что такое теплопроводность в физике
Теплопроводность
Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.
Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.
Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.
Содержание
Закон теплопроводности Фурье
В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:
где — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, — коэффициент теплопроводности (иногда называемый просто теплопроводностью), — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье. [1]
В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):
где — полная мощность тепловых потерь, — площадь сечения параллелепипеда, — перепад температур граней, — длина параллелепипеда, то есть расстояние между гранями.
Коэффициент теплопроводности измеряется в Вт/(м·K).
Коэффициент теплопроводности вакуума
Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.
Связь с электропроводностью
Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:
где — постоянная Больцмана, — заряд электрона.
Коэффициент теплопроводности газов
Коэффициент теплопроводности газов определяется формулой [2]
Обобщения закона Фурье
Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.
Коэффициенты теплопроводности различных веществ
Материал | Теплопроводность, Вт/(м·K) |
---|---|
Графен | (4840±440) — (5300±480) |
Алмаз | 1001—2600 |
Графит | 278,4—2435 |
Карбид кремния | 490 |
Серебро | 430 |
Медь | 382—390 |
Оксид бериллия | 370 |
Золото | 320 |
Алюминий | 202—236 |
Нитрид алюминия | 200 |
Нитрид бора | 180 |
Кремний | 150 |
Латунь | 97—111 |
Хром | 93,7 |
Железо | 92 |
Платина | 70 |
Олово | 67 |
Оксид цинка | 54 |
Сталь | 47 |
Кварц | 8 |
Стекло | 1-1,15 |
КПТ-8 | 0,7 |
Вода при нормальных условиях | 0,6 |
Кирпич строительный | 0,2—0,7 |
Силиконовое масло | 0,16 |
Пенобетон | 0,14—0,3 |
Древесина | 0,15 |
Нефтяные масла | 0,12 |
Свежий снег | 0,10—0,15 |
Вата | 0,055 |
Воздух (300 K, 100 кПа) | 0,026 |
Вакуум (абсолютный) | 0 (строго) |
Материал | Теплопроводность, Вт/(м·K) |
---|---|
Кальций | 201 |
Бериллий | 201 |
Вольфрам | 173 |
Магний | 156 |
Родий | 150 |
Иридий | 147 |
Молибден | 138 |
Рутений | 117 |
Хром | 93,9 |
Осмий | 87,6 |
Титан | 21,9 |
Тефлон | 0,25 |
Бумага | 0,14 |
Полистирол | 0,082 |
Шерсть | 0,05 |
Минеральная вата | 0,045 |
Пенополистирол | 0,04 |
Стекловолокно | 0,036 |
Пробковое дерево | 0,035 |
Пеноизол | 0,035 |
Каучук вспененный | 0,03 |
Аргон | 0,0177 |
Аэрогель | 0,017 |
Ксенон | 0,0057 |
На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.
Примечания
См. также
Ссылки
Полезное
Смотреть что такое «Теплопроводность» в других словарях:
теплопроводность — теплопроводность … Орфографический словарь-справочник
Теплопроводность — скорость передачи тепла от одной (более нагретой) к другой (менее нагретой) части тела. Например, теплопроводность воды равна 0,00140 кал/с, воздуха 0,00005, песка 0,00047 кал/с через 1 см вещества. Является важным экологический фактором,… … Экологический словарь
ТЕПЛОПРОВОДНОСТЬ — один из видов переноса теплоты от более нагретых частей тела к менее нагретым, приводящий к выравниванию темп ры. При Т. перенос энергии осуществляется в результате непосредств. передачи энергии от ч ц (молекул, атомов, эл нов), обладающих… … Физическая энциклопедия
Теплопроводность — – способность строительного раствора передавать тепло через толщу от одной своей поверхности к другой. [ГОСТ 4.233 86] Теплопроводность – направленный перенос теплоты от более нагретых частей тела к менее нагретым, приводящий к… … Энциклопедия терминов, определений и пояснений строительных материалов
ТЕПЛОПРОВОДНОСТЬ — ТЕПЛОПРОВОДНОСТЬ, переход тепла с участка тела, имеющего высокую температуру, на участок с низкой температурой. Если один конец металлического стержня поместить в пламя, полученная им тепловая энергия вызывает усиление вибрации молекул в… … Научно-технический энциклопедический словарь
теплопроводность — перенос, теплопроводимость Словарь русских синонимов. теплопроводность сущ., кол во синонимов: 2 • перенос (22) • … Словарь синонимов
теплопроводность — Теплообмен, при котором перенос теплоты в неравномерно нагретой среде имеет атомно молекулярный характер [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] теплопроводность Способность материала пропускать тепловой… … Справочник технического переводчика
ТЕПЛОПРОВОДНОСТЬ — ТЕПЛОПРОВОДНОСТЬ, процесс переноса энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц. Приводит к выравниванию температуры тела. Плотность теплового потока,… … Современная энциклопедия
ТЕПЛОПРОВОДНОСТЬ — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц. Приводит к выравниванию температуры тела. Обычно количество переносимой энергии, определяемое как плотность … Большой Энциклопедический словарь
Теплопроводность — горных пород (a. heat condustance of rocks, thermoconductivity of rocks; н. Warmeleitung der Gesteine; ф. conductibilite calorifique des roches; и. conductibilidad del calor de rocas, conducciton del calor de rocas, conductibilidad… … Геологическая энциклопедия
ТЕПЛОПРОВОДНОСТЬ — ТЕПЛОПРОВОДНОСТЬ, теплопроводности, мн. нет, жен. (физ.). Свойство тел распространять тепло от более нагретых частей к менее нагретым. Коэффициент теплопроводности. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
Теплопроводность
Из Википедии — свободной энциклопедии
Теплопрово́дность — способность материальных тел проводить энергию от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.
Различают стационарный и нестационарный процессы теплопроводности в твердом теле. Стационарный процесс характеризуется неизменными во времени параметрами процесса. Такой процесс устанавливается при длительном поддержании температур теплообменивающихся сред на одном и том же уровне. Нестационарный процесс представляет собой неустановившийся тепловой процесс в телах и средах, характеризуемый изменением температуры в пространстве и во времени.
Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.
Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).
Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.
Теплопроводность
Содержание
Внутренняя энергия тела может изменяться без совершения работы – за счет теплопередачи. Когда мы подносим металлическую палку к пламени свечи, ее конец тоже становится горячим.
На этом примере видно, что внутренняя энергия может передаваться от одних тел к другим. Также внутренняя энергия может передаваться от одной части тела к другой – ведь нижняя часть палки не касается свечи, но нагревается.
То же явления мы можем наблюдать, опустив железную ложку в кипяток. Вскоре конец ложки, не погружённый в воду, станет горячим (рисунок 1).
Одним из видов теплопередачи является теплопроводность. Именно его мы наблюдаем в приведенном примере. В данном уроке мы более подробно рассмотрим это явление.
Определение тепловодности
Теплопроводность – это явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.
Рассмотрим подробнее последнее утверждение. Поднесем к огню конец деревянной палочки (рисунок 2). Он загорится. Тем не менее, другой ее конец останется холодным. Следовательно, дерево обладает плохой теплопроводностью.
Если мы заменим деревянную палочку на металлическую, то она вся довольно быстро нагреется. Держа такой предмет, можно легко обжечься.
Это говорит о том, что металлы имеют большую теплопроводность. Серебро медь и золото имеют наибольшую теплопроводность.
Теплопроводность твердых тел
Рассмотрим опыт, изображенный на рисунке 3.
Прикрепляем к штативу один конец толстой медной проволоки. Под другим концом проволоки расположим спиртовую горелку. К проволоке прикрепим с помощью воска небольшие гвоздики (рисунок 3, а).
Начнем нагревать свободный конец проволоки с помощью спиртовки (рисунок 3, б). Воск постепенно начнет таять.
Поочередно гвоздики начнут отваливаться, начиная с тех, что находятся ближе к огню спиртовки (рисунок 3, в).
Объясним происходящее со стороны физики:
Этот процесс будет постепенно проходить по всей длине проволоки.
При теплопроводности не происходит переноса вещества от одного конца тела к другому.
Рассмотрим еще один опыт (рисунок 3). На этот раз с другой стороны подставим к горелке еще один штатив с закрепленной на нем проволокой. Различие будет в ее материале – проволока сделана из стали.
В процессе нагревания мы увидим, что гвоздики на медной проволоке отваливаются быстрее. Медь быстрее нагревается по всей длине. Это показывает нам, что тепловодность различных металлов неодинакова. Медь имеет большую тепловодность, чем сталь.
Теплопроводность жидкостей
Проведем простой опыт. Наполним пробирку водой и начнем подогревать ее верхнюю часть (рисунок 4).
Вода в верхней части пробирки быстро закипит, а у дна просто нагреется. Это говорит о том, что у жидкостей теплопроводность невелика (исключение составляют ртуть и расплавленные металлы).
Причина небольшой теплопроводности жидкостей – расположение молекул в их строении. Расстояние между молекулами жидкости больше, чем в твердых телах.
Теплопроводность газов
Исследуем на опыте теплопроводность газов. Наденем на палец пробирку. Будем нагревать ее дно в пламени спиртовки (рисунок 5).
Нам придется долго ждать, чтобы почувствовать тепло нагретого в пробирке воздуха. Расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел. Значит, теплопроводность газов еще меньше.
Волосы, шерсть, перья птиц обладают плохой теплопроводностью. Причина этому – между волокнами этих веществ содержится воздух.
Теплопроводность объясняется переносом энергии от одной части тела к другой, который происходит при взаимодействии частиц вещества. Чем больше расстояние между частицами и слабее взаимодействие между ними, тем меньшей теплопроводностью обладает тело. Поэтому наименьшей теплопроводностью обладает вакуум (безвоздушное пространство). Нет частиц – нет теплопроводности.
Применение
Иногда необходимо предохранить тело от нагревания или охлаждения. Для этого используют тела с малой теплопроводностью. Если кастрюли и сковородки делают из металла (позволяет быстрее нагреваться), то их ручки делают из дерева или пластмассы. Это позволяет нам не обжигаться. По этой же причине кружки и стаканы изготавливают преимущественно из пластмассы, стекла, фарфора.
Материалы, которые используют при строительстве домов (бревна, кирпичи, бетон) обладают плохой теплопроводностью. Таким образом строения меньше охлаждаются.
В устройстве термоса тоже применяется явление теплопроводности (рисунок 6). Из пространства между колбой и кожухом выкачан воздух, так почти не осуществляется теплопередача.
Снежный покров имеет плохую теплопроводность. Это имеет огромное значение для живых организмов: многие зимующие растения защищены от вымерзания; крупные животные ночуют, зарывшись в снег; мелкие могут вести активную жизнь в норах, вырытых под снегом.
Теплопроводность и коэффициент теплопроводности. Что это такое.
Теплопроводность.
Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).
Можно сказать проще, теплопроводность – это способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.
На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем «абстрактный дом». В «абстрактном доме» стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.
Чтобы поддерживать температуру в доме 25 °С, нагреватель должен постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.
Коэффициент теплопроводности.
Количество тепла, которое проходит через стены (а по научному — интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.
Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас в качестве материалов для утепления зданий наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами — Неопор.
Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда) и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.
Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.
В строительных нормах и расчетах часто используется понятие «тепловое сопротивление материала». Это величина обратная теплопроводности. Если, на пример, теплопроводность пенопласта толщиной 10 см — 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.
Коэффициент теплопроводности материалов.
Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.
Что такое теплопроводность в физике
Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.
Теплопроводность
Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.
Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.
Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.
Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.
Конвекция
Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.
Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.
Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа. Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.
Излучение
Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.
Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.
Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.
Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».