генетический код в биологии это кратко
Генетический код
Что такое генетический код
Генетический, или биологический, код является одним из универсальных свойств живой природы, доказывающим единство ее происхождения. Генетический код — это способ кодирования последовательности аминокислот полипептида с помощью последовательности нуклеотидов нуклеиновой кислоты (информационной РНК или комплиментарного ей участка ДНК, на котором синтезируется иРНК).
Встречаются другие определения. Генетический код — это соответствие каждой аминокислоте (входящей в состав белков живого) определенной последовательности трех нуклеотидов. Генетический код — это зависимость между основаниями нуклеиновых кислот и аминокислотами белка.
В научной литературе под генетическим кодом не понимают последовательность нуклеотидов в ДНК у какого-либо организма, определяющую его индивидуальность. Неверно считать, что у одного организма или вида код один, а у другого — другой. Генетический код — это то, как кодируются аминокислоты нуклеотидами (т. е. принцип, механизм); он универсален для всего живого, одинаков для всех организмов. Поэтому некорректно говорить, например, «Генетический код человека» или «Генетический код организма», что нередко используется в околонаучной литературе и фильмах. В данных случаях обычно имеется в виду геном человека, организма и др.
Разнообразие живых организмов и особенностей их жизнедеятельности обусловлено в первую очередь разнообразием белков. Специфическое строение белка определяется порядком и количеством различных аминокислот, входящих в его состав. Последовательность аминокислот пептида зашифрована в ДНК с помощью биологического кода. С точки зрения разнообразия набора мономеров, ДНК более примитивная молекула, чем пептид. ДНК представляет собой различные варианты чередования всего четырех нуклеотидов. Это долгое время мешало исследователям рассматривать ДНК как материал наследственности.
Как кодируются аминокислоты нуклеотидами
1) Нуклеиновые кислоты (ДНК и РНК) — это полимеры, состоящие из нуклеотидов. В каждый нуклеотид может входить одно из четырех азотистых оснований: аденин (А, еn: A), гуанин (Г, G), цитозин (Ц, en: C), тимин (T, en: Т). В случае РНК тимин заменяется на урацил (У, U).
При рассмотрении генетического кода принимают во внимание только азотистые основания. Тогда цепочку ДНК можно представить в виде их линейной последовательности. Например:
Комплиментарный данному коду участок иРНК будет таким:
2) Белки (полипептиды) — это полимеры, состоящие из аминокислот. В живых организмах для построения полипептидов используется 20 аминокислот (еще несколько очень редко). Для их обозначения тоже можно использовать одну букву (хотя чаще используют три — сокращение от названия аминокислоты).
Аминокислоты в полипептиде соединены между собой пептидной связью также линейно. Например, пусть имеется участок белка со следующей последовательностью аминокислот (каждая аминокислота обозначается одной буквой):
3) Если стоит задача закодировать каждую аминокислоту с помощью нуклеотидов, то она сводится к тому, как с помощью 4 букв закодировать 20 букв. Это можно сделать, сопоставляя буквам 20-ти буквенного алфавита слова, составленные из нескольких букв 4-х буквенного алфавита.
Если одну аминокислоту кодировать одним нуклеотидом, то можно закодировать только четыре аминокислоты.
Если каждой аминокислоте сопоставлять два подряд идущих в цепи РНК нуклеотида, то можно закодировать шестнадцать аминокислот. Действительно, если имеется четыре буквы (A, U, G, C), то количество их разных парных комбинаций будет 16: (AU, UA), (AG, GA), (AC, CA), (UG, GU), (UC, CU), (GC, CG), (AA, UU, GG, CC). [Скобки используются для удобства восприятия.] Это значит, что таким кодом (двухбуквенным словом) можно закодировать только 16 разных аминокислот: каждой будет соответствовать свое слово (два подряд идущих нуклеотида).
Из математики формула, позволяющая определить количество комбинаций, выглядит так: a b = n. Здесь n — количество разных комбинаций, a — количество букв алфавита (или основание системы счисления), b — количество букв в слове (или разрядов в числе). Если подставить в эту формулу 4-х буквенный алфавит и слова, состоящие из двух букв, то получим 4 2 = 16.
Если в качестве кодового слова каждой аминокислоты использовать три подряд идущих нуклеотида, то можно закодировать 4 3 = 64 разных аминокислот, так как 64 разных комбинации можно составить из четырех букв, взятых по три (например, AUG, GAA, CAU, GGU и т. д.). Это уже больше, чем достаточно для кодирования 20 аминокислот.
Именно трехбуквенный код используется в генетическом коде. Три подряд идущих нуклеотида, кодирующих одну аминокислоту, называются триплетом (или кодоном).
Каждой аминокислоте сопоставляется определенный триплет нуклеотидов. Кроме того, поскольку комбинаций триплетов с избытком перекрывают количество аминокислот, то многие аминокислоты кодируются несколькими триплетами.
Три триплета не кодируют ни одну из аминокислот (UAA, UAG, UGA). Они обозначают конец трансляции и называются стоп-кодонами (или нонсенс-кодонами).
Триплет AUG кодирует не только аминокислоту метионин, но и инициирует трансляцию (играет роль старт-кодона).
Ниже приведены таблицы соответствия аминокислот триплетам нуклеоитидов. По первой таблице удобно определять по заданному триплету соответствующую ему аминокислоту. По второй — по заданной аминокислоте соответствующие ей триплеты.
Рассмотрим пример реализации генетического кода. Пусть имеется иРНК со следующим содержанием:
Разобьем последовательность нуклеотидов на триплеты:
Сопоставим каждому триплету кодируемую им аминокислоту полипептида:
Метионин — Аспаргиновая кислота — Серин — Треонин — Триптофан — Лейцин — Лейцин — Лизин — Аспарагин — Глутамин
Последний триплет является стоп-кодоном.
Свойства генетического кода
Свойства генетического кода во многом являются следствием способа кодирования аминокислот.
Первое и очевидное свойство — это триплетность. Под ним понимают тот факт, что единицей кода является последовательность из трех нуклеотидов.
Важным свойством генетического кода является его неперекрываемость. Нуклеотид, входящий в один триплет, не может входить в другой. То есть последовательность AGUGAA можно прочитать только как AGU-GAA, но нельзя, например, так: AGU-GUG-GAA. Т. е. если пара GU входит в один триплет, она не может уже быть составной частью другого.
Под однозначностью генетического кода понимают то, что каждому триплету соответствует только одна аминокислота. Например, триплет AGU кодирует аминокислоту серин и больше никакую другую. Данному триплету однозначно соответствует только одна аминокислота.
С другой стороны, одной аминокислоте может соответствовать несколько триплетов. Например, тому же серину, кроме AGU, соответствует кодон AGC. Данное свойство называется вырожденностью генетического кода. Вырожденность позволяет оставлять многие мутации безвредными, так как часто замена одного нуклеотида в ДНК не приводит к изменению значения триплета. Если внимательно посмотреть на таблицу соответствия аминокислот триплетам, то можно увидеть, что, если аминокислота кодируется несколькими триплетами, то они зачастую различаются последним нуклеотидом, т. е. он может быть любым.
Также отмечают некоторые другие свойства генетического кода (непрерывность, помехоустойчивость, универсальность и др.).
Генетика и ее методология
Предмет генетики
Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному распределению генетического материала.
Ген и генетический код
Это происходит потому, что в разных клетках одни гены «выключены», а другие «активны»: транскрипция идет только с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.
Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются нонсенс кодонами (стоп-кодонами)
Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного триплета.
Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.
Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)
Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.
Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе трансляции.
Генетический код един для всех живых организмов, что свидетельствует о единстве происхождения всего живого.
Аллельные гены
Гаметы
К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитываться исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 2 4 = 16 гамет.
К примеру, у особи «AA» мы напишем только одну гамету «А» и не будем повторяться, а у особи «Aa» напишем два типа гамет «A» и «a», так как они различаются между собой.
Гибридологический метод
Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания. С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных генов.
Цитогенетический метод
С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии наследственных заболеваний.
Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера, Клайнфельтера).
Генеалогический метод (греч. γενεαλογία — родословная)
По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: «рецессивный он или доминантный?», «сцеплен с полом или не сцеплен?»
На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного) рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:
Близнецовый метод
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Генетический код в биологии это кратко
Раздел ЕГЭ: 2.6. Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот
На Земле живет уже более 6 млрд людей. Если не считать 25-30 млн пар однояйцевых близнецов, то генетически все люди разные. Это означает, что каждый из них уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом и многими другими качествами. Чем же определяются такие различия между людьми? Конечно различиями в их генотипах, т.е. наборах генов данного организма. У каждого человека он уникален, так же как уникален генотип отдельного животного или растения. Но генетические признаки данного человека воплощаются в белках, синтезированных в его организме. Следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека. Вот почему возникает проблема пересадки органов, вот почему возникают аллергические реакции на продукты, укусы насекомых, пыльцу растений и т.д. Сказанное не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцевых близнецов), у которых все белки были бы одинаковы.
Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК — гене. Ген — это единица наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.
Кодирование наследственной информации происходит с помощью генетического кода. Код подобен всем известной азбуке Морзе, которая точками и тире кодирует информацию. Азбука Морзе универсальна для всех радистов, и различия состоят только в переводе сигналов на разные языки. Генетический код также универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены и кодирующих белки конкретных организмов.
Свойства генетического кода: триплетность, специфичность, универсальность, избыточность и неперекрываемость.
Итак, что же собой представляет генетический код? Изначально он состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности. Например, ААТ, ГЦА, АЦГ, ТГЦ и т.д. Каждый триплет нуклеотидов кодирует определенную аминокислоту, которая будет встроена в полипептидную цепь. Так, например, триплет ЦГТ кодирует аминокислоту аланин, а триплет ААГ — аминокислоту фенилаланин. Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три — 64. Следовательно, четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот. Вот почему одна аминокислота может кодироваться несколькими триплетами. Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.
Собственно генетическим кодом считается последовательность нуклеотидов в молекуле иРНК, ибо она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции). В состав иРНК входят нуклеотиды АЦГУ. Триплеты нуклеотидов иРНК называются кодонами. Уже приведенные примеры триплетов ДНК на иРНК будут выглядеть следующим образом — триплет ЦГТ на иРНК станет триплетом ГЦА, а триплет ДНК — ААГ — станет триплетом УУЦ. Именно кодонами иРНК отражается генетический код в записи. Итак, генетический код триплетен, универсален для всех организмов на земле, вырожден (каждая аминокислота шифруется более чем одним кодоном). Между генами имеются знаки препинания — это триплеты, которые называются стоп-кодонами. Они сигнализируют об окончании синтеза одной полипептидной цепи. Существуют таблицы генетического кода, которыми нужно уметь пользоваться, для расшифровки кодонов иРНК и построения цепочек белковых молекул (в скобках — комплементарные ДНК).
Генетический код
Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.
Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.
Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.
Содержание
Свойства
Таблицы соответствия кодонов мРНК и аминокислот
2-е основание | |||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U | C | A | G | ||||||||||||||||||||||||||||||||||||||||||
1-е основание | U |
Ala/A | GCU, GCC, GCA, GCG | Leu/L | UUA, UUG, CUU, CUC, CUA, CUG |
---|---|---|---|
Arg/R | CGU, CGC, CGA, CGG, AGA, AGG | Lys/K | AAA, AAG |
Asn/N | AAU, AAC | Met/M | AUG |
Asp/D | GAU, GAC | Phe/F | UUU, UUC |
Cys/C | UGU, UGC | Pro/P | CCU, CCC, CCA, CCG |
Gln/Q | CAA, CAG | Ser/S | UCU, UCC, UCA, UCG, AGU, AGC |
Glu/E | GAA, GAG | Thr/T | ACU, ACC, ACA, ACG |
Gly/G | GGU, GGC, GGA, GGG | Trp/W | UGG |
His/H | CAU, CAC | Tyr/Y | UAU, UAC |
Ile/I | AUU, AUC, AUA | Val/V | GUU, GUC, GUA, GUG |
START | AUG | STOP | UAG, UGA, UAA |
Вариации стандартного генетического кода
В некоторых белках нестандартные аминокислоты, такие как селеноцистеин и пирролизин, вставляются рибосомой, прочитывающей стоп-кодон, что зависит от последовательностей в мРНК. Селеноцистеин сейчас рассматривается в качестве 21-й, а пирролизин 22-й аминокислот, входящих в состав белков.
Несмотря на эти исключения, у всех живых организмов генетический код имеет общие черты: кодон состоят из трёх нуклеотидов, где два первых являются определяющими, кодоны транслируются тРНК и рибосомами в последовательность аминокислот.
История представлений о генетическом коде
Тем не менее в начале 60-х годов XX века новые данные обнаружили несостоятельность гипотезы «кода без запятых». Тогда эксперименты показали, что кодоны, считавшиеся Криком бессмысленными, могут провоцировать белковый синтез в пробирке, и к 1965 году был установлен смысл всех 64 триплетов. Оказалось, что некоторые кодоны просто-напросто избыточны, то есть целый ряд аминокислот кодируется двумя, четырьмя или даже шестью триплетами.
Гены, генетический код и его свойства
Содержание:
Генетический код – это информация в геноме, где закодированы строение и структура белковых молекул человеческого организма. Одна молекула ДНК является «носительницей знаний» о сотнях тысяч белков.
Структура белковой молекулы записана как на ленте кинопленке – на одном гене. Чтобы синтез белка прошел удачно, информация определенным образом считывается с молекулы ДНК. Благодаря этому синтезируются разные и похожие по структуре белковые макромолекулы.
Ген – это элементарная единица, предназначенная для хранения наследственной информации. Учеными-генетиками подсчитано количество наследственной информации, которая пока определяется 30 000 генов.
Все гены делятся на две большие категории:
Структура гена
Нить ДНК состоит из последовательно расположенных нуклеотидов, а цепочка белковой молекулы строится из аминокислот. Для синтеза белка нужно 20 аминокислот. Каждая аминокислота кодируется тремя нуклеотидами ДНК (триплет).
К сведению: Для каждого организма генетический код является универсальной формулой, которая отличается только последовательностью нуклеотидов. В 1965 году ученые-генетики частично расшифровали структуру генетического кода. Был открыт 61 триплет, чтобы закодировать аминокислоты и 3 стоп-триплета, означающие окончание гена.
Общие черты генетического кода:
Свойства генетического кода
Генетический код строится из триплетов (тройки) нуклеотидов, расположенных в нескольких комбинациях. Каждый триплет кодирует конкретную аминокислоту, которая будет встроена в полипептидную белковую цепочку. Часть кодонов расшифрована и есть таблицы, в которых указана последовательность триплетов ДНК, необходимых для построения отдельных белковых молекул.
На заметку: Исключительность каждой личности – факт, установленный научно. Исключение составляют только однояйцевые близнецов. Комбинации генов в геноме постоянно меняются, поэтому невозможно рождение второго Баха, Менделеева, Пушкина или любого другого человека, который уже существовал на Земле.
- генетическая информация в клетке гены генетический код и его свойства матричный характер реакций
- генетический код един для всех живущих на земле существ и представляет собой