что такое тепло и электропроводность в химии
Общие свойства металлов. Металлическая связь. Тепло- и электропроводность. Физико-механические и химические свойства металлов.
Общие свойства металлов. Физико-механические и химические свойства металлов.
— Блеск, обычно серый цвет и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл квантами света.
— Электропроводность.Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. В ряду Ag,Cu,Al,Fe уменьшается. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».
— Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.
Вытеснение более активными металлами менее активных металлов из растворов их солей:
Fe+ CuSO4 Cu + FeSO4
Металлическая связь— связь между положительными ионами в кристаллах металлов, осуществляемая за счет притяжения электронов, свободно перемещающихся по кристаллу. В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов. Эти электроны достаточно слабо связаны со своими ядрами и могут легко отрываться от них. В результате в кристаллической решетке металла появляются положительно заряженные ионы и свободные электроны. Поэтому в кристаллической решетке металлов существует большая свобода перемещения электронов: одни из атомов будут терять свои электроны, а образующиеся ионы могут принимать эти электроны из «электронного газа». Как следствие, металл представляет собой ряд положительных ионов, локализованных в определенных положениях кристаллической решетки, и большое количество электронов, сравнительно свободно перемещающихся в поле положительных центров. В этом состоит важное отличие металлических связей от ковалентных, которые имеют строгую направленность в пространстве.
Металлическая связь отличается от ковалентной также и по прочности: ее энергия в 3-4 раза меньше энергии ковалентной связи.
Энергия связи — энергия, необходимая для разрыва химической связи во всех молекулах, составляющих один моль вещества. Энергии ковалентных и ионных связей обычно велики и составляют величины порядка 100-800 кДж/моль.
Теплопроводность Способность тела передавать теплоту от более нагретых его частей менее нагретым Ag, Cu, Au, Al, W, Fe
В ряду наблюдается уменьшение теплопроводности
Электропроводность Свойство вещества проводить электрический ток (обусловлено наличием в нем свободных электронов) Ag, Cu, Au, Al, W, Fe
В ряду наблюдается уменьшение электропроводности.
Теплопроводность и электропроводность
Эти два явления очень похожи друг на друга и в какой-то степени связаны между собой.
Отличие же состоит в том, что при электропроводности НЕ происходит переноса вещества.
Для того чтобы лучше понять суть этих явлений, представим себе «общество» атомов. Если в этом обществе атомы охотно делятся друг с другом пищей (энергией), то такое вещество обладает хорошей теплопроводностью. Если же вместо пищи они дают друг другу знания – как добыть пищу («не рыбу, а удочку»), то это похоже на электропроводность, без переноса вещества.
В обществе, в котором охотно делятся пищей, как правило, охотно делятся и знаниями. Т.е. теплопроводность, как правило, означает и хорошую электропроводность.
Металлы являются проводниками, неметаллы ими не являются. Что их отличает?
Металлы находятся в левой части периодической таблицы. Это значит, что они обладают ядром и очень простой структурой электронного облака. Чем правее находится элемент, тем сложнее его электронная структура, и тем больше неметаллических свойств проявляет элемент.
Становится понятно, почему неметаллы являются плохими проводниками. Они как бы думают: «Мне бы в себе сначала разобраться, где уж мне других поучать?» Их «цель» направлена на то, чтобы достичь целостности и перейти на следующий уровень развития.
Металлы же являются целостными, и даже чувствуют «избыток понимания», которым спешат поделиться.
Чем еще отличается теплопроводность от электропроводности? Последняя имеет направленность (от одного полюса к другому). Теплопроводность не имеет направления.
Металлы ощущаются кожей как прохладные или раскаленные. Они либо активно забирают, либо активно отдают тепло.
Неметаллы ощущаются как нейтральные по своей температуре. Они не забирают, но и не отдают тепло. И это связано с их «характером», с их внутренней сложностью, которая обеспечивает им внутреннюю «широту кругозора». В отличие от металлов, которые имеют всегда четко направленный, но ограниченный «характер».
Конечно, всё это лишь человеческие эмоции и ассоциации, которые облегчают понимание информационных (волновых) свойств различных веществ.
Электропроводность веществ
В этой статье раскроем тему электропроводности, вспомним о том, что такое электрический ток, как он связан с сопротивлением проводника и соответственно с его электропроводностью. Отметим основные формулы для вычисления данных величин, коснемся темы скорости тока и ее связи с напряженностью электрического поля. Также затронем связь электрического сопротивления и температуры.
Для начала вспомним о том, что же такое электрический ток. Если поместить вещество во внешнее электрическое поле, то под действием сил со стороны этого поля, в веществе начнется движение элементарных носителей заряда — ионов или электронов. Это и будет электрическим током. Сила тока I измеряется в амперах, и один ампер — это ток, при котором через поперечное сечение проводника протекает за секунду заряд, равный одному кулону.
Ток бывает постоянным, переменным, пульсирующим. Постоянный ток не меняет своей величины и направления в каждый конкретный момент времени, переменный ток с течением времени меняет свои величину и направление (генераторы переменного тока и трансформаторы дают именно переменный ток), пульсирующий ток меняет свою величину, но не меняет направления (например выпрямленный переменный ток является пульсирующим).
Вещества имеют свойство проводить электрический ток под действием электрического поля, и это свойство называется электропроводностью, которая у разных веществ различна. Электропроводность веществ зависит от концентрации в них свободных заряженных частиц, то есть ионов и электронов, не связанных ни с кристаллической структурой, ни с молекулами, ни с атомами данного вещества. Так, в зависимости от концентрации в веществе свободных носителей заряда, вещества по степени электропроводности подразделяются на: проводники, диэлектрики и полупроводники.
Наиболее высокой электропроводностью обладают проводники электрического тока, и по физической природе, проводники в природе представлены двумя родами: металлами и электролитами. В металлах ток обусловлен перемещением свободных электронов, то есть проводимость у них электронная, а в электролитах (в растворах кислот, солей, щелочей) — перемещением ионов — частей молекул, имеющих положительный и отрицательный заряд, то есть проводимость у электролитов ионная. Ионизированные пары и газы отличаются смешанной проводимостью, в них ток обусловлен движением и электронов и ионов.
Электронная теория отлично объясняет высокую электропроводность металлов. Связь валентных электронов с их ядрами в металлах слаба, потому эти электроны свободно перемещаются от атома к атому по объему проводника.
Получается, что свободные электроны в металлах заполняют пространство между атомами подобно газу, электронному газу, и находятся в хаотичном движении. Но при внесении металлического проводника в электрическое поле, свободные электроны станут двигаться упорядоченно, они переместятся по направлению к положительному полюсу, чем создадут ток. Таким образом, упорядоченное движение свободных электронов в металлическом проводнике называется электрическим током.
Известно, что скорость распространения электрического поля в пространстве примерно равна 300000000 м/с, то есть скорости света. Это та же скорость, с которой ток проходит по проводнику.
Что это значит? Это не значит, что каждый электрон в металле движется с такой огромной скоростью, электроны в проводнике напротив — имеют скорость от нескольких миллиметров в секунду до нескольких сантиметров в секунду, в зависимости от напряженности электрического поля, а вот скорость распространения электрического тока по проводнику как раз равна скорости света.
Все дело в том, что каждый свободный электрон оказывается в общем электронном потоке того самого «электронного газа», и во время прохождения тока, электрическое поле оказывает действие на весь этот поток, в итоге электроны непрерывно друг другу передают это действие поля — от соседа к соседу.
Но движутся электроны на своих местах очень медленно, несмотря на то, что скорость распространения электрической энергии по проводнику оказывается огромной. Так, когда на электростанции включают рубильник, ток мгновенно возникает во всей сети, а электроны при этом практически стоят на местах.
Однако, когда свободные электроны движутся по проводнику, они испытывают многочисленные столкновения на своем пути, они сталкиваются с атомами, ионами, молекулами, передавая им часть своей энергии. Энергия движущихся электронов, преодолевающих такое сопротивление, частично рассеивается в виде тепла, и проводник нагревается.
Эти столкновения служат сопротивлением движению электронов, потому свойство проводника препятствовать движению заряженных частиц и называют электрическим сопротивлением. При малом сопротивлении проводника проводник нагревается током слабо, при значительном — намного сильнее, и даже до бела, этот эффект применяется в нагревательных приборах и в лампах накаливания.
Единица изменения сопротивления — Ом. Сопротивление R = 1 Ом — это сопротивление такого проводника, при прохождении по которому постоянного тока в 1 ампер, разность потенциалов на концах проводника равна 1 вольту. Эталон сопротивления в 1 Ом — столб ртути высотой 1063 мм, сечением 1 кв.мм при температуре 0°С.
Поскольку проводникам характерно электрическое сопротивление, то можно сказать, что в какой-то степени проводник способен проводить электрический ток. В связи с этим введена величина, называемая проводимостью или электропроводностью. Электропроводность — это способность проводника проводить электрический ток, то есть величина, обратная электрическому сопротивлению.
Единица измерения электропроводности G (проводимости) — Сименс (См), и 1 См = 1/(1 Ом). G = 1/R.
Так как атомы различных веществ в разной степени препятствуют прохождению электрического тока, то и электрическое сопротивление у различных веществ разное. По этой причине введено понятие удельное электрическое сопротивление, величина которого «р» характеризует проводящие свойства того или иного вещества.
Сегодня проводящие материалы в электротехнике используют в основном в виде лент, шин, проволок, с определенной площадью поперечного сечения и определенной длины, но не в виде метровых кубов. И для более удобных расчетов электрического сопротивления и электропроводности проводников конкретных размеров были введены более приемлемые единицы измерения как для удельного электрического сопротивления, так и для удельной электропроводности. Ом*мм2/м — для удельного сопротивления, и См*м/мм2 — для удельной электропроводности.
Теперь можно говорить, что удельное электрическое сопротивление и удельная электропроводность характеризуют проводящие свойства проводника площадью поперечного сечения в 1 кв.мм, длиной в 1 метр при температуре 20°C, это более удобно.
Лучшей электропроводностью обладают такие металлы как: золото, медь, серебро, хром, алюминий. Сталь и железо проводят ток хуже. Чистые металлы всегда обладают лучшей электропроводностью, чем их сплавы, поэтому чистая медь в электротехнике предпочтительней. Если нужно специально высокое сопротивление, то используют вольфрам, нихром, константан.
Зная величину удельного электрического сопротивления или удельной электропроводности, можно легко вычислить сопротивление или электропроводность конкретного проводника, изготовленного из данного материала, приняв в расчет длину l и площадь поперечного сечения S этого проводника.
При понижении температуры — наоборот, колебания атомов кристаллической решетки становятся меньше, сопротивление уменьшается (возрастает электропроводность). У одних веществ зависимость сопротивления от температуры выражена слабее, у других — сильнее. Например такие сплавы как константан, фехраль и манганин слабо меняют удельное сопротивление в определенном интервале температур, поэтому из них делают термостабильные резисторы.
Зная температурный коэффициент сопротивления и приращение температуры, можно легко вычислить удельное сопротивление вещества при заданной температуре.
Лекция по Химии на тему: «Металлическая химическая связь»
УЧЕБНАЯ ДИСЦИПЛИНА ХИМИЯ
Раздел: Типы химической связи
ТЕМА: Металлическая химическая связь
Познакомьтесь с лекционным материалом по теме.
Выполните тестовое задание (см. приложение №1)
Разгадайте тематический кроссворд (см. приложение №2)
Металлическая связь это тип связи в металлах и их сплавах между атомами или ионами металлов и относительно свободными электронами (электронным газом) в кристаллической решетке.
Металлы – это химические элементы с низкой электроотрицательностью, поэтому они легко отдают свои валентные электроны. Если рядом с элементом металлом находится неметалл, то электроны от атома металла переходят к неметаллу. Такой тип связи называется ионный (рис. 1).
В случае простых веществ металлов или их сплавов, ситуация меняется.
При образовании молекул электронные орбитали металлов не остаются неизменными. Они взаимодействуют между собой, образуя новую молекулярную орбиталь. В зависимости от состава и строения соединения, молекулярные орбитали могут быть как близки к совокупности атомных орбиталей, так и значительно от них отличаться. При взаимодействии электронных орбиталей атомов металла образуются молекулярные орбитали. Такие, что валентные электроны атома металла, могут свободно перемещаться по этим молекулярным орбиталям. Не происходит полное разделение, заряда, т. е. металл – это не совокупность катионов и плавающих вокруг электронов. Но это и не совокупность атомов, которые иногда переходят в катионную форму и передают свой электрон другому катиону. Реальная ситуация – это совокупность двух этих крайних вариантов.
Рис. 2 Металлической кристаллическая решетка
Сущность образования металлической связи состоит в следующем: атомы металлов отдают наружные электроны, и некоторые из них превращаются в положительно заряженные ионы. Оторвавшиеся от атомов электроны относительно свободно перемещаются между возникшими положительными ионами металлов. Между этими частицами возникает металлическая связь, т. е. электроны как бы цементируют положительные ионы в металлической решетке (рис. 2).
Наличие металлической связи обуславливает физические свойства металлов:
· Тепло и электропроводность
Пластичность – это способность материала легко деформироваться под действием механической нагрузки. Металлическая связь реализуется между всеми атомами металла одновременно, поэтому при механическом воздействии на металл не разрываются конкретные связи, а только меняется положение атома. Атомы металла, не связанные жесткими связями между собой, могут как бы скользить по слою электронного газа, как это происходит при скольжении одного стекла по другому с прослойкой воды между ними. Благодаря этому металлы можно легко деформировать или раскатывать в тонкую фольгу. Наиболее пластичные металлы – чистое золото, серебро и медь. Все эти металлы встречаются в природе в самородном виде в той или иной степени чистоты. Рис. 3.
Рис. 3. Металлы, встречающиеся в природе в самородном виде
Температура тела – это мера энергии составляющих его атомов или молекул. Электронный газ металла может довольно быстро передавать избыточную энергию с одного иона или атома к другому. Температура металла быстро выравнивается по всему объёму, даже если нагревание идет с одной стороны. Это наблюдается, например, если опустить металлическую ложку в чай.
Металлический блеск. Блеск – это способность тела отражать световые лучи. Высокой световой отражательной способностью обладают серебро, алюминий и палладий. Поэтому именно эти металлы наносят тонким слоем на поверхность стекла при изготовлении фар, прожекторов и зеркал.
ТЕСТ по теме: Металлическая химическая связь
1. Металлическая связь образуют
a) атомы различных неметаллов
c) атомы одинаковых неметаллов
d) атомы металлов и атомов неметаллов
2. У атомов металлов на внешнем уровне находится
a) от 2 до 3 электронов
b) от 4 до 5 электронов
c) от 1 до 3 электронов
d) от 2 до 4 электронов
3. Расположите химические элементы в порядке возрастания металлических свойств
4. Расположите химические элементы в порядке убывания металлических свойств
5. «Электронный газ» это
a) электроны внешнего энергетического уровня
b) валентные электроны
c) неспаренные электроны в атоме
d) свободные электроны в кристалле металла
6. Определите вид химической связи в веществах
1) литий; 2) аммиак; 3) хлор 4) хлорид бария
b) ковалентная неполярная
c) ковалентная полярная
7. Сходство металлической связи с ионной в
a) обобществлении электронов
b) образовании свободных атомов
c) образовании ионов
d) образовании электронов
8. Сходство ковалентной и металлической связи в
a) образовании свободных атомов
b) образовании ионов
c) образовании электронов
d) обобществлении электронов
9. Металлическая связь обуславливает следующие физические свойства (выберите 3 правильных ответа)
a) высокая электропроводность
Кроссворд по теме: Металлическая связь
Вопросы:
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Новое в блогах
Теплопроводность и электропроводность
Эти два явления очень похожи друг на друга и в какой-то степени связаны между собой.
Отличие же состоит в том, что при электропроводности НЕ происходит переноса вещества.
Для того чтобы лучше понять суть этих явлений, представим себе «общество» атомов. Если в этом обществе атомы охотно делятся друг с другом пищей (энергией), то такое вещество обладает хорошей теплопроводностью. Если же вместо пищи они дают друг другу знания – как добыть пищу («не рыбу, а удочку»), то это похоже на электропроводность, без переноса вещества.
В обществе, в котором охотно делятся пищей, как правило, охотно делятся и знаниями. Т.е. теплопроводность, как правило, означает и хорошую электропроводность.
Металлы являются проводниками, неметаллы ими не являются. Что их отличает?
Металлы находятся в левой части периодической таблицы. Это значит, что они обладают ядром и очень простой структурой электронного облака. Чем правее находится элемент, тем сложнее его электронная структура, и тем больше неметаллических свойств проявляет элемент.
Становится понятно, почему неметаллы являются плохими проводниками. Они как бы думают: «Мне бы в себе сначала разобраться, где уж мне других поучать?» Их «цель» направлена на то, чтобы достичь целостности и перейти на следующий уровень развития.
Металлы же являются целостными, и даже чувствуют «избыток понимания», которым спешат поделиться.
Чем еще отличается теплопроводность от электропроводности? Последняя имеет направленность (от одного полюса к другому). Теплопроводность не имеет направления.
Металлы ощущаются кожей как прохладные или раскаленные. Они либо активно забирают, либо активно отдают тепло.
Неметаллы ощущаются как нейтральные по своей температуре. Они не забирают, но и не отдают тепло. И это связано с их «характером», с их внутренней сложностью, которая обеспечивает им внутреннюю «широту кругозора». В отличие от металлов, которые имеют всегда четко направленный, но ограниченный «характер».
Конечно, всё это лишь человеческие эмоции и ассоциации, которые облегчают понимание информационных (волновых) свойств различных веществ.