Как называется часть гусеницы танка
Гусеничная лента
Гусеничная лента (гусеница) — замкнутая сплошная лента или цепь из шарнирно-соединённых звеньев (траков), применяемая в гусеничном движителе. На внутренней поверхности гусеницы имеются впадины или выступы, с которыми взаимодействуют ведущие колёса машины. Внешняя поверхность гусеницы снабжена выступами (грунтозацепами), которые обеспечивают сцепление с грунтом. Для увеличения сцепления гусеницы на грунтах с низкой несущей способностью используются съёмные шпоры. Гусеницы могут быть металлическими, резино-металлическими и резиновыми. На тяжелых транспортных средствах наибольшее распространение получили металлические гусеницы с разборными или неразборными звеньями. Для повышения износостойкости и срока службы гусеницы их звенья, а также соединительные элементы (пальцы, втулки) изготовляют из специальной высокомарганцовистой стали и подвергают термической обработке, а также используют резино-металлические шарниры, шарниры с игольчатым подшипником и др. На снегоходах и легких вездеходах применяют преимущественно резино-металлические или резиновые гусеницы.
История создания гусеницы
Изобретателем гусеницы в России считается русский крестьянин Фёдор Абрамович Блинов. В 1877 году он изобретает вагон на гусеничном ходу. В нижней части рамы крепились на рессорах две тележки, которые могли поворачиваться в горизонтальной плоскости вместе с осями опорных колёс. Бесконечные рельсы вагона представляли собой замкнутые железные ленты, состоящие из отдельных звеньев. Вагон имел четыре опорных колеса и четыре ведущие звёздочки. В 1878 году купец Канунников, рассчитывая на прибыли от внедрения гусеничного хода, вошёл с ходатайством в Департамент торговли и мануфактур с прошением о выдаче Блинову привилегии, каковая за № 2245 и была получена год спустя. Вводная часть гласила: «Привилегия, выданная из Департамента торговли и мануфактур в 1879 году крестьянину Фёдору Блинову, на особого устройства вагон с бесконечными рельсами для перевозки грузов по шоссейным и просёлочным дорогам…»
В США изобретателями гусеничного хода считаются Бэст и Хольт, которые создали трактор с навешенным на него бульдозерным оборудованием — он и стал прообразом современного бульдозера. Caterpillar — название компании, основанной этими изобретателями, в переводе означает «гусеница».
Во Франции прообраз современного гусеничного движителя впервые был создан в 1713 году д’Эрманом; проект, получивший положительный отзыв французской академии, представлял собой тележку для тяжёлых грузов, перекатывающуюся на бесконечных лентах из деревянных катков, концы которых шарнирно соединены планками. Годом создания гусеничного движителя можно считать 1818-й, когда француз Дюбоше получил привилегию на способ устройства экипажей с подвижными рельсовыми путями.
Помимо гусеницы как части гусеничного движителя для автотранспортной техники и задолго до изобретения гусеничных амфибий гусеница также применялась в качестве движителя для водного транспорта. такая гусеница представляла собой конвейер с веслами. Она была изобретена в 1782 году изобретателем по имени Десбланкс. В США она была запатентованна в 1839 году Уильямом Левенуорфом.
Гусеница танка
Последняя бука буква «к»
Ответ на вопрос «Гусеница танка «, 4 (четыре) буквы:
трак
Альтернативные вопросы в кроссвордах для слова трак
Определение слова трак в словарях
Википедия Значение слова в словаре Википедия
Трак — звено гусеничной ленты. Trac — инструмент управления проектами и отслеживания ошибок в разрабатываемом программном обеспечении. Трак — грузовой автомобиль, как правило седельный тягач в США
Примеры употребления слова трак в литературе.
А еще потому нерассчитанно много потрачено было горючего, что давно стерлись шипы на траках гусениц, и буксование по гололеду стоило двойного, тройного расхода.
Гусеницы скрежетали по приваренным планкам, аппарель под страшной тяжестью вминалась в песок и взвизгивала истерично, едва выдерживая и яростные удары траков, и затем переваливание на палубу.
Разумеется, Пшоню и в голову не могло прийти, что осенью сорок третьего года тут через плавни шли на переправу наши танки, дорогу им мостили саперы лозой и тальниковыми ветками, стальные траки перемалывали эти лозы, прогребались до тысячелетних корневищ плавневых трав и оставили тут такие следы, что их не могла теперь сгладить никакая сила.
Нет шплинта, вылез палец из трака, лопнула гусени ца, танк остановился, превратился в хорошую мишень.
Навалившееся одновременно с болью отчаяние, ощущение краха распланированной по музыке жизни бросило Виолончелиста тут же, по дороге в медчасть, под траки гусеницы проходящего мимо танка.
Источник: библиотека Максима Мошкова
2. Конструкция ходовой части танка Т-64
Конструция ходовой части харьковского танка Т-64, в отличии от нижнетагильского Т-72, широко известного за рубежом, практически не знакома зарубежным специалистам. По высказываниям бывшего директора харьковского 115 БТРЗ В. Ткачука, только после распада СССР танковые эксперты США, через подставные фирмы, смогли приобрести шесть образцов танка Т-64 и провести его полномасштабные исследования [ 7 ].
Ходовая часть танка Т-64 и его модификаций была разработана в конце 50-х годов прошлого века для изделия «430» и экспериментально проверена на ходовом макете в 1960-61 гг. Как и все, что имело отношение к «430», ходовая часть об ладала новизной. «Нельзя создать новый танк из старых узлов»,- сделал запись в своем дневние А.А. Морозов [5]. К сожалению, смысл сказанного так и не осознали ни руководители, ни конструкторы «Уралвагонзавода», детища харьковского завода №183 военного времени.
Конструкция основных элементов ходовой части Т-64 постоянно совершенствовалась в процессе многолетнего серийного производства и проверялась в ходе длительной войсковой эксплуатации. Это позволило использовать полученные результаты как для глубокой модернизации существующих танков (БМ Булат), так и для разработки боевых машин на их базе.
Гусеница танка Т-64 рис. 5 имеет параллельный резино-металлический шарнир (РМШ) рис. 6, металлическую беговую дорожку, цельно-штампованные звенья с хорошей ажурностью, что обеспечивает достаточную очищаемость ее от грунта, снижает коэффициент трения качения опорного катка по беговой дорожке.
Рис. 5. Гусеница Т-64 в сборе
Рис. 6. Резино-металлический шарнир гусеницы Т-64
Рис. 7. Трак гусеницы Т-64. Вид со стороны беговой дорожки и со стороны грунтозацепов.
Рис. 8. Гребень и башмак гусеницы Т-64 в сборе. Отчетливо видн а полость,
повышающая сцепные качества гусеницы, и два болта крепления.
Трак гусеницы танка Т-80 (рис. 9) имеет обрезиненную беговую дорожку, соединительные скобы, гребни и башмаки (рис. 10).
Рис. 9. Трак гусеницы Т-80. Вид со стороны беговой дорожки и со стороны грунтозацепов
Рис. 10. Гребень и башмак гусеницы Т-80 в сборе.
Соединение гребня с башмаком осуществляется одним болтом. Форма опорной поверхности башмака плоская, что существенно ухудшает сцепные качества гусеницы с грунтом.
К преимуществам гусеницы танка Т-64 можно отнести высокие сцепные качества, низкий вес, хорошую очищаемость, высокую надежность, достаточный ресурс (10 – 11 тыс. км), зачастую танки уходили в капитальный ремонт на «родных» гусеницах, низкие холостые потери мощности в гусеничном обводе при перематывании, что обусловлено относительно незначительными силами инерции и гистерезисными потерями в РМШ.
Высокие сцепные качества гусеницы танка Т-64 объясняются формой опорной поверхности и конструкцией опорного катка. Все, за что критиковали ходовую часть Т-64 некоторые теоретики-ходовики ВНИИТрансмаша, и реализовывали в металле конструкторы ЛКЗ и «Уралвагонзавода», по меткому выражению А.А. Морозова было «бредом сивой кобылы».
Физика, школьный курс : кулоновская сила трения равна произведению нормального давления на коэффициент трения. Чем выше сила трения, тем лучше сцепление. Коэффициент трения в системе «сталь-грунт» значительно меньше коэффициента трения в системе «грунт-грунт».
Террамеханика : сила трения между слоями грунта зависит от нормального давления, свойств несущего основания и взаимного перемещения слоев грунта.
Авторы статьи рекомендуют разработчикам ходовых систем «Уралвагонзавода» и ЛКЗ, при мытье резиновых сапог, после рыбалки или охоты, обращать внимание на различие рисунка протектора на подошве и каблуках, на которых реализуется максимальное давление на грунт…
Законы изменения радиальной и угловой жесткости РМШ в режимах нагружения и восстановления позволяют определить мощность гистерезисных потерь, затрачиваемую на нагрев резины за один цикл. Данная характеристика, совместно с экспериментально получаемой циклограммой нагружения трака в гусеничном обводе, позволяет минимизировать холостые потери в гусеничном обводе, обеспечить устойчивость верхней ветви гусениы при движении танка и требуемый ресурс гусеницы по РМШ.
Рис. 11. Очищаемость гусеницы танка Т-64 при его движении
Гусеница Т-64 показала лучшую, из всех существующих, сцепляемость с грунтом. В дополнении с ажурностью и самоочищаемостью траков танк Т-64 превосходил Т-72 и Т-80 по показателям проходимости при движении на снежной целин и заболоченным участкам.
Для танка Т-72, по сравнению с Т-64, была характерна низкая проходимость в условиях весенне-осенней распутицы и по болоту. Так, например, в КВО учебном центре (г. Бердычев) обучение экипажей вождению в указанных условиях проводились на Т-64, т.к. танки Т-72 застревали и буксовали из-за забиваемости траков грунтом и подклинки опорных катков грязью.
Рис. 12. Проходимость танка Т-64 на заболоченном участке и предельная забиваемость ходовой части, при которой теряется его подвижность.
Рис. 13. Предельная забиваемость ходовой части танка Т-80,
при которой теряется его подвижность.
Рис. 14. Холостые потери мощности в гусеничном обводе танков Т-64 и Т-72
Анализ потерь мощности в гусеничном обводе (рис. 13.) показывает: повышение мощности двигателя В-46 и его модификаций до 840…1000 л.с. только выравнивает свободную мощность, затрачиваемую на колееобразование и движение танка Т-72, с аналогичным показателем Т-64.
По-видимому, это обстоятельство заставило разработчиков «Уралвагонзавода» отказаться от гусениц с последовательным шарниром, применяемых на ранних образцах Т-72, и использовать в своих более поздних разработках трак с параллельным шарниром без отверстий в звеньях, изменив в худшую сторону, от непонимания протекающих физических процессов, конструкцию башмака. Он как был плоским, таким и остался рис. 15.
Рис. 15. Гусеница танка Т-90С
2.2. Система подрессоревания
Система подрессоревания танка включает в себя следующие узлы и детали:
— опорные катки и балансиры;
— подшипниковые узлы подвески;
— ограничительные упоры балансиров.
Отличительной особенностью системы подрессоревания танка Т-64 является соосность торсионов. Если мы не ошибаемся, ни один существующий в мире танк не обладает данной особенностью…
Полученные материалы явились основанием для украинских военных и разработчиков систем вооружения поставить вопрос о модернизации ЗСУ-23-4 «Шилка» и доведения ее технического уровня до требований современного боя.
В середине 90-х годов, НЦ ВВС и ПВО при Харьковском военном университете выступил инициатором модернизации ЗСУ-23-4 «Шилка» (тема «Донец»), к которой были привлечены «Хартрон» (системы наведения и управления), ИМИС (разработка конструкторской документации) и «Завод имени Малышева» (изготовитель).
В качестве возможных вариантов шасси рассматривались:
— многоцелевой тяжелый тягач МТ-Т;
— танк Т-80УД, серийно выпускаемый «Заводом имени Малышева»;
— танк Т-64А, снятый с производства, но находящийся на хранении и подлежащий уничтожению, в соответствии с Договором об ограничении войск в Европе.
При обосновании путей модернизации ПЗРАК «Донец», НЦ ВВС и ПВО использовал информационную технологию «Gill» [ 8 ].
В результате проделанной работы были сделаны следующие выводы:
Спустя 10 лет, в декабре 2007 года идея модернизации ЗСУ-23-4 «Шилка» будет объявлена «золотой» идеей России [10]…
Морозовская идеология танка Т-64 заключалась в том, что все составные системы, обеспечивающие подвижность, защиту и огневую мощь, должны дополнять друг друга.
2.2.1. Опорный каток и балансир
Конструкция катка выполнена в лучших традициях морозовской конструкторской школы. Обратите внивание на два буртика на ступице в зоне нижней части стального обода – это ограничители радиального перемещения обода. Изящно, просто и надежно…
Рис. 16. Опорный каток и балансир Т-64 в сборе Рис. 17. Опорый каток и балансир Т-80 в сборе
Рис. 18. Балансир подвески танка Т-72
Балансир танка Т-72 (рис. 18) стальной, штампованный, выполнен вместе с осями катка и балансира. В оси балансира нарезаны шлицы для его соединения с торсионом. К балансиру приварены лабиринтные кольца и скребок с износостойкой наваркой.
В балансиры первых, вторых и шестых подвесок запресованы пальцы, обеспечивающие их соединение с лопастными амортизаторами.
Балансир центруется во втулке и в обойме с помощью игольчатых подшипников. Осевое перемещение балансира исключается с помощью шариков.
Балансиры правого и левого бортов отличаются установкой скребков.
Балансиры первых, вторых и шестых подвесок отличаются от балансиров третьих, четвертых и пятых подвесок наличием пальцев для амортизаторов и шириной шейки под роликовый подшипник на оси катка.
2.2.2. Подшипниковый узел
Все рабочие и сборочные чертежи, на которых стоит подпись А.А. Морозова, отличаются рационализмом, целенаправленостью и неповторимым изяществом. Это было видно на конструкции опорных катков и балансиров (рис. 16), это повторяется в подшипниковом узеле подвески Т-64 (рис. 19). Ни одной лишней детали, максимальное использование пространства, плавность линий и законченная композиция – вот морозовская школа конструирования. Любая попытка представителей более низкого конструкторского уровня внести сюда свои «дополнения» и «улучшения», как любят говорить его оппоненты из Питера и Нижнего Тагила, лишенные чувства скромности, приводит к топорности конструкции, снижению ее эффективности, увеличению веса и стоимости…
Не явился исключением и их однокашник по академии кадровый генерал Н.А. Шомин – главный конструктор харьковского танка Т-80УД, установив на него ходовую часть Т-80…
Рис. 19. Подшипниковый узел подвески танка Т-64
Рис.20. Подшипниковый узел подвески танка Т-80
Тенденции разработки гусениц современных боевых машин
Во времена миротворческих операций и борьбы с терроризмом, частично проводимых вне городов и населенных пунктов, самые современные разработки в технологии гусениц должны передаваться в войска без задержки для того, чтобы сделать боевую задачу успешной и спасти жизни солдат.
Для того чтобы описать тенденции развития современных гусениц для транспортных средств, лучше всего начать с гусениц для ОБТ LEOPARD 2. Эти гусеницы представляют собой текущее положение уровня технологии и являются хорошим примером для описания того, какие соображения привели к дальнейшему развитию гусениц, и какие результаты были действительно достигнуты. Следующие наблюдения будут ограничены разработками, проводимыми немецкой компанией Diehl Defence Holding GmbH.
Трак гусеницы 570 FT: 1. Соединительная скоба трака 2. Соединительный винт 3. Трубчатый корпус 4. Резиновый башмак 5. Снегозацеп 6. Внутренняя соединительная деталь 7. Внутренняя соединительная деталь 8. Соединительный винт
Основные боевые танки
Серийно выпускаемыми стандартными гусеницами для танка LEOPARD 2 являются гусеницы Track Type 570 FT от Diehl Defence. Это звенчатая гусеница (с двойным пальцем), каждое звено которой представляет собой моноблочный корпус с центральной цельнолитой направляющей (гребнем). Зазоры между корпусами представляют собой изогнутые выемки. Это снижает вертикальную ударную нагрузку на опорные катки при накате на препятствие. Внутреннего резинового покрытия здесь нет, так как оно не обеспечивает требуемых свойств при низких температурах, а также это увеличивает массу звена гусеницы и негативно влияет на её эксплуатационный ресурс, вдобавок увеличивая стоимость производства.
Постоянные силы, действующие через опорные катки при движении по наклонным участкам и при поперечном ускорении машины, а также при движении в повороте, или ударные нагрузки при преодолении неподвижных препятствий, действуют на корпус самого трака, а не на центральную направляющую (гребень), так как она является его составной частью. В отличие от трака, у которого центральная направляющая расположена на центральной соединительной скобе, такое решение значительно снижает нагрузку на палец трака. Вдобавок, центральная направляющая – со своим большим моментом сопротивления изгибу – обеспечивает идеальную жесткость корпуса трака в его критическом центральном сечении.
На торцевой поверхности резиновой накладки был сохранен принцип вставки, но он претерпел модернизацию в виде байонетной фиксации.
Резиновый вкладыш с системой Quick Fit
Это уменьшает длину отрезка, необходимого для установки и снятия, приблизительно на треть (система «Quick Fit»), и таким образом значительно облегчает любую необходимую замену резиновой накладки.
Соединительные скобы круглых пальцев и пальцев с лысками
Масса гусеницы Track Type 570 FT от Diehl System составляет 185,6 кг/м. Полный комплект гусениц для танка LEOPARD 2 имеет длину примерно 30 метров и массу 5592 кг.
Дальнейшие и более перспективные разработки гусеницы для танка LEOPARD 2 были реализованы в модели Track Type 570 PO от компанииDiehl Defence. В ней реализованы все передовые решения и практический опыт, полученный за последние годы исследований. Целью этой разработки было получение значительного снижения веса при сохранении прежнего срока эксплуатации.
Гусеницы немецкого танка Leopard 2A6
В отличие от всех предыдущих гусениц с соединительными скобами, зацепление с зубьями ведущего колеса более происходит не за внешние скобы, а за корпус самого трака. Это обеспечивает значительное снижение нагрузок на пальцы, то есть ударных изгибающих сил во время зацепления гребнями. Подверженное разрушению резиновое покрытие пальца также становится разгруженным (воспринимает меньшие силы) благодаря равномерному распределению общей эксплуатационной нагрузки, возникающей при тяговом усилии.
Внешняя скоба в настоящее время крепится только слева, ее задача – соединять соседние траки гусеницы. Больше нет никакой необходимости в дополнительном объеме металла для компенсации износа скобы при зацеплении с зубьями ведущего колеса и, таким образом, есть возможность спроектировать скобу почти симметрично. Она работает как ленточный прижим, который замыкает на палец более уравновешенные касательные и радиальные силы. Поэтому скоба уже, тоньше и легче своего предшественника. В процессе эксплуатации гусеницы на палец действуют меньшие крутящий момент и силы. Вследствие этого могут быть использованы более легкие инструменты, а также обеспечивается большая безопасность при проведении ремонта. Еще одно преимущество состоит в том, что износу подвержены только резиновые накладки и корпуса траков. Здесь дополнительный износ создается на контактных поверхностях ведущих колес. Благодаря конструкции интервала зубчатого зацепления, существует зона с очень низким растягивающим усилием, что в принципе позволяет снизить износ резинового вкладыша. Так как в этом месте имеется достаточный объем материала для компенсации износа и местное упрочнение на большую глубину, срок эксплуатации этого компонента очень большой. Вследствие зубчатого зацепления в корпусе трака размер накладок траков, однако, необходимо уменьшить на 10%. Это ведет к более высокой удельной поверхностной нагрузке на накладки, которая в свою очередь служит причиной увеличения износа накладки. Это может быть частично компенсировано совершенствованием используемой резиновой смеси. Во время испытаний было обнаружено, что износ ножки зуба на ведущих колесах увеличился. Впрочем, возможно это может быть исправлено соответствующим подбором материалов и оптимизацией формы зуба.
Сегодня этот принцип уже применен в двух- и даже в трехзвенчатых гусеницах с соединительными скобами, например в гусеницах серии 129 для машин MLRS, ULAN и PIZARRO и для некоторых вариантов M113.
Трак гусеницы 570 PO
Трак гусеницы Track Type 622 для машины WIESEL: 1. Скоба 2. Соединительный болт 3. Трубчатый корпус с вулканизированной резиновой подушкой
Конструкция легких гусениц
В качестве своей первой легкой гусеницы компания Diehl разработала гусеницу для транспортера вооружения WIESEL. Эта гусеница заменила резиновую гусеничную ленту компании Clouth. Недостатком этих резиновых гусениц был усталостный износ стальных тросов, вызванный изгибающими силами в поперечных связующих элементах. После пробега более чем 3000 км это стало причиной обрыва траков без каких-либо предшествующих внешних признаков. Так как другие меры по исключению обрывов ни к чему не привели, эти гусеницы, в конце концов, были заменены на новые звенчатые гусеницы с концевыми скобами Track Type 622 от Diehl. Впервые стала возможной успешная разработка гусеницы стального литья с вулканизированными резиновыми накладками, которая немного тяжелее резиновой гусеницы, применяемой прежде. Гусеница приводится в движение за счет роликов центральной направляющей. Ширина гусеницы составляет 20 см; погонная масса – 17,4 кг/м. Резиновая накладка может быть заменена в случае выработки ресурса.
Экстремальные требования, предъявляемые к американским высокотехнологичным экспедиционным боевым машинам EFV (проект закрыт) для морской пехоты первоначально привели к разработке легких гусениц, изготовленных из алюминия. Однако обнаружилось, что алюминий является неподходящим материалом для гусениц, так как только сталь имеет надежный безопасный запас по пиковым нагрузкам и силам в граничной области. Имея массу примерно 82 кг/м, вновь разработанная легкая стальная гусеница близка к алюминиевой гусенице, у которой погонная масса составляет приблизительно 75 кг/м. Каждый трак гусеницы состоит из двух трубчатых корпусов с очень тонкими стенками, в которых установлены обрезиненные полые пальцы. Они связаны между собой двумя концевыми скобами и центральной скобой, прикрученной болтом к центральной направляющей (гребню). Все детали оптимизированы по массе. Резиновые накладки вставляются посредством системы Quick Fit.
Даже в отношении резины для ходовых накладок может быть реализованы значительные улучшения. Впервые компании Diehl удалась разработка эластомерного материала, который имеет превосходные характеристики для быстрой езды по дорогам (проблема нагрева), а также по труднопроходимой местности (разрушение от острых камней). WIESEL стала первой в немецкой армии машиной, оснащенной новым типом ходовых накладок. Это позволяет значительно увеличить пробег, например в Афганистане.
Это резиновая смесь также предназначена для применения в машине PUMA. При погонной массе значительно менее 100 кг/м гусеница Track Type 464 в настоящее время не имеет себе равных по рабочим параметрам.
Продукция компании Diehl Defence
Сплошные (непрерывные) гусеничные ленты
До сих пор сплошные гусеничные ленты применялись только на легких машинах, имеющих соответственно небольшую мощность двигателя. Так, тяжелый вариант Hagglunds BV 206S, имеет общий вес 7,1 тонны и мощность двигателя 130 кВт/177 л.с. В этой машине мощность привода теоретически распределена на четыре гусеницы. Имеется несколько производителей такого типа сплошных гусеничных лент. Все эти гусеницы имеют стальные поперечные стяжки, к которым приложена сила тяги от ведущего колеса. Поперечные силы от гусеницы действуют на опорные катки за счет ее направляющих зубьев (гребней).
Тяговое усилие воспринимается стержнями из арамидно-нейлонового стекловолокна или металлокорда, заключенного в резиновый кожух. Наряду со стержнями могут быть использованы стальные канаты (WIESEL 1). Обрезинивание обеспечивает защиту нагруженных элементов от коррозии и каких-либо повреждений, тогда как профилированная беговая рабочая поверхность передает все усилия на грунт, со временем изнашиваясь. Как правило, ленточные гусеницы являются сплошными (непрерывными), что делает их замену более трудоемкой, так как в этом случае один из бортов машины должен быть поднят или даже должна быть частично разобрана ходовая часть. Едва ли возможно выполнять такие работы в условиях эксплуатации. Главное преимущество этих гусениц заключается в небольшой массе и в тихом ходе, недостатком же является низкая ремонтопригодность. В случае какого-либо повреждения должна быть заменена вся гусеница, провести ремонт на машине, заменив лишь отдельное звено, невозможно.
Место разъединения, гусеница от Diehl
Разъемное направляющее колесо и гусеница от компании Soucy на машине M113
Исключение сделано для гусеницы от Diehl на машине BV206. Она может состоять из двух, трех или четырех сегментов, которые соединяются в патентованных конечных точках при помощи специальных скоб. Это очень сильно облегчает любую установку и монтаж гусеницы на машину, ее транспортировку и хранение. Отдельные сегменты можно штабелировать и перевозить в компактном виде.
Недавно канадская компания Soucy group также начала предлагать потенциальным клиентам сплошную гусеничную ленту для M113. Таким образом, эта компания отважилась войти в тот сектор, в котором до сих пор царствовали стальные гусеницы. Эта сплошная гусеничная лента значительно легче, чем звенчатая гусеница (примерно 26 кг/м вместо 64 кг/м у звенчатой гусеницы). Она также нравится потребителем своим тихим ходом. Таким образом, например, было измерено снижение уровня шума приблизительно на 10 децибел(A); во время замеров внешнего шума машины уровень звука был на более чем 10 децибел(A) ниже, чем у стандартной машины, использованной для сравнения. Установка гусеницы на поднятую машину является сравнительно трудоемкой. С целью выполнения этой задачи направляющее колесо сделано из двух частей.
В настоящее время компания Soucy group разработала сплошную гусеничную ленту для БМП BRADLEY, и в этом отношении также имеет смелость войти в сферу, которая до сих пор была исключительной привилегией звенчатых гусениц. Результаты этих разработок, безусловно, представляют большой интерес.