генетический код и его свойства кратко и понятно

Генетика и ее методология

Предмет генетики

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному распределению генетического материала.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Ген и генетический код

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Это происходит потому, что в разных клетках одни гены «выключены», а другие «активны»: транскрипция идет только с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются нонсенс кодонами (стоп-кодонами)

Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного триплета.

Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.

Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.

Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе трансляции.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Генетический код един для всех живых организмов, что свидетельствует о единстве происхождения всего живого.

Аллельные гены

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Гаметы

К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитываться исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 2 4 = 16 гамет.

К примеру, у особи «AA» мы напишем только одну гамету «А» и не будем повторяться, а у особи «Aa» напишем два типа гамет «A» и «a», так как они различаются между собой.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Гибридологический метод

Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания. С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных генов.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Цитогенетический метод

С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии наследственных заболеваний.

Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера, Клайнфельтера).

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Генеалогический метод (греч. γενεαλογία — родословная)

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: «рецессивный он или доминантный?», «сцеплен с полом или не сцеплен?»

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного) рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:

Близнецовый метод

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Генетический код и его свойства кратко и понятно

Раздел ЕГЭ: 2.6. Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот

На Земле живет уже более 6 млрд людей. Если не считать 25-30 млн пар однояйцевых близнецов, то генетически все люди разные. Это означает, что каждый из них уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом и многими другими качествами. Чем же определяются такие различия между людьми? Конечно различиями в их генотипах, т.е. наборах генов данного организма. У каждого человека он уникален, так же как уникален генотип отдельного животного или растения. Но генетические признаки данного человека воплощаются в белках, синтезированных в его организме. Следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека. Вот почему возникает проблема пересадки органов, вот почему возникают аллергические реакции на продукты, укусы насекомых, пыльцу растений и т.д. Сказанное не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцевых близнецов), у которых все белки были бы одинаковы.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК — гене. Ген — это единица наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода. Код подобен всем известной азбуке Морзе, которая точками и тире кодирует информацию. Азбука Морзе универсальна для всех радистов, и различия состоят только в переводе сигналов на разные языки. Генетический код также универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены и кодирующих белки конкретных организмов.

Свойства генетического кода: триплетность, специфичность, универсальность, избыточность и неперекрываемость.

Итак, что же собой представляет генетический код? Изначально он состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности. Например, ААТ, ГЦА, АЦГ, ТГЦ и т.д. Каждый триплет нуклеотидов кодирует определенную аминокислоту, которая будет встроена в полипептидную цепь. Так, например, триплет ЦГТ кодирует аминокислоту аланин, а триплет ААГ — аминокислоту фенилаланин. Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три — 64. Следовательно, четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот. Вот почему одна аминокислота может кодироваться несколькими триплетами. Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Собственно генетическим кодом считается последовательность нуклеотидов в молекуле иРНК, ибо она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции). В состав иРНК входят нуклеотиды АЦГУ. Триплеты нуклеотидов иРНК называются кодонами. Уже приведенные примеры триплетов ДНК на иРНК будут выглядеть следующим образом — триплет ЦГТ на иРНК станет триплетом ГЦА, а триплет ДНК — ААГ — станет триплетом УУЦ. Именно кодонами иРНК отражается генетический код в записи. Итак, генетический код триплетен, универсален для всех организмов на земле, вырожден (каждая аминокислота шифруется более чем одним кодоном). Между генами имеются знаки препинания — это триплеты, которые называются стоп-кодонами. Они сигнализируют об окончании синтеза одной полипептидной цепи. Существуют таблицы генетического кода, которыми нужно уметь пользоваться, для расшифровки кодонов иРНК и построения цепочек белковых молекул (в скобках — комплементарные ДНК).

Источник

Биология. 11 класс

§ 23. Генетический код и его свойства

Как вы знаете, признаки и свойства каждого организма определяются прежде всего белками, которые синтезируются в его клетках. Белки выполняют самые разнообразные функции (вспомните какие), обеспечивая тем самым протекание процессов жизнедеятельности. Можно сказать, что именно от этих биополимеров в первую очередь и зависит существование организма. Однако время функционирования белков, как и многих других биомолекул, весьма ограничено. Поэтому синтез белков в организме должен осуществляться непрерывно. Этот процесс протекает во всех клетках одноклеточных и многоклеточных организмов.

Вам также известно, что хранителем наследственной (генетической) информации, т. е. информации о первичной структуре белков, является ДНК. Участок молекулы ДНК, содержащий информацию о первичной структуре одного белка, получил название ген. Кроме того, генами называют участки ДНК, хранящие информацию о строении молекул рРНК и тРНК.

В биосинтезе белков, который осуществляется в рибосомах, ДНК прямого участия не принимает. Передача генетической информации, содержащейся в ДНК, к месту синтеза белка происходит с помощью посредника. Этим посредником является матричная (информационная) РНК (мРНК, иРНК), которая синтезируется на одной из цепей молекулы ДНК по принципу комплементарности.

В молекулах ДНК и мРНК информация о первичной структуре белков «записана» в виде последовательности нуклеотидов. Сами же белки синтезируются из аминокислот. Значит, в природе существует особая система кодирования, на основании которой последовательность нуклеотидов расшифровывается в виде последовательности аминокислот молекул белков. Этот «шифр» называется генетическим кодом. Таким образом, генетический код — это система записи информации о первичной структуре белков в виде последовательности нуклеотидов ДНК (мРНК).

Генетический код обладает следующими свойствами.

1. Код является триплетным. Это значит, что каждая аминокислота кодируется триплетом (кодоном) — сочетанием трех последовательно расположенных нуклеотидов. В состав молекул ДНК и РНК входит по 4 типа нуклеотидов. Если бы за определенную аминокислоту «отвечал» один нуклеотид, можно было бы закодировать только 4 из 20 белокобразующих аминокислот. Дублетов (по два нуклеотида) хватило бы лишь на 4 2 = 16 аминокислот. Количество возможных триплетов (сочетаний трех нуклеотидов) составляет 4 3 = 64. Этого с избытком хватает для кодирования всех 20 видов аминокислот (табл. 23.1).

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Обратите внимание, что 3 из 64 кодонов (в молекулах мРНК — УАА, УАГ и УГА) не кодируют аминокислоты. Это так называемые стоп-кодоны *или нонсенс-кодоны (от англ. nonsense — бессмыслица)*, они служат сигналом окончания синтеза белка. *Остальные триплеты называются смысловыми.*

* Генетический код расшифровали американские биохимики Р. Холли, Х. Г. Корана и М. Ниренберг в середине прошлого века. Работа стартовала в 1961 г. В бесклеточные системы, содержащие все необходимые компоненты для синтеза белка (рибосомы, аминокислоты, тРНК и др.), ученые сначала вводили искусственно синтезированные мРНК, состоящие только из одного типа нуклеотидов. Было выяснено, что в присутствии, например, полицитидиловой мРНК (ЦЦЦЦЦЦ. ) синтезируется полипептид, состоящий только из остатков аминокислоты пролина, в присутствии полиуридиловой (УУУУУУ. ) — из фенилаланина. Стало понятно, что кодону ЦЦЦ соответствует пролин, а триплет УУУ кодирует фенилаланин. К 1965 г., благодаря использованию искусственно синтезированных молекул мРНК с известными повторяющимися последовательностями нуклеотидов, удалось расшифровать все остальные триплеты. В 1968 г. это открытие было удостоено Нобелевской премии.*

2. Код однозначен — каждый триплет кодирует только одну аминокислоту.

3. Как уже отмечалось, число триплетов превышает количество кодируемых аминокислот. Поэтому генетический код является избыточным (вырожденным) — одна и та же аминокислота может кодироваться разными триплетами. Например, в мРНК цистеин (Цис) может быть закодирован триплетом УГУ или УГЦ, треонин (Тре) — АЦУ, АЦЦ, АЦА или АЦГ. Некоторые аминокислоты, например лейцин (Лей), кодируются шестью различными триплетами, в то же время метионину (Мет) и триптофану (Трп) соответствует только по одному кодону (проверьте по таблице генетического кода).

4. Код не перекрывается — один и тот же нуклеотид не может одновременно входить в состав двух соседних триплетов.

5. Код непрерывен. В полинуклеотидной цепи нуклеотиды располагаются непрерывно и соседние триплеты ничем не отделены друг от друга. Это значит, что фактически деление на триплеты условно — все зависит от того, с какого именно нуклеотида начинается их считывание. Поэтому в клетках считывание информации, содержащейся в генах, всегда начинается со строго определенного нуклеотида.

Если в составе гена происходит изменение количества нуклеотидов (их выпадение или вставка) на число, не кратное трем, наблюдается так называемый сдвиг рамки считывания (рис. 23.1). Это прив одит к существенному изменению последовательности аминокислот в белке, который кодируется измененным геном. В некоторых случаях сдвиг рамки считывания приводит к возникновению стоп-кодонов, из-за чего синтез белка обрывается.

*Суть происходящего при сдвиге рамки считывания можно понять на следующем примере. Прочитайте предложение, составленное из трехбуквенных слов (аналогично триплетам):

ЖИЛ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ.

В этом предложении заключен определенный смысл, понять который можно и без знаков препинания. Выпадение одной буквы аналогично выпадению одного нуклеотида. Оно приводит к изменению порядка считывания и потере смысла:

ЖЛБ ЫЛК ОТТ ИХБ ЫЛС ЕРМ ИЛМ НЕТ ОТК ОТ — выпадение второй буквы.

То же самое произошло бы и после вставки лишней буквы. В случае замены одной буквы либо при изменении их количества на три смысл предложения меняется не столь значительно. Например:

ЖИВ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — замена третьей буквы;

БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — выпадение первых трех букв.

Однако смысл предложения (в нашей аналогии — первичная структура белка) во многом зависит от положения измененных букв (нуклеотидов). Так, смысл может существенно исказиться:

ЖИЛ БОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — выпадение пятой, шестой и седьмой букв.

Аналогичная ситуация наблюдается и с белками. В зависимости от расположения замененной (утраченной, добавленной) аминокислоты молекула белка может сохранить пространственную конфигурацию и функции, частично изменить их или же полностью утратить свои исходные характеристики.*

Как уже отмечалось, правильное считывание генетической информации обеспечивается только тогда, когда оно начинается со строго определенной позиции. У эукариот стартовым кодоном молекулы мРНК является триплет АУГ. Именно с него и начинается считывание.

6. Код универсален — у всех живых организмов одним и тем же триплетам соответствуют одни и те же аминокислоты. Иными словами, у всех организмов генетический код расшифровывается одинаково (за редким исключением). Это свидетельствует о единстве происхождения живых организмов.

*Некоторые вариации генетического кода обнаружены у бактерий, инфузорий, дрожжей, в коде митохондриальной ДНК и т. д. Например, у бактерий триплет мРНК ГУГ может играть роль стартового кодона, а у эукариот он предназначен только для кодирования аминокислоты валин. В митохондриях млекопитающих триплет УГА кодирует триптофан, в то время как в матричной РНК, синтезированной в ядре клетки, он служит стоп-кодоном. И наоборот, в коде митохондрий триплеты АГА и АГГ являются сигналами окончания синтеза белка, а в «основной версии» генетического кода им соответствует аминокислота аргинин.*

Источник

Генетический код. Свойства генетического кода.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Генетический код – единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Генетический код основан на использовании алфавита, состоящего всего из четырех букв А, Т, Ц, Г, соответствующих нуклеотидам ДНК. Всего 20 видов аминокислот. Из 64 кодонов три – УАА, УАГ, УГА – не кодируют аминокислот, они были названы нонсенс-кодонами,выполняют функцию знаков- препинания. Кодо?н (кодирующий тринуклеотид) — единица генетического кода, тройка нуклеотидных остатков (триплет) в ДНК или РНК, кодирующих включение одной аминокислоты. Сами гены не принимают участие в синтезе белка. Посредником между геном и белком является иРНК. Структура генетического кода характеризуется тем, что он является триплетным, т. е. состоит из триплетов (троек) азотистых оснований ДНК, получивших название кодонов. Из 64

Свойства ген. кода
1) Триплетность: одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК – кодон, в тРНК – антикодон.
2) Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты 61, поэтому каждая аминокислота кодируется несколькими триплетами.
3) Однозначность: каждый триплет (кодон) кодирует только одну аминокислоту.
4) Универсальность: генетический код одинаков для всех живых организмов на Земле.
5.) непрерывность и непререкаемость кодонов при считывании. Это означает, что последовательность нуклеотидов считывается триплет за триплетом без пропусков, при этом соседние триплеты не перекрывают друг друга.

88. Наследственность и изменчивость – фундаментальные свойства живого. Дарвинское понимание явлений наследственности и изменчивости.

Наследственностью называют общее свойство всех организмов сохранять и передавать признаки от родительской особи к потомству. Наследственность – это свойство организмов воспроизводить в поколениях сходный тип обмена веществ, сложившийся в процессе исторического развития вида и проявляется при определенных условиях внешней среды.

Изменчивость есть процесс возникновения качественных различий между особями одного и того же вида, который выражается либо в изменении под влиянием внешней среды только одного фенотипа, либо в генетически обусловленных наследственных вариациях, возникающих в результате комбинаций, рекомбинаций и мутаций, имеющих место в ряде сменяющих друг друга поколений и популяций.
Дарвинское понимание наследственности и изменчивости.

Под наследственностью Дарвин понимал способность организмов сохранять в потомстве свои видовые, сортовые и индивидуальные особенности. Эта особенность была хорошо известна и представляла собой наследственную изменчивость. Дарвин подробно проанализировал значение наследственности в эволюционном процессе. Он обратил внимание на случаи одномастности гибридов первого поколения и расщепления признаков во втором поколении, ему была известна наследственность, связанная с полом, гибридные атавизмы и ряд других явлений наследственности.

генетический код и его свойства кратко и понятно. картинка генетический код и его свойства кратко и понятно. генетический код и его свойства кратко и понятно фото. генетический код и его свойства кратко и понятно видео. генетический код и его свойства кратко и понятно смотреть картинку онлайн. смотреть картинку генетический код и его свойства кратко и понятно.

Коррелятивная (или соотносительная) изменчивость. Дарвин понимал организм как целостную систему, отдельные части которой тесно связаны между собой. Поэтому изменение структуры или функции одной части нередко обусловливает изменение другой или других. Примером такой изменчивости может служить связь между развитием функционирующей мышцы и образованием гребня на кости, к которой она прикрепляется. У многих болотных птиц наблюдается корреляция между длиной шеи и длиной конечностей: птицы с длинной шеей имеют и длинные конечности.
Компенсационная изменчивость состоит в том, что развитие одних органов или функций часто является причиной угнетения других, т. е. наблюдается обратная корреляция, например между молочностью и мясистостью скота.

89. Модификационная изменчивость. Норма реакции генетически детерминированных признаков. Фенокопии.

Фенотипическая изменчивость охватывает изменения состояния непосредственно признаков, которые происходят под влиянием условий развития или факторов внешней среды. Размах модификационной изменчивости ограничен нормой реакции. Возникшее конкретное модификационное изменение признака не наследуется, но диапазон модификационной изменчивости обусловлен наследственностью.Наследственный материал при этом в изменении не вовлекается.

Фенокопии — изменения фенотипа под влиянием неблагоприятных факторов среды, по проявлению похожие на мутации. Возникшие фенотипические модификации не наследуются. Установлено, что возникновение фенокопий связано с влиянием внешних условий на определенную ограниченную стадию развития. Более того, один и тот же агент в зависимости от того, на какую фазу он действует, может копировать разные мутации, или же одна стадия реагирует на один агент, другая на другой. Для вызывания одной и той же фенокопии могут быть использованы разные агенты, что указывает на отсутствие связи между результатом изменения и воздействующим фактором. Относительно легко воспроизводятся сложнейшие генетические нарушения развития, тогда как копировать признаки значительно труднее.

90. Адаптивный характер модификации. Роль наследственности и среды в развитии, обучении и воспитании человека.

Модификационная изменчивость соответствует условиям обитания, носит приспособительный характер. Модификационной изменчивости подвержены такие признаки, как рост растений и животных, их масса, окраска и т.д. Возникновение модификационных изменений связано с тем, что условия среды воздействуют на ферментативные реакции, протекающие в развивающемся организме, и в известной мере изменяют его течение.

Т. к. фенотипическое проявление наследственной информации может модифицироваться условиями среды, в генотипе организма запрограммировано лишь возможность их формирования в определенных пределах, называемых нормой реакции. Норма реакции представляет собой пределы модификационной изменчивости признака, допускаемой при данном генотипе.
Степень выраженности признака при реализации генотипа в различных условиях получила название экспрессивности. Она связана с изменчивостью признака в пределах нормы реакции.
Один и тот же признак может проявляться у некоторых организмов и отсутствовать у других, имеющих тот же ген. Количественный показатель фенотипического проявления гена называется пенетрантностью.

Экспрессивность и пенетрантность поддерживается естественным отбором. Обе закономерности необходимо иметь в виду при изучении наследственности у человека. Изменяя условия среды, можно влиять на пенетрантность и экспрессивность. Тот факт, что один и тот же генотип может явиться источником развития различных фенотипов, имеет существенное значение для медицины. Это означает, что отягощенная не обязательно должна проявиться. Многое зависит от тех условий, в которых находится человек. В ряде случаев болезни как фенотипическое проявление наследственной информации можно предотвратить соблюдением диеты или приемом лекарственных препаратов. Реализация наследственной информации находится в зависимости от среды Формируясь на основе исторически сложившегося генотипа, модификации обычно носят адаптивный характер, так как они всегда являются результатом ответных реакций развивающегося организма на воздействующие на него экологические факторы. Иной характер мутационных изменений: они являются результатом изменений в структуре молекулы ДНК, что вызывает нарушение в сложившемся ранее процессе синтеза белка. при содержании мышей в условиях повышенной температуры у них рождается потомство е удлиненными хвостами и увеличенными ушами. Такая модификация носит адаптивный характер, так как выступающие части (хвост и уши) играют в организме терморегулирующую роль: увеличение их поверхности позволяет увеличить теплоотдачу.

Генетический потенциал человека ограничен во времени, причем довольно жестко. Если пропустить срок ранней социализации, он угаснет, не успев реализоваться. Ярким примером этого утверждения являются многочисленные случаи, когда младенцы силой обстоятельств попадали в джунгли и проводили среди зверей несколько лет. После возвращения их в человеческое сообщество они не могли уже в полной мере наверстать упущенное: овладеть речью, приобрести достаточно сложные навыки человеческой деятельности, у них плохо развивались психические функции человека. Это и есть свидетельство того, что характерные черты человеческого поведения и деятельности приобретаются только через социальное наследование, только через передачу социальной программы в процессе воспитания и обучения.

Одинаковые генотипы (у однояйцевых близнецов), оказавшись в различных средах, могут давать различные фенотипы. С учетом всех факторов воздействия фенотип человека можно представить состоящим из нескольких элементов.

К ним относятся: биологические задатки, кодируемые в генах; среда (социальная и природная); деятельность индивида; ум (сознание, мышление).

Взаимодействие наследственности и среды в развитии человека играет важную роль на протяжении всей его жизни. Но особую важность оно приобретает в периоды формирования организма: эмбрионального, грудного, детского, подросткового и юношеского. Именно в это время наблюдается интенсивный процесс развития организма и формирования личности.

Наследственность определяет то, каким может стать организм, но развивается человек под одновременным влиянием обоих факторов — и наследственности, и среды. Сегодня становится общепризнанным, что адаптация человека осуществляется под влиянием двух программ наследственности: биологической и социальной. Все признаки и свойства любого индивида являются результатом взаимодействия его генотипа и среды. Поэтому каждый человек есть и часть природы, и продукт общественного развития.

91. Комбинативная изменчивость. Значение комбинативной изменчивости в обеспечении генотипического разнообразия людей: Системы браков. Медико-генетические аспекты семьи.

Комбинативная изменчивость связана с получением новых сочетаний генов в генотипе. Достигается это в результате трех процессов: а) независимого расхождения хромосом при мейозе; б) случайного их сочетания при оплодотворении; в) рекомбинации генов благодаря Кроссинговеру. Сами наследственные факторы (гены) при этом не изменяются, но возникают их новые сочетания, что приводит к появлению организмов с другими генотипическими и фенотипическими свойствами. Благодаря комбинативной изменчивости создаётся разнообразие генотипов в потомстве, что имеет большое значение для эволюционного процесса в связи с тем, что: 1) увеличивается разнообразие материала для эволюционного процесса без снижения жизнеспособности особей; 2) расширяются возможности приспособления организмов к изменяющимся условиям среды и тем самымобеспечивается выживание группы организмов (популяции, вида) в цело

Состав и частота аллелей у людей, в популяциях во многом зависят от типов браков. В связи с этим изучение типов браков и их медико-генетических последствий имеет важное значение.

Браки могут быть: избирательными, неизбирательными.

К неизбирательным относятся панмиксные браки. Панмиксия (греч.nixis – смесь) – сводные браки между людьми с различными генотипами.

Избирательные браки: 1. Аутбридинг – браки между людьми, не имеющими родственных связей по заранее известным генотипом, 2. Инбридинг – браки между родственниками, 3. Положительно-ассортативные – браки между индивидами со сходными фенотипами между (глухонемыми, низкорослые с низкорослыми, высокие с высокими, слабоумные со слабоумными и др.). 4. Отрицательно-ассортативные-браки между людьми с несходными фенотипами (глухонемые-нормальные; низкорослые-высокие; нормальные – с веснушками и др.). 4. Инцесты – браки между близкими родственниками (между братом и сестрой).

Инбредные и инцестные браки во многих странах запрещены законом. К сожалению, встречаются регионы с высокой частотой инбредных браков. До недавнего времени частота инбредных браков в некоторых регионах Центральной Азии достигала 13-15%.

Медико-генетическое значение инбредных браков весьма отрицательное. При таких браках наблюдается гомозиготизация, частота аутосомно-рецессивных болезней увеличивается в 1,5-2 раза. В инбредных популяциях наблюдается инбредная депрессия, т.е. резко возрастает частота возрастает частота неблагоприяиных рецессивных аллелей, увеличивается детская смертность. Положительно-ассортативные браки тоже приводят к подобным явлениям. Аутбридинги имеют положительное значение в генетическом отношении. При таких браках наблюдается гетерозиготизация.

92. Мутационная изменчивость, классификация мутаций по уровню изменения поражения наследственного материала. Мутации в половых и соматических клетках.

Мутацией называется изменение, обусловленное реорганизацией воспроизводящих структур, изменением его генетического аппарата. Мутации возникают скачкообразно и передаются по наследству. В зависимости от уровня изменения наследственного материала все мутации делятся на генные, хромосомные и геномные.

Генные мутации, или трансгенации, затрагивают структуру самого гена. Мутации могут изменять участки молекулы ДНК различной длины. Наименьший участок, изменение которого приводит к появлению мутации, назван мутоном. Его может составить только пара нуклеотидов. Изменение последовательности нуклеотидов в ДНК обусловливает изменение в последовательности триплетов и в конечном итоге – программу синтеза белка. Следует помнить, что нарушения в структуре ДНК приводят к мутациям только тогда, когда не осуществляется репарация.

Хромосомные мутации, хромосомные перестройки или аберрации заключаются в изменении количества или перераспределении наследственного материала хромосом.

Перестройки подразделяют на внутрихромосомные и межхромосомные. Внутрихромосомные перестройки заключаются в утрате части хромосомы (делеция), удвоении или умножении некоторых ее участков (дупликация), повороте фрагмента хромосомы на 180° с изменением последовательности расположения генов(инверсия).

Геномные мутации связаны с изменением числа хромосом. К геномным мутациям относят анеуплоидию, гаплоидию и полиплоидию.

Анеуплоидией называют изменение количества отдельных хромосом – отсутствие (моносомия) или наличие дополнительных (трисомия, тетрасомия, в общем случае полисомия) хромосом, т. е. несбалансированный хромосомный набор. Клетки с измененным числом хромосом появляются вследствие нарушений в процессе митоза или мейоза, в связи с чем различают митотическую и мейотическую анеуплодию. Кратное уменьшение числа хромосомных наборов соматических клеток по сравнению с диплоидным называется гаплоидией. Кратное увлечение числа хромосомных наборов соматических клеток по сравнению с диплоидным, называется полиплоидией.

Перечисленные виды мутаций встречаются как в половых клетках, так и в соматических. Мутации, возникающие в половых клетках, называются генеративными. Они передаются последующим поколениям.

Мутации, возникающие в телесных клетках на той или иной стадии индивидуального развития организма, называются соматическими. Такие мутации наследуются потомками только той клетки, в которой она произошла.

93. Генные мутации, молекулярные механизмы возникновения, частота мутаций в природе. Биологические антимутационные механизмы.
Современная генетика подчеркивает, что генные мутации заключаются в изменении химической структуры генов. Конкретно, генные мутации являются заменами, вставками, выпадениями и потерями пар нуклеотидов. Наименьший участок молекулы ДНК, изменение которого приводит к мутации, называется мутоном. Он равен одной паре нуклеотидов.

Существует несколько классификаций генных мутаций. Спонтанной (самопроизвольной) называют мутацию, которая происходит вне прямой связи с каким-либо физическим или химическим фактором внешней среды.

В результате доминантных и рецессивных мутаций в фенотипе появляются доминантные и рецессивные измененные признаки. Доминантныемутации проявляются в фенотипе уже в первом- поколении. Рецессивные мутации укрыты в гетерозиготах от действия естественного отбора, поэтому они накапливаются в генофондах видов в большом количестве.

Антимутационные механизмы.

Фактором защиты против неблагоприятных последствий генных мутаций служит парность хромосом в диплоидном кариотипе соматических клеток эукариот. Парность аллейных генов препятствует фенотипическому проявлению мутаций, если они имеют рецессивный характер.

В снижение вредных последствий генных мутаций вносит явление экстракопирование генов, кодирующих жизненно важные макромолекулы. Пример, гены рРНК, тРНК, гистоновых белков, без которых жизнедеятельность любой клетки невозможна.

Перечисленные механизмы способствуют сохранению отобранных в ходе эволюции генов и одновременно накоплению в генофонде популяции различных ей аллелей, формируя резерв наследственной изменчивости.

94. Геномные мутации: полиплоидия, гаплоидия, гетероплоидия. Механизмы их возникновения.
Геномные мутации связаны с изменением числа хромосом. К геномным мутациям относят гетероплоидию, гаплоидиюи полиплоидию.
Полиплоидия – увеличение диплоидного числа хромосом путем добавления целых хромосомных наборов в результате нарушения мейоза.

У полиплоидных форм отмечается увеличение числа хромосом, кратное гаплоидному набору: 3n – триплоид; 4n – тетраплоид, 5n – пентаплоид и т.д.

Полиплоидные формы фенотипически отличаются от диплоидных: вместе с изменением числа хромосом изменяются и наследственные свойства. У полиплоидов клетки обычно крупные; иногда растения имеют гигантские размеры.

Формы, возникшие в результате умножения хромосом одного генома, называют автоплоидными. Однако известна и другая форма полиплоидии – аллоплоидия, при которой умножается число хромосом двух разных геномов.

Кратное уменьшение числа хромосомных наборов соматических клеток по сравнению с диплоидным называется гаплоидией. Гаплоидные организмы в естественных условиях обитания обнаруживаются в основном среди растений, в том числе высших (дурман, пшеница, кукуруза). Клетки таких организмов имеют по одной хромосоме каждой гомологичной пары, поэтому все рецессивные аллели проявляются в фенотипе. Этим объясняется сниженная жизнеспособность гаплоидов.

Гетероплоидия. В результате нарушения митоза и мейоза число хромосом может изменяться и не становиться кратным гаплоидному набору. Явление, когда какая-либо из хромосом, вместо того чтобы быть парной, оказывается в тройном числе, получило название трисомии. Если наблюдается трисомия по одной хромосоме, то такой организм называется трисомиком и его хромсомный набор 2п+1. Трисомия может быть по любой из хромосом и даже по нескольким. При Двойной трисомии имеет набор хромосом 2п+2, тройной – 2п+3 и т.д.

Явление, противоположное трисомии, т.е. утрата одной из хромосомы из пары в диплоидном наборе, называется моносомией, организм же – моносомиком; его генотипическая формула 2п-1. При отсутствии двух различных хромосом организм является двойным моносомиком с генотипической формулой 2п-2 и т.д.

Из сказанного видно, что анэуплоидия, т.е. нарушение нормального числа хромосом, приводит к изменениям в строении и к снижению жизнеспособности организма. Чем больше нарушение, тем ниже жизнеспособность. У человека нарушение сбалансированного набора хромосом влечет за собой болезненные состояния, известные под общим названием хромосомных болезней.
Механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе, в результате чего образуются аномальные гаметы, что и ведет к мутации. Изменения в организме связаны с присутствием генетически разнородных клеток.

95. Методы изучения наследственности человека. Генеалогический и близнецовый методы, их значение для медицины.

Основными методами изучения наследственности человека являются генеалогический, близнецовый, популяционно-статистический, метод дерматоглифики, цитогенетический, биохимический, метод генетики соматических клеток, метод моделирования.

Генеалогический метод. В основе этого метода лежит составление и анализ родословных. Родословная – это схема, отражающая связи между членами семьи. Анализируя родословные, изучают какой-либо нормальный или (чаще) патологический признак в поколениях людей, находящихся в родственных связях.

С помощью генеалогического метода может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования. При анализе родословных по нескольким признакам может быть выявлен сцепленный характер их наследования, что используют при составлении хромосомных карт. Этот метод позволяет изучать интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля.

Близнецовый метод. Он заключается в изучении закономерностей наследования признаков в парах одно- и двуяйцовых близнецов. Близнецы – это два и более ребенка, зачатые и рожденные одной матерью почти одновременно. Различают однояйцевых и разнояйцевых близнецов.

Однояйцевые (монозиготные, идентичные) близнецы возникают на самых ранних стадиях дробления зиготы, когда два или четыре бластомера сохраняют способность при обособлении развиться в полноценный организм. Поскольку зигота делится митозом, генотипы однояйцевых близнецов, по крайней мере, исходно, совершенно идентичны. Однояйцевые близнецы всегда одного пола, в период внутриутробного развития у них одна плацента.

Разнояйцевые (дизиготные, неидентичные) возникают при оплодотворении двух или нескольких одновременно созревших яйцеклеток. Таким образом, они имеют около 50% общих генов. Другими словами, они подобны обычным братьям и сестрам по своей генетической конституции и могут быть как однополыми, так и разнополыми.

При сравнении однояйцевых и разнояйцевых близнецов, воспитанных в одной и той же среде, можно сделать заключение о роли генов в развитии признаков.

Близнецовый метод позволяет делать обоснованные заключения о наследуемости признаков: роли наследственности, среды и случайных факторов в определении тех или иных признаков человека

Профилактика и диагностика наследственной патологии

В настоящее время профилактика наследственной патологии проводится на четырех уровнях: 1)прегаметическом; 2) презиготическом; 3) пренатальном; 4) неонатальном.

1.)Прегаметический уровень

Осуществляется:
1.Санитарный контроль за производством – исключение влияния на организм мутагенов.
2.Освобождение женщин детородного возраста от работы на вредном производстве.
3.Создание перечней наследственных заболеваний, которые распространены на определенной
территории с опр. частатой.
2.Презиготический уровень

Важнейшим элементом этого уровня профилактики является медико-генетическое консультирование(МГК) населения, информирующая семью о степени возможного риска рождения ребенка снаследственной патологией и оказать помощь в принятии правильного решения о деторождении..
Пренатальный уровень.

Заключается в проведении пренатальной (дородовой) диагностики.

Пренатальная диагностика – это комплекс мероприятий, который осуществляется с целью определения наследственной патологии у плода и прерывания данной беременности. К методам пренатальной диагностики относятся:

1. Ультразвуковое сканирование (УЗС).
2. Фетоскопия – метод визуального наблюдения плода в полости матки через эластичный зонд, оснащенный оптической системой.
3. Биопсия хориона. Метод основан на взятии ворсин хориона, культивировании клеток и исследовании их с помощью цитогенетических, биохимических и молекулярногенетических методов.
4. Амниоцентез – пункция околоплодного пузыря через брюшную стенку и взятие
амниотической жидкости. Она содержит клетки плода, которые могут быть исследованы
цитогенетически или биохимически в зависимости от предполагаемой патологии плода.
5. Кордоцентез – пункция сосудов пуповины и взятие крови плода. Лимфоциты плода культивируют и подвергают исследованию.
4.Неонатальный уровень

На четвертом уровне проводится скрининг новорожденных на предмет выявления аутосомно рецессивных болезней обмена в доклинической стадии, когда своевременно начатое лечение дает возможность обеспечить нормальное умственное и физическое развитие детей.

Принципы лечения наследственных заболеваний

Различают следующие виды лечения.
1. Симптоматическое (воздействие на симптомы болезни).
2. Патогенетическое (воздействие на механизмы развития заболевания).
Симптоматическое и патогенетическое лечение не устраняет причины заболевания, т.к. не ликвидирует генетический дефект.
В симптоматическом и патогенетическом лечении могут использоваться следующие приемы.

· Исправление пороков развития хирургическими методами (синдактилия, полидактилия,
незаращение верхней губы…
· Заместительная терапия, смысл которой заключается во введении в организм отсутствующих или недостаточных биохимических субстратов.
· Индукция метаболизма – введение в организм веществ, которые усиливают синтез некоторых ферментов и, следовательно, ускоряют процессы.
· Ингибиция метаболизма – введение в организм препаратов, связывающих и выводящих аномальные продукты обмена.
· Диетотерапия (лечебное питание) – устранение из пищевого рациона веществ, которые не могут быть усвоены организмом.
Перспективы: В ближайшее время генетика будет усиленно развиваться, хотя она и в наши дни очень широко распространена в сельскохозяйственных культурах (селекции, клонировании), медицине (медицинской генетике, генетике микроорганизмов). В будущем учёные надеются использовать генетику для устранения дефектных генов и уничтожения болезней, передаваемых по наследству, иметь возможность лечить такие тяжелые заболевания как рак, вирусные инфекции.

97. Спонтанные и индуцированные мутации, их биологическая роль. Факторы мутагенеза. Классификация. Примеры. Оценка и профилактика генетического действия лучистой энергии.

Мутационная изменчивость связанна с внезапно возникающими изменениями в наследственных задатках или хромосомах, что приводит к изменениям тех или иных признаков организма.

Индуцированные мутации. Возникают за счет воздействия человека на живые организмы, путем применения им специальных факторов, изменяющих их наследственный материал.

Мутагенными факторами могут быть ультрафиолетовое, рентгеновское и радиационное излучения, различные химические вещества. Человек использует возможность индуцировать мутации для повышения генетического разнообразия организмов при выведении новых сортов растений, пород животных и штаммов микроорганизмов.

Факторы, вызывающие мутации называются мутагенными факторами (мутагенами) и подразделяются на:

1. Физические;2. Химические;3. Биологические.

К физическим мутагенным факторам относятся различные виды излучений( α-, β-, γ- лучи)., температура, влажность и др., Они обладают большой проникающей способностью. Источники
излучения – солнечный свет, ртутные лампы, рентгеновское излучение, радиоактивные элементы. При действии их на организм они вызывают:

а) ионизацию тканей – образование свободных радикалов (ОН) или (Н) из воды, находящейся в тканях. Эти ионы вступают в химическое взаимодействие с ДНК, расщепляют нуклеиновую кислоту и другие органические вещества;
б) ультрафиолетовое излучение характеризуется меньшей энергией, проникает только через поверхностные слои кожи и не вызывает ионизацию тканей, но приводит к образованию димеров (химические связи между двумя пиримидиновыми основаниями одной цепочки, чаще Т-Т). Присутствие димеров в ДНК приводит к ошибкам при ее репликации, нарушает считывание генетической информации;
в) разрыв нитей веретена деления;
г) нарушение структуры генов и хромосом, т.е. образование генных и хромосомных мутаций.

К химическим мутагенам относятся:

— природные органические и неорганические вещества (нитриты, нитраты, алкалоиды, гормоны, ферменты и др.);
— синтетические вещества, ранее не встречавшиеся природе (пестициды, инсектициды, пищевые консерванты.
— продукты промышленной переработки природных соединений – угля, нефти.

К биологическим мутагенам относятся: Вирусы (гриппа, краснухи, кори)
— Невирусные паразитические организмы (грибы, бактерии, простейшие, гельминты)

98. Цитогенетический метод диагностики хромосомных нарушений человека. Амниоцентез. Кариотип и идиограмма хромосом человека. Биохимический метод.
Цитогенетический (кариотипический) метод.
Цитогенетический метод заключается в изучении хромосом при помощи микроскопа. Чаще объектом исследования служат митотические (метафазные), реже мейотические (профазные и метафазные) хромосомы. Цитогенетические методы используются, при изучении кариотипов отдельных индивидов
Применение цитогенетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или нарушением их структуры. Кроме того этот метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Применение его в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней дает возможность путем своевременного прерывания беременности предупредить появление потомства с грубыми нарушениями развития.

Получение материала развивающегося внутриутробно организма осуществляют разными способами. Одним из них является амниоцентез, с помощью которого а 15-16 неделе беременности получают амниотическую жидкость, содержащую продукты жизнедеятельности плода и клетки его кожи и слизистых.

Забираемый при амниоцентезе материал используют для биохимических, цитогенетических и молекулярно-химических исследований. Цитогенетическими методами определяют пол плода и выявляют хромосомные и геномные мутации. Изучение амниотической жидкости и клеток плода с помощью биохимических методов позволяет обнаружить дефект белковых продуктов генов, однако не дает возможности определять локализацию мутаций в структурной или регуляторной части генома. Важную роль в выявлении наследственных заболеваний и точной локализации повреждения наследственного материала плода играет использование ДНК-зондов.

В настоящее время с помощью амниоцентеза диагностируются все хромосомные аномалии, свыше 60 наследственных болезней обмена веществ, несовместимость матери и плода по эритроцитарным антигенам.

Биохимический метод заключается в определении в крови или моче активности ферментов или содержания некоторых про­дуктов метаболизма. С помощью данного метода выявляют наруше­ния в обмене веществ и обусловленные наличием в генотипе неблагоприятного сочетания аллельных генов, чаще рецессивных аллелей в гомозигот­ном состоянии. При своевременной диагностики таких наследственных заболеваний профилактические меры позволяют избегать серьёзных нарушений развития.

99. Кариотип и идиограмма человека. Характеристика кариотипа человека в норме и патологии.

Кариоти?п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма
(индивидуальный кариотип) или линии (клона) клеток.

Для определения кариотипа используют микрофотографию или зарисовку хромосом при микроскопии делящихся клеток.

У каждого человека 46 хромосом, две из которых половые. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). Исследование
кариотипа проводится с помощью метода, называемого цитогенетика.

Примеры наиболее частых хромосомных патологий.

Синдром Дауна представляет собой трисомию по 21-й паре хромосом.
Синдром Эдвардса и представляет собой трисомиюпо 18-й паре хромосом.
Синдром Патау представляет собой трисомию по 13-й паре хромосом.
Синдром Клайнфельтера представляет собой полисомию по Х хромосоме у мальчиков.

100.Значение генетики для медицины. Цитогенетический, биохимический, популяционно-статистический методы изучения наследственности человека.

Очень важна роль генетики в жизни человека. Реализуется она с помощью медико-генетического консультирования. Медико-генетическое консультирование призвано избавить человечество от страданий, связанных с наследственными (генетическими) заболеваниями. Главные цели медико-генетического консультирования заключаются в установлении роли генотипа в развитии данного заболевания и прогнозировании риска иметь больных потомков. Рекомендации, даваемые в медико-генетических консультациях в отношении заключения брака или прогноза генетической полноценности потомства, направлены на то, чтобы они учитывались консультируемыми лицами, которые добровольно принимают соответствующее решение.

Цитогенетический (кариотипический) метод. Цитогенетический метод заключается в изучении хромосом при помощи микроскопа. Чаще объектом исследования служат митотические (метафазные), реже мейотические (профазные и метафазные) хромосомы. Так же этот метод используется для изучения полового хроматина (тельца барра) Цитогенетические методы используются, при изучении кариотипов отдельных индивидов.

Применение цитогенетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или нарушением их структуры. Кроме того этот метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Применение его в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней дает возможность путем своевременного прерывания беременности предупредить появление потомства с грубыми нарушениями развития.

Биохимический метод заключается в определении в крови или моче активности ферментов или содержания некоторых про­дуктов метаболизма. С помощью данного метода выявляют наруше­ния в обмене веществ и обусловленные наличием в генотипе неблагоприятного сочетания аллельных генов, чаще рецессивных аллелей в гомозигот­ном состоянии. При своевременной диагностики таких наследственных заболеваний профилактические меры позволяют избегать серьёзных нарушений развития.

Кроме того, этот метод позволяет изучать мутационный процесс, роль наследственности и среды в формировании фенотипического полиморфизма человека по нормальным признакам, а также в возникновении болезней, особенно с наследственной предрасположенностью. Популяционно-статистический метод используют для выяснения значения генетических факторов в антропогенезе, в частности в расообразовании.

101.Структурные нарушения (аберрации) хромосом. Классификация в зависимости от изменения генетического материала. Значение для биологии и медицины.

Хромосомные аберрации возникают в результате перестройки хромосом. Они являются следствием разрыва хромосомы, приводящего к образованию фрагментов, которые в дальнейшем воссоединяются, но при этом нормальное строение хромосомы не восстанавливается. Различают 4 основных типа хромосомных аберраций: нехватки, удвоения, инверсии, транслокации, делеция – утрата хромосомой определенного участка, который затем обычно уничтожается.

Нехватки возникают вследствие потери хромосомой того или иного участка. Нехватки в средней части хромосомы принято называть делециями. Потеря значительной части хромосомы приводят организм к гибели, утрата незначительных участков вызывает изменение наследственных свойств. Так. При нехватке одной из хромосом у кукурузы её проростки лишены хлорофилла.

Удвоение связано с включением лишнего, дублирующего участка хромосомы. Это также ведет к появлению новых признаков. Так, у дрозофилы ген полосковидных глаз обусловлен удвоением участка одной из хромосомы.

Инверсии наблюдаются при разрыве хромосомы и переворачивании оторвавшегося участка на 180 градусов. Если разрыв произошел в одном месте, оторвавшийся фрагмент прикрепляется к хромосоме противоположным концом, если же в двух местах, то средний фрагмент, перевернувшись, прикрепляется к местам разрыва, но другими концами. По мнению Дарвина инверсии играют важную роль в эволюции видов.

Транслокации возникают в тех случаях, когда участок хромосомы из одной пары прикрепляется к негомологичной хромосоме, т.е. хромосоме из другой пары. Транслокацияучастков одной из хромосом известна у человека; она может быть причиной болезни Дауна. Большинство транслокаций, затрагивающих крупные участки хромосом, делает организм нежизнеспособным.

Хромосомные мутации изменяют дозу некоторых генов, вызывают перераспределение генов между группами сцепления, меняют локализацию их в группе сцепления. Этим они нарушают генный баланс клеток организма, в результате чего происходят отклонения в соматическом развитии особи. Как правило, изменения распространяются на несколько систем органов.

Хромосомные аберрации имеют немало важное значение в медицине. При хромосомных аберрациях наблюдается задержка общего физического и умственного развития. Хромосомные болезни характеризуются сочетанием многих врожденных пороков. Таким пороком является проявление синдрома Дауна, которое наблюдается в случае трисомии по небольшому сегменту длинного плеча 21 хромосомы. Картина синдрома кошачьего крика развивается при утрате участка короткого плеча 5 хромосомы. У человека наиболее часто отмечаются пороки развития головного мозга, опорно-двигательной, сердечно-сосудистой, мочеполовой систем.

102. Понятие вида, современные взгляды на видообразование. Критерии вида.

Вид– это совокупность особей, сходных по критериям вида до такой степени, что они могут в естественных условиях скрещиваться и давать плодовитое потомство.

Плодовитое потомство – то, которое само может размножаться. Пример неплодовитого потомства – мул (гибрид осла и лошади), он бесплоден.

Критерии вида – это признаки, по которым сравнивают 2 организма, чтобы определить, относятся они к одному виду или к разным.

· Морфологический – внутреннее и внешнее строение.
· Физиолого-биохимический – как работают органы и клетки.
· Поведенческий – поведение, особенно в момент размножения.
· Экологический – совокупность факторов внешней среды, необходимых для жизни вида (температура, влажность, пища, конкуренты и т.п.)
· Географический – ареал (область распространения), т.е. территория, на которой живет данный вид.
· Генетико-репродуктивный – одинаковое количество и строение хромосом, что позволяет организмам давать плодовитое потомство.
Критерии вида относительны, т.е. по одному критерию нельзя судить о виде. Например, существуют виды-двойники (у малярийного комара, у крыс и т.д.). Они морфологически друг от друга не отличаются, но имеют разное количество хромосом и поэтому не дают потомства.

Видообразование – это качественный этап эволюционного процесса. Таким образом, для понимания сущности видообразования необходимо рассмотреть его популяционно-генетические и экологические аспекты.

Видообразование – это сложный, не изученный до конца процесс. Известно множество механизмов образования новых видов. Но в любом случае новый вид должен отличаться от материнского или сестринского вида хотя бы некоторыми наследуемыми признаками и, следовательно, хоты бы некоторыми аллелями. Таким образом, в ходе видообразования исходный набор аллелей должен быть замещен новым набором аллелей.

Согласно общепринятой точке зрения, в основе видообразования лежит принцип дивергенции. В результате дивергенции увеличивается число видов.
Дивергенция (от лат. divergo– отклоняюсь, отхожу) – это расхождение признаков организмов в ходе эволюции разных групп (филетических линий), возникших от одного предка. Дивергенцией называют также разделение в процессе эволюции единого таксона на два или несколько. Термин «дивергенция признаков» введён Ч. Дарвином (1859).

В больших стационарных популяциях (мегапопуляциях) видообразование затруднено. Например, в средней полосе европейской части России многие роды высших растений и крупных животных
представлены или одним видом (ель, сосна, дуб, лещина; липа, медведь, волк, лиса, белка…), или немногими видами (березы пушистая и бородавчатая; заяц-беляк и заяц-русак…). Это связано с тем, что при большой и постоянной численности популяций элементарные эволюционные факторы практически не действуют.

Существует несколько типов первичной изоляции, которым соответствуют разные формы видообразования:

1. Пространственная, или географическая– формируются изолирующие барьеры в виде горных цепей, водных преград, перешейков, ледников, пустынь и т.д. Этот тип изоляции является универсальным для всех видов. Пространственная изоляция приводит к географическому, или аллопатрическому видообразованию (алло– разный, патриа– родина).

2. Экологическая– формируются изолирующие барьеры в виде разрывов между экологическими нишами. Этот тип изоляции характерен для паразитических, узкоспециализированных и малоподвижных видов. Экологическая изоляция приводит к экологическому, или симпатрическому видообразованию (сим– вместе,патриа– родина).

3. Генетическая– формируются изолирующие барьеры в виде хромосомных и геномных мутаций. Этот тип изоляции характерен для растений (при полиплоидизации) и некоторых животных (при хромосомных перестройках и анеуплоидизации). Генетическая изоляция приводит к генетическому, или парапатрическомувидообразованию (пара– около, патриа– родина)

103.Популяция. Ее экологические и генетические характеристики и роль в видообразовании.

Популяция – минимальная самовоспроизводящаяся группировка особей одного вида, более или менее изолированная от других подобных группировок, населяющая определенный ареал в течение длительного ряда поколений, образующая собственную генетическую систему и формирующая собственную экологическую нишу.

Экологические показатели популяции.

Численность — общее количество особей в популяции. Эта величина характеризуется широким диапазоном изменчивости, однако она не может быть ниже некоторых пределов.
Плотность — число особей на единицу площади или объема. При увеличении численности плотность популяции, как правило, возрастает.

Пространственная структура популяции характеризуется особенностями размещения особей на занимаемой территории. Она определяется свойствами местообитания и биологическими особенностями вида.

Половая структура отражает определенное соотношение мужских и женских особей в популяции.

Возрастная структура отражает соотношение различных возрастных групп в популяциях, зависящее от продолжительности жизни, времени наступления половой зрелости, числа потомков.

Генетические показатели популяции. Генетически популяция характеризуется её генофондом. Он представлен совокупностью аллелей, образующих генотипы организмов данной популяции.
При описании популяций или их сравнении между собой используют целый ряд генетических характеристик. Полиморфизм. Популяция называется полиморфной по данному локусу, если в ней встречается два или большее число аллелей. Если локус представлен единственным аллелем, говорят о мономорфизме. Исследуя много локусов, можно определить среди них долю полиморфных, т.е. оценить степень полиморфизма, которая является показателем генетического разнообразия популяции.

Гетерозиготность. Важной генетической характеристикой популяции является гетерозиготность – частота гетерозиготных особей в популяции. Она отражает также генетическое разнообразие.
Коэфициент инбридинга. С помощью этого коэффициента оценивают распространенность близкородственных скрещиваний в популяции.

Ассоциация генов. Частоты аллелей разных генов могут зависеть друг от друга, что характеризуется коэффициентами ассоциации.

Генетические расстояния. Разные популяции отличаются друг от друга по частоте аллелей. Для количественной оценки этих различий предложены показатели, называемые генетическими расстояниями.

Популяция – элементарная эволюционная структура. В ареале любого вида особи распространены неравномерно. Участки густой концентрации особей перемежаются с пространствами, где их не много или же отсутствуют. В результате возникают более или менее изолированные популяции, в которых систематически происходит случайное свободное скрещивание (панмиксия). Скрещивание с другими популяциями происходит очень редко и нерегулярно. Благодаря панмиксии в каждой популяции создается характерный для нее генофонд, отличный от других популяций. Имено популяцию и следует признать элементарной единицей эволюционного процесса.

Роль популяций велика, так как практически все мутации происходят внутри нее. Эти мутации, прежде всего, связаны с изолированностью популяций и генофондом, который различается из-за их обособленности друг от друга. Материалом для эволюции служит мутационная изменчивость, которая начинается в популяции и заканчивается образованием вида.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *