряжение на электромагнитном клапане. При замерах, при совсем уж резком нажатии на газ по самую плешку, напряжение на клапане падало до 3В (если мне не изменяет память).
Поскольку коснулись TISа, то приведу в теме еще несколько картинок о том, что еще шепчет TIS относительно клапана и наддува.
Эта электросхема действительна для электронного блока управления двигателя Z19DTH. Для других двигателей электросхема частично может отличаться, но схема управления электромагнитным клапаном регулирования наддувом Y142 будет идентичной.
Как видно из электросхемы при включенном зажигании положительный потенциал бортовой сети через реле К2_Х125 и предохранитель FE14 подается на 1 контакт (провод красный с белой полосой) электромагнитного клапана. От блока управления двигателем на 2 контакт (провод коричневый с белой полосой) клапана поступает регулируемый за счет скважности отрицательный потенциал.
А на этом скриншоте из TISа показаны рабочие значения давления и сигнальное напряжение, отражаемые датчиком давления B150, при различных режимах работы двигателя.
При включенном зажигании без запуска двигателя, и работе двигателя на холостых оборотах, показания датчика давления должны находиться в пределах 90-120кПа, а амплитуда сигнала исправного датчика должна быть в пределах 1,5-2,5В. При увеличении числа оборотов двигателя, значения показаний датчика давления возрастают, как и возрастает амплитуда сигнального напряжения. Все эти показатели можно сравнить с теми, что отражены на первых двух картинках в начале темы.
Все, теории хватит, пора переходить и к делу. Но это уже во второй части.
Как контролируется надув, и как прибавить 20% мощности к Вашему турбомотору
Всем привет, давно не писал по делу. Сегодня хочу Вам рассказать о различных системах контроля надува в турбо системе мотора. Но для начала, очень коротко о самой турбине и как она работает. Турбина или точнее турбокомпрессор состоит из двух частей – из самой турбины (горячая часть) и компрессор (холодная часть)
Вот так выглядит турбокомпрессор
1. Вход в турбину выпускных газов (из выпускного коллектора)
2. Вход в компрессор свежего воздуха
3. Выход из турбины горячих газов в систему выпуска
4. Выход из компрессора сжатого воздуха
Принцип очень простой отработанные газы, попадая в турбину, раскручивают крыльчатку (лопатки) которая имеет одну ось с лопатками компрессорной части. Крыльчатка компрессора всасывает свежий воздух и под давлением (создает надув, избыточное давление) направляет сжатый воздух в интеркулер, где он охлаждается и потом поступает в камеру сгорания. Вот и все.
Но сегодня я бы хотел более подробно остановится о принципах, видах контроля надува. Последнее время мне часто попадались споры о том, что лучше 2 портовый или 3 портовый соленоид и т.д. Лично я даже, не понимаю сути этих споров. Моя цель рассказать Вам, как все это работает, а Вы потом сами решите, что лучше.
Надув контролируется регуляцией выпускных газов в горячей части турбокомпрессора (турбине). Для этого в ней есть специальный клапан, дверка или вестгейт
Если дверка закрыта, то все газы попадают на лопатки, если этот клапан (на фото valve) открыть то часть газов, направится в систему выпуска, минуя крыльчатку и тем самым снизится скорость вращения лопаток, что соответственно приведет к понижению давления. Все гениальное, очень просто. И вот здесь начинается самое интересное, а именно, как производится регулировка открытия и закрытия вестгейта.
Для этих целей используется актуатор (на фото wastegate Actuator), если его шток выдвигается, то он открывает вестгейт Для качественной настройки системы регулирования вестгейтом необходимо установить правильный преднатяг. Для этого, у большинства хороших актуаторов, используется шток с изменяемой длиной
(это кстати мой любимый актуатор)
В нутрии актуатора есть возвратная пружина. Если ее не будет, то давление выпускных газов в турбине сразу откроют вестгейт и мы не сможем создать избыточное давление (буст). Обычно в стоке (если у машины максимальное давление около 1 бара) пружина устанавливается на 0.6 бара. Расмотрим на различных примерах
При таком подключении (на актуатор подается давление, источник должен быть до заслонки, чем ближе, короче трубка, тем лучше) надув будет контролироваться жесткостью пружины актуатора. Если мы уберем источник давления на актуатор (заглушим трубку) то надув будет максимально возможный (очень большой)
Как мы можем увеличить надув, есть много вариантов. Один из хорошо себя зарекомендовавших это установка в актуатор пружины под планируемый надув, работает великолепно. Этот вид подключения можно использовать, как при установке турбокомпрессора на атмосферный мотор, так и при желании улучшить характеристики стандартной системы контроля с помощью соленоида. Очень просто, подберите пружину или актуатор с жесткостью пружины для планируемого Вами максимального надува, Подключите как на выше указанном примере. Трубки, идущие к соленоиду заглушите, а сам соленоид оставьте подключенным к разъему (или можете заменить на сопротивление 10 кОм)
Самое главное, Вы должны понять принцип, а он очень простой. В выше указанном примере давление контролируется пружиной актуатора. Если мы отсоединим от источника давления, то сможем увеличить надув в 2 раза (возможно). В таком случае без помощи дополнительного давления на мембрану актуатора будет необходимо создать намного больше обратного давления в системе выпуска, для открытия вестгейта.
Принцип ясен, уменьшая подачу давления на актуатор, мы увеличиваем силу необходимую для открытия вестгейта и тем самым увеличиваем надув, избыточное давление или буст.
Скажем у Вас пружина на 0.6 бара и Вы решили поднять давление до 0.9 бар, что можно для этого сделать. Вот несколько вариантов
Установка рестриктора. Чем меньше будет диаметр рестриктора, тем меньше будет подаваться давления на актуатор, и тем больше мы сможем получить избыточное давление (надув). Какой диаметр рестриктора? Необходимо подбирать, скажем, где-то между 1.5 мм – 0.8 мм.
Если для Вас это слишком сложно, то можете использовать следующий вариант
Обыкновенный ручной (мануал) буст контролер. В принципе это регулируемый рестриктор, не более. Зажимаем, уменьшаем диаметр, уменьшаем давление на актуатор – понимаем давление турбины и наоборот.
Это мы рассмотрели возможные механические варианты регулирования надува. Конечно, большинство современных моторов с турбонадувом используют электронную систему управления. Предлагаю рассмотреть основные, с использование электронного соленоида 2 или 3 портового. Соленоид, это электромагнитный клапан, который регулируется ЭБУ.
Основные схемы подключения
С 2-х портовым соленоидом
С 3-х портовым соленоидом
Теперь более подробно
Порт 1 – источник давления
Порт 2 – возврат в систему впуска (после МАФ сенсора)
Порт 3 – подключается к актуатору
Если соленоид закрыт, то в таком случае порт 1 и 2 соединены между собой, на актуатор нет подачи, и как следствие мы можем ожидать максимальный надув.
Если соленоид открыт, то порты 1 и 3 соединены, надув контролируется пружиной актуатора.
ЭБУ меняя дюти сайкл соленоида, перераспределят подачу между портами 2 и 3.
Теперь рассмотрим варианты с 2-х портовым соленоидом
Bleed Style Boost Controller
Достаточно узкий диапозон контроля надувом соленоидом, но очень точный. Taкая система контроля эффективно работает только с рестриктором, если Вы не можете добиться необходимого Вам надува, то для увеличения буста, просто уменьшите диаметр рестриктора, только очень аккуратно
Если соленоид закрыт, то система работает по размеру рестриктора и пружине актуатора
Если клапан, соленоид открыт тот система будет иметь максимальное давление. Максимальное значение в большей степени зависит от диаметра рестриктора
И последний (мой любимый вариант), так же с использованием 2-х портового соленоида. Очень широкий диапазон контроля надувом с помощью соленоида
Interrupt Stule Boost Controller
Если соленоид открыт, то надув контролируется только пружиной актуатора
Если соленоид закрыт, то будет достигнуто максимальное значение надува.
Мы рассмотрели основные варианты используемые для контроля надува в системах с турбонагнетателями. Теперь я подскажу Вам, как можно безопасно, эффективно повысить мощность Вашего турбомотора на 20%.
Очень просто. Для этого необходимо поменять систему выпуска Вашего автомобиля на более эффективную, большего диаметра, без катализатора или с заменой на спортивный. Главное понизить обратное давление в системе выпуска. Следующее, желательно установить холодный впуск (как его сделать я уже писал) или хотя бы более эффективный фильтр в стандартный фильтр бокс.
После этого Вы можете безопасно повысить надув Вашего турбонегнетателя на 10-15% и получите, как минимум прибавку мощности 20%. Как поднять буст Вы теперь знаете, все в Ваших руках. Да и последнее, не пытайтесь изменить надув на автомобиле в котором система контролируется ЭБУ с использованием соленоида. Для этого надо перевести в механическую систему контролем надува, а сам соленоид, чтобы ЭБУ не выдавал ошибку оставить просто подключенным к разъему или впаять сопротивление.
И главное, нет необходимости прибегать к услугам различных ателье, мастеров занимающихся пошивом прошивок для ЭБУ. В этом нет необходимости. Нет это не значит, что не надо настраивать мотор, конечно качественная настройка на порядок улучшит характеристики Ваше автомобиля.
Установка датчика давления турбины (датчик буста или бустметр)
Тюнинг на финишной прямой, поэтому устанавливаем ништячки дальше! Был куплен механический датчик давления турбины (датчик буста) Depo 52мм производства Тайвань. Искал именно механический, дабы не морочиться с тупыми электронными сенсорами и их заменой в дальнейшем. К тому же, механический датчик быстрее, точнее и навсегда. ИМХО
Комплект к установке: сам датчик-индикатор давления, силиконовая трубка, тройник и дополнительно заказанный хомут (крепится на двухсторонний скотч или саморезами) для фиксации датчика на торпеде.
Для установки мы открываем капот, снимаем пластиковую крышку мозгов и протягиваем силиконовый шланг через резиновую гофру в коробку с мозгами.
Далее шланг я сперва протянул в педальный узел, что бы его вытянуть на нужную длину. Потом со стороны предохранителей другим силиконовым шлангом большего диаметра, так же тянемся в пелальный узел и путем впихивания одного в другого, вытаскиваем нужный нам шланг на исходную позицию!
У датчика есть два режима подсветки: яркая и тусклая. Т.к. провода были короткие, мы сперва их нарастили и далее подключили питание к ближнему свету и габаритам. Сделали это для того, что бы днем подсветка была яркой (т.к. днем я включаю только противотуманки) и было хорошо видно значения, а ночью тусклой (с переключением на ближний свет, подсветка становится тусклее), что бы не слепить меня.
Врезали провода подсветки в проводку от блока переключения света. Желтый провод отвечает за ближний свет, а серый за габариты.
Далее все аккуратно укомплектовали и протянули между торпедой и стойкой. О дальнейшей красоте буду думать позже…
Тройник врезал в вакуумный шланг от впускного коллектора.
Все, на этом собственно установка и подключение датчика буста закончена.
Чем пользовался:
1) Датчик давления турбины механический Depo 52мм (2158р.)
2) Хомут для установки датчика 52мм HKS style (340р.)
Audi A4 2002, двигатель бензиновый 1.8 л., 250 л. с., полный привод, механическая коробка передач — тюнинг
Машины в продаже
Комментарии 49
Это электронный датчик буста, для электронных сенсоров такие погрешности частое явление.
Приветствую. Если нет дыр во впуске, то так и должно быть. Если будут дырки, то разряжение будет меньше.
а ничего что получается длинный шланг от коллектора до самого будильника? сам похожий датчик купил, но трубка с коллектора расположена ближе к пассажиру (там и протягивать в салон буду)+длина по салону от пассажира до водительской стойки, итого около 2м надо шланга… вот переживаю что будильник врать будет. или не важна длина?
Приветствую. Такая длинна абсолютно не критична.
Такой же стоит, но через 2 года ослабла освещённость, потускнела, по непонятной причине
У меня все работает как на видео, мб провод отпал или окислился, тот, который за яркую подсветку отвечает?
Да подрыгал эти провода, вроде ниче не отпало а яркость ушла
Это даже в начальных стадиях внедряли Немцы в мерседесы, но это стало затратно в обслуживании, и машин с этой технологией вышло на экспорт в малых сериях, и в последующем делали либо с компрессорами, ли бо с турбинами, якобы что бы было дешевле и выгоднее.
Вернемся в начало…компрессор это механический нагнетатель, который дует холодный воздух в впускной коллектор.У меня мон уже стоит, и крепления его держат хорошо, я нашел место в моторном отсеке, что бы поставить еще и турбину, но у меня будет очень интересная система.Видишь ли, компреcсор sc14 при работе двигатель теряет 15% мощности на раскрутку его, так как он дует в 0.4-0.5 бар и создает давление.Я хочу сделать, что бы sc14 дул в турбину, где по идее должны дуть отработанные газы выхлопа, и улитка уже будет дуть в двигатель, я при этом получу надув в 1 бар и выше+двигатель не теряет мощность в 15%, так как он дует через лопасти в замкнутом пространстве(рециркуляция), и в третьих турбина будет холодной, и ее производительность будет выше, так как она не будет нагреваться, в отличии если бы она находилась в выпускном коллекторе и нагревалась от выхлопов.
Когда воздух сжимается (от турбины или компрессор) он нагревается, это не изменить. Забор воздуха для турбины тоже выводить в короб фильтра будите? Крыльчатка турбины не выживет от уличного воздуха с песком, грязью и водой. Не думаю, что компрессор разгонит турбину до 1 бара, маленький он. Это лично мое мнение. Что бы разогнать турбину, нужен объем воздуха или выхлопных газов, давление не главное. Да, холодная турбина не так сильно будет греть воздух, но и холодным он не будет. И воздух, который будет брать тоже должен учитываться дмрв, иначе смесь не настроить.
Фильтр буду ставить нулевик круглый.Объем воздуха выдаваемого sc14 при 800 оборотах такой, что можно листву с земли сгонять, что бы такой поток воздуха сделать от выхлопов, нужно не менее 3000 оборотов сделать, так что он не только может выше в 1 бар дуть, даже все 2 бара раскрутит улитку.
Когда воздух сжимается (от турбины или компрессор) он нагревается, это не изменить. Забор воздуха для турбины тоже выводить в короб фильтра будите? Крыльчатка турбины не выживет от уличного воздуха с песком, грязью и водой. Не думаю, что компрессор разгонит турбину до 1 бара, маленький он. Это лично мое мнение. Что бы разогнать турбину, нужен объем воздуха или выхлопных газов, давление не главное. Да, холодная турбина не так сильно будет греть воздух, но и холодным он не будет. И воздух, который будет брать тоже должен учитываться дмрв, иначе смесь не настроить.
На счет что воздух нагревается это так, но улитка не горячая, и мне не нужен интеркулер, единственно что я сделаю, это выведу нулевик под передний подкрылок, что бы улитка брала воздух не с моторного отсека где тепло.
Когда воздух сжимается (от турбины или компрессор) он нагревается, это не изменить. Забор воздуха для турбины тоже выводить в короб фильтра будите? Крыльчатка турбины не выживет от уличного воздуха с песком, грязью и водой. Не думаю, что компрессор разгонит турбину до 1 бара, маленький он. Это лично мое мнение. Что бы разогнать турбину, нужен объем воздуха или выхлопных газов, давление не главное. Да, холодная турбина не так сильно будет греть воздух, но и холодным он не будет. И воздух, который будет брать тоже должен учитываться дмрв, иначе смесь не настроить.
И компрессор не маленький уж поверь, я два дня думал куда его воткнуть в моторном отсеке.
Я не про размер, а про производительность. Объем воздуха измеряется в грамм/секунда. Например, можно дать давление и 1.5 бара, но при этом будет 180гр/сек, или дунуть 0.8 бара, при объеме 220 гр/сек.
Не буду гадать, поставлю все это и отсчет напишу, просто мне самому интересно что с этого получится.
Я не про размер, а про производительность. Объем воздуха измеряется в грамм/секунда. Например, можно дать давление и 1.5 бара, но при этом будет 180гр/сек, или дунуть 0.8 бара, при объеме 220 гр/сек.
Я поразмышлял над этим и понял что бред какой-то, как при 180гр в секунду дует в 1.5 бара, а при 220 гр в секунду 0.8, физика отдыхает в сторонке…По твоим расчетам, если дать 300гр в секунду, то крыльчатка улитки раскрутит всего лишь на 0.2 бара?