что такое теория больших чисел

Парадокс лотереи и закона больших чисел Бернулли

Посвящается РЕАЛЬНОМУ ЗАКРЫТИЮ
игорных заведений с 1-го июля 2009 года вне игровых зон

в связи с вступлением вчера, 30.06.2009, в силу Пункта 1 статьи 17, пункта 1 статьи 18 и статьи 19
ФЕДЕРАЛЬНОГО ЗАКОНА от 29.12.2006 N 244-ФЗ «О ГОСУДАРСТВЕННОМ РЕГУЛИРОВАНИИ ДЕЯТЕЛЬНОСТИ ПО ОРГАНИЗАЦИИ И ПРОВЕДЕНИЮ АЗАРТНЫХ ИГР И О ВНЕСЕНИИ ИЗМЕНЕНИЙ В НЕКОТОРЫЕ ЗАКОНОДАТЕЛЬНЫЕ АКТЫ РОССИЙСКОЙ ФЕДЕРАЦИИ» (принятого ГД ФС РФ 20.12.2006), http://nalog.consultant.ru/doc64924.html

ПАРАДОКС ЛОТЕРЕИ И ЗАКОНА БОЛЬШИХ ЧИСЕЛ БЕРНУЛЛИ

Возможность – благоприятный случай получить разочарование

(«Афоризмы, цитаты, и крылатые слова»,
http://aphorism-list.com/t.php?page=vozmojnost)

Твои шансы выиграть в лотерею возрастут,
если ты купишь билет

Уинстон Грум (из «Правил Форреста Гампа»)
(«Афоризмы об играх»,
http://letter.com.ua/aphorism/game1.php)

Вполне ожидаемо (и философски проверяемо [англ.]), что данный конкретный билет не выиграет, но нельзя ожидать, что никакой билет не выиграет» («Академика», Список парадоксов, http://dic.academic.ru/dic.nsf/ruwiki/165304).

«Парадокс лотереи (типа спортлото)

Большинство участников лотерей (в которых выигрыш распределяется между всеми победителями, как в спортлото) обычно не ставят на «слишком симметричные» комбинации, хотя все комбинации равновозможны. Причина этого проста. Игроки по опыту знают, что, как правило, выигрывают не симметричные комбинации. В действительности выгоднее ставить на наиболее симметричные комбинации именно потому, что…. Почему?» (выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html).

Все в жизни играли в какие-либо игры, необязательно в азартные, которые, так или иначе, связаны с вероятностью. А если кто-то и не играл, то наверняка подбрасывал пару раз в жизни монетку. Просто так, для развлечения или решая какой-либо вопрос, на который самому делать выбор оказывалось непосильным или невозможным. И я проделывал в детстве то же самое. Но уже тогда в голове закрадывалось какое-то сомнение в правильности обоснования своего выбора решений даже пустяковых вопросов подбрасыванием монетки. Видимо, уже тогда не хотелось передоверять собственное право выбора слепому случаю. Но не столько из-за того, что я и сам могу выбрать лучший вариант именно сейчас и именно для себя, а больше из-за того, что такой выбор не будет справедливым. Справедливым настолько, что я без всяких дальнейших раздумий и внутренних колебаний смог бы его принять и действовать сообразно этому выбору. А затем я и вовсе прекратил дальнейшие попытки принятия решений таким нехитрым способом, когда мои опасения подтвердились во время просмотра одного из популярных индийских фильмов, проходивших у нас в 80-х годах. Если не ошибаюсь, это был фильм «Месть и закон». В нём один из главных героев, делая выбор чего-либо, с серьёзным видом подбрасывал монетку. И всё было бы ничего, да только когда его подстрелили всё-таки, и он подарил свою «счастливую монетку», то оказалось, что она была с двумя одинаковыми сторонами. Видимо, этот герой хорошо усвоил первое правило успеха: если хочешь выиграть в казино, стань его владельцем.

На вопрос задачи, приведённой Секеем в своей книге, о том, почему ВЫГОДНЕЕ выбирать именно симметричные варианты геометрического расположения номеров на поле карточки, ответ не так уж и сложен. Вывод следует, исходя из трёх условий:

1) все варианты: и симметричные, и несимметричные – равновероятны;

2) большинство игроков выбирают несимметричные варианты;

3) получаемая сумма выигрыша зависит от количества: а) участников, б) выигравших (по категориям выигрыша, конечно);

следовательно, с точки зрения выгоды, то есть увеличения возможной прибыли при угадывании, симметричные варианты угадает намного меньшее количество игроков при том же самом количестве участвующих в лотерее, и сумма выигрыша будет делиться между намного меньшим количеством победителей.

Но с другой стороны, если бы всё так было просто, то и не возникало бы никаких сложностей с определением вероятности тех или иных событий. А парадоксов и разнообразных парадоксальных задач по теории вероятности существует не меньше, а то и гораздо больше, чем в других отраслях науки (в тех же математике, логике, физике). Например, такая задача.

«Парадокс игры в кости

Правильная игральная кость при бросании с равными шансами падает на любую из граней 1,2,3,4,5 или 6. (Сумма очков на противоположных гранях равна 7, т.е. падение на 1 означает выпадение 6 и т.д.).

В случае бросания 2-х костей сума выпавших чисел заключена между 2 и 12. Как 9, так и 10 можно получить двумя разными способами: 9 = 3 + 6 = 4 + 5 и 10= 4 + 6 = 5 + 5. В задаче с тремя костями и 9 и 10 получаются шестью способами. Почему тогда 9 появляется чаще, когда бросают две кости, а 10, когда бросают три?» (выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html)».

В этой задаче нет никакого парадокса. Парадоксальность, а точнее уловка, скрыта в неполной информации: количество вариантов возможных комбинаций больше указанного. Потому что указаны лишь типы вариантов, способы составления, которые нужно распределить на количество костей.

Ответ прост: 9 появляется чаще, когда бросают две кости, а 10, когда бросают три, потому что вероятность выпадения суммы, равной 9, при двух костях больше, чем вероятность выпадения суммы, равной 10, при трёх костях, что отражает соотношение количества вариантов составления этих сумм.

Количество вариантов составления сумм:

А. 9 на двух кубиках: 3+6 (2 возможных варианта, то есть на первом 3 на втором 6 и наоборот) и 4+5 (2 вар.). Итого: 4 варианта

10 на двух кубиках: 4+6 (2 вар.) и 5+5 (1 вар.). Итого: 3 варианта

Соотношение вероятности в пользу суммы 9.

Б. 9 на трёх кубиках: 1+2+6 (6 вар.), 1+3+5 (6 вар.), 1+4+4 (3 вар.), 2+2+5 (3 вар.), 2+3+4 (6 вар.), 3+3+3 (1 вар.). Итого: 25 вариантов

10 на трёх кубиках: 1+3+6 (6 вар.), 1+4+5 (6 вар.), 2+2+6 (3 вар.), 2+3+5 (6 вар.), 2+4+4 (3 вар.), 3+3+4 (3 вар.), 4+4+2 (3 вар.) Итого: 30 вариантов

Соотношение вероятности в пользу суммы 10.

Почему же вероятность событий порождает столько противоречий?

Возможно, я ошибаюсь, но, по моему мнению, даже математики, не говоря уж о тех, кто вовсе не знаком с теорией вероятности, находятся в плену одной ложной исходной посылки о распределении вероятности. Это представление о том, что события происходят только в зависимости от их вероятности, без учёта распределения вероятности во времени. Жизнь не всегда идёт по рассчитанным схемам и именно так, как её описывают математически. Отражение этой двуликости: математического расчёта и в то же самое время не совпадение с ним – приводится в следующем парадоксе.

ПАРАДОКС ЗАКОНА БОЛЬШИХ ЧИСЕЛ БЕРНУЛЛИ

«Отношение выпадений герба или решки к общему числу попыток при большом числе бросаний стремится к 1/2. Некоторые игроки уверены, что при серии выпадений орлов увеличивается вероятность выпадения решки. И в то же время у монет нет памяти, они не знают предыдущие броски и каждый раз вероятность выпадения орла или решки равна 1/2. Даже если перед этим выпадали 1000 гербов подряд. Не противоречит ли это закону Бернулли?» (выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html).

Закон больших чисел Бернулли

«Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие А, причём вероятность наступления этого события одна и та же при каждом испытании и равна р. Если событие А фактически произошло m раз в n испытаниях, то отношение m/n называют, как мы знаем, частотой появления события А. Частота есть случайная величина, причем вероятность того, что частота принимает значение m/n, выражается по формуле Бернулли …

Закон больших чисел в форме Бернулли состоит в следующем: с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом числе опытов частота появления события А как угодно мало отличается от его вероятности, т. е…

Таким образом, из противоречий, заключённых в этих парадоксах, можно сформулировать общую проблему.

1. Парадокса лотереи – вероятность выигрыша конкретного билета ничтожна, но вероятность выигрыша какого-либо билета равна 1, то есть 100 процентам;

2. Парадокса закона больших чисел Бернулли – вероятность выпадения любого варианта равнозначна, но в действительности она должна меняться при большем выпадении одних вариантов для приведения вероятности к балансу.

Проблема, на мой взгляд, содержится в непонимании неравномерного распределения вероятности на количество вариантов или, другими словами, в зависимости вероятности одного варианта события от другого во временном контексте.

Никто не будет спорить, что сумма вероятностей вариантов события равна единице. Но почему все считают, что распределение по вариантам равномерно? Такой подход полностью игнорирует изменчивость мира в течение времени. И те же выпадения сторон монетки должны тогда строго чередоваться по очереди: орёл, решка, орёл, решка. Тогда распределение вероятности, рассчитанное по формуле, будет полностью совпадать с действительным ЗА ЛЮБОЙ КОНКРЕТНЫЙ ПЕРИОД ВРЕМЕНИ. Потому что в пределах этого временного периода, количество выпадающих разных вариантов будет одинаковым. Но в действительности это не так. Внутри отдельных периодов вероятность каждого варианта события меняется от 0 до 1 (от нуля до ста процентов). Например, когда из десяти раз все десять раз выпадет орёл (или красное, если это рулетка в казино). Мне известен случай, когда в рулетку выпало 15 раз подряд чёрное. Это с точки расчета вероятности вообще невозможно, если брать за единицу, то есть сумму всех возможных вариантов, к примеру, 20 выпадений, в которые входят эти пятнадцать. И это, кстати, продолжая мысль, почему-то не привело к следующим пятнадцати выпадениям красного цвета. Такие выпадения подряд игроки называют сериями. Серии наблюдаются и в спорте, да вообще везде.

Вы скажете, что закон Бернулли описывает периоды с большими, «неограниченными количествами опытов» и в этих пределах он верен? Тогда почему бы той же монетке не выпасть сначала 1000 раз одной стороной подряд, а затем тысячу раз другой? Ведь закон в этом случае не нарушается ни на каплю? В действительности этого не происходит. В действительности любые длинные ряды выпадений двух возможных вариантов событий (А и Б, что можно заменить, например, на «орёл» и «решка») будут близко соответствовать схеме выпадений:

А, Б, А, Б, ААА, Б, АА, ББ, АА, ББББББ, АА, БББ, А, ББББББ, ААА, Б, АА, ББ, А, Б, АААА, Б, АА, БББ, АААА, Б, А, Б, А… (по 30 А и Б, всего 60).

Как видно, в рамках каждого конкретного отрезка (периоды выпадений или периоды времени) наблюдаются неравномерности. И длительность «серий» выпадений одного варианта а) подряд и б) в рамках периода (например, 10 выпадений) может колебаться. Теоретически амплитуда таких колебаний ничем не ограничена, но практически не ограниченных по длительности серий не существует. То есть существует некий предел, до которого возрастает длительность «серий», её «длина». Этими двумя ограничениями и регулируется баланс вероятности вариантов события: во-первых, переменчивостью вариантов в рамках произвольного периода (времени), другими словами, переменой «длины» серий от 1 до нескольких повторов подряд, а во-вторых, ограничением длины и частоты серий в рамках произвольного периода (времени). Этим достигается разнообразие событий, вариативность.

Такое распределение вероятности и отмечают игроки, которые выбирают несимметричные варианты расположения номеров на лотерейной карточке. Они исходят не из равного распределения вероятности на количество номеров, то есть их равновозможного выпадения, а, как раз, из неравномерного распределения вероятности по номерам. Почему-то ещё до сих пор не выпадало тех же самых номеров не то, что два тиража подряд, но и в массе всех тиражей. Это я могу говорить с уверенностью на основе изучения лотереи «Спортлото 5 из 36», проводимой в течение десятков лет. Подряд два тиража выпадет максимум 1 номер предыдущего тиража (достаточно часто – около четверти тиражей), 2 (в единичных случаях), 3 (в более редких случаях). Согласно теории вероятности когда-нибудь и все пять номеров выпали бы одинаковыми два тиража подряд. Но на это ушли бы тысячи лет, даже если бы тиражи проводились каждый день, а не раз в неделю. Это следует, если исходить из того, что общее количество возможных вариантов в лотерее «Спортлото 5 из 36» (36 * 35 * 34 * 33 * 32 / 1 * 2 * 3 * 4 * 5) = 376. 992, а повтор пяти номеров предыдущего тиража произойдёт не раньше, чем выпадут все возможные варианты хотя бы раз, что произойдёт при проведении 1 тиража в день, с учётом високосных годов за: 376. 992 / (365 * 4 + 1) * 4 = 1032,1478

1032 года. Но даже и после полного перебора всех возможных вариантов подряд два одинаковых тиража могут не выпасть ещё несколько тысяч лет, а возможно, и никогда.

Парадокс лотереи возникает из-за того, что вероятность выигрыша каждого конкретного билета в отдельности, то есть любого, ничтожна мала, стремиться к нулю, но вероятность выигрыша какого-то одного конкретного билета равна ста процентам. Потому что вероятность выпадения конкретных номеров в конкретном тираже распределена между всеми вариантами не-рав-но-мер-но. Грубо говоря, сто процентов вероятности делится не на всю массу билетов, а на две части – все выигравшие (то есть один, для упрощения) и все проигравшие (все остальные). Таким образом, шанс выиграть есть и у каждого, и ни у кого. Потому что невозможно узнать, КАКОЙ ИМЕННО билет выиграет, но что КАКОЙ-ТО ОДИН билет выиграет, мы знаем заранее (не вдаваясь в детали количества выигравших и условий выигрыша).
В этом месте, как это ни смешно, становится очевидной правота «женской логики», которая утверждает, что вероятность падения метеорита на Красную площадь равна не один к нескольким миллионам, а пятьдесят на пятьдесят – или упадёт или нет.
Видимо, подобного моему мнения придерживался и такой известный математик, как Пуанкаре. «Пуанкаре как-то заметил с сарказмом, что все верят в универсальность нормального распределения: физики верят, потому что думают, что математики доказали его логическую необходимость, а математики верят, так как считают, что физики проверили это лабораторными экспериментами» (Парадокс де Муавра, выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html).

То есть парадокс лотереи возникает из-за неправильной исходной посылки – распределение вероятности не равномерно в рамках отдельного периода, а изменчиво. И если принять за отдельный период один тираж, то в нём НЕ МОГУТ выпасть ВСЕ возможные варианты, а выпадет только ОДИН. Поэтому противоречивое понимание вероятности исчезает: вероятность выпадения абсолютного большинства вариантов будет равна нулю, и лишь вероятность одного варианта будет равна единице.

В парадоксе лотереи нет противоречивых условий:

1) только один вариант выпадает в конкретном тираже из всех возможных (выигрывает один билет);

2) возможных вариантов намного больше одного.

Следовательно, вероятность ожидания выигрыша только ОДНОГО из всех возможных вариантов (билетов) стремиться к единице, а вероятность ожидания выигрыша ВСЕХ ОСТАВШИХСЯ ОТ ОДНОГО вариантов (билетов) стремиться к нулю.

В парадоксе больших чисел Бернулли тоже нет противоречия:

1) вероятность выпадения одного из возможных вариантов равна половине – 0,5;

2) ожидание изменения вероятности выпадения второго из возможных вариантов после серии выпадений первого меняется.

Следовательно, вероятность события в целом не меняется, то есть сумма вероятностей вариантов остаётся прежней, но в рамках отдельного периода, тем более, если он несравнимо мал по отношению к сумме всех возможных периодов выпадений, вероятность меняется, что и отражается в ожиданиях игроков.

Таким образом, В ПАРАДОКСЕ ЛОТЕРЕИ НЕТ ПРОТИВОРЕЧИЯ, КАК И В ПАРАДОКСЕ БОЛЬШИХ ЧИСЕЛ БЕРНУЛЛИ.

01.07.2009 03:00 – 6.30

PS: вероятность появления другой статьи вместо этой была близка к 100 процентам, именно сегодня или в ближайшие дни. Однако этого не произошло. А появление этой статьи в ближайшие недели было вообще близко к нулю. Однако это произошло.

Источник

Закон больших чисел и то, чем он не является

О законе больших чисел (збч) написано много (например, на английском, тут и тут, также [1]). В этом тексте я попробую рассказать о том, чем закон больших чисел не является – об ошибочном восприятии этого закона и потенциальных ловушках, спрятанных в математических формулировках.

Начнем с того, что же такое закон больших чисел. Неформально, это математическая теорема о том, что «вероятность отклонений среднего по выборке от математческого ожидания мала» и что «эта вероятность стремится к нулю при увеличении выборки». Совсем неформально, теорема утверждает, что с мы можем быть в достаточной степени уверены, что среднее по нашей выборке достаточно близко к «настоящему» среднему и таким образом хорошо его описывает. Разумеется, предполагается наличие традиционного статистического «багажа» — наши наблюдения из выборки должны описывать одно и то же явление, они должны быть независимы, и мысль о том, что есть некоторое «настоящее» распределение с «настоящим» средним, не должна вызывать у нас существенных сомнений.

При формулировке закона мы говорим «среднее по выборке», и все что может быть математически записано как такое среднее, попадает под действие закона. Например, доля событий в общей массе может быть записана как среднее, — нам достаточно записать наличие события как «1» и отсутствие как «0». В итоге среднее будет равно частоте и частота должна быть близка к теоретическому среднему. Именно поэтому по ожидаем, что доля «орлов» при подбрасывании идеальной монеты будет близка к ½.

Рассмотрим теперь ловушки и ошибочные представления об этом законе.

Во-первых, ЗБЧ не всегда верен. Это всего лишь математическая теорема с «входными данными» — предположениями. Если предположения неверны, то и закон не обязан выполняться. Например, это так если наблюдения зависимы, или если нет уверенности в том, что «настоящее» среднее существует и конечно, или если изучаемое явление меняется во времени и мы не можем утверждать, что мы наблюдаем одну и ту же величину. По правде говоря, в определенной степени ЗБЧ верен и в этих случаях, например, для слабокоррелированных наблюдений или даже в том случае когда наблюдаемая величина меняется во времени. Однако, для корректного приложения этого к непосредственной реальности нужен хорошо тренированный специалист-математик.

Во-вторых, кажется верным, что ЗБЧ утверждает «среднее по выборке близко к настоящему среднему». Однако, такое утверждаение остается не полным: надо обязательно добавлять «с высокой долей вероятности; и эта вероятность всегда меньше 100%».

В-третьих, хочется сформулировать ЗБЧ как «среднее по выборке сходится к настоящему среднему при неограниченном росте выборки». Однако, это неверно, потому что среднее по выборке вообще никуда не сходится, так как оно случайное и остается таковым для любого размера выборки. Например, даже если подбросить симметричную монету миллион раз, все равное есть шанс, что доля орлов будет далека от ½ или даже равна нулю. В определенном смысле, всегда есть шанс получить что-то необычное. Надо признать, однако, что наша интуиция все-таки подсказыает нам что ЗБЧ должен описывать какую-то сходимость, и так есть на самом деле. Только «сходится» не среднее, а «вероятность отклонения выборочного среднего от его истинного значения», и сходится к нулю. Так как эта идея интуитивно очень удобна («шансы увидеть что-то необычное стремятся к нулю»), матетматики придумали для этого особый тип сходимости – «сходимость по вероятности».

В-четвертых, ЗБЧ не говорит ничего о том, когда выборочное среднее можно считать достаточно близким к теоретическому. Закон больших чисел только постулирует существование определенного явления, он ничего не говорит о том, когда его можно использовать. Получается, на ключевой вопрос с точки зрения практики — «могу ли я использовать ЗБЧ для моей выборки размера n?», закон больших чисел не отвечает. Ответы на эти вопросы дают другие теоремы, например, Центральная Предельная Теорема. Она дает представление о том, в каких пределах выборочное среднее может отклоняться от своего истинного значения.

В заключение следует отметить центральную роль ЗБЧ в статистике и теории вероятностей. История этого закона началась тогда, когда ученые заметили, что частоты некоторых повторяющихся явлений стабилизируются и перестают существенно меняться, при условии многократного повторения опыта или наблюдения. Поразительным было то, что эта «стабилизация частот» наблюдалась для совершенно несвязаных явления – от бросания игральной кости до урожайности в сельском хозяйстве, указывая на возможное существование «закона природы». Интересно, что этот закон природы оказался частью математики, а не физики, химии или биологии, как обычно бывает с законами природы.

[1] Illustrating the Law of Large Numbers (and Confidence Intervals) Jeffrey D Blume & Richard M Royall

Источник

Закон больших чисел

что такое теория больших чисел. картинка что такое теория больших чисел. что такое теория больших чисел фото. что такое теория больших чисел видео. что такое теория больших чисел смотреть картинку онлайн. смотреть картинку что такое теория больших чисел.

Взаимодействуя ежедневно в работе или учебе с цифрами и числами, многие из нас даже не подозревают о том, что существует очень интересный закон больших чисел, применяемый, например, в статистике, экономике и даже психолого-педагогических исследованиях. Он относится к теории вероятностей и говорит о том, что среднее арифметическое какой-либо большой выборки из фиксированного распределения близко к математическому ожиданию этого распределения.

Вы, наверное, заметили, что понять сущность этого закона непросто, особенно тем, кто не особо дружит с математикой. Исходя из этого, мы бы хотели рассказать о нем простым языком (насколько это возможно, конечно), чтобы каждый мог хотя бы примерно уяснить для себя, что это такое. Эти знания помогут вам лучше разобраться в некоторых математических закономерностях, стать более эрудированным и положительным образом повлиять на развитие мышления.

Понятия закона больших чисел и его трактовка

Помимо рассмотренного нами выше определения закона больших чисел в теории вероятностей, можно привести и его экономическое толкование. В этом случае он представляет собой принцип, согласно которому частоту финансовых потерь конкретного вида можно предсказать с высокой степенью достоверности тогда, когда наблюдается высокий уровень потерь подобных видов вообще.

Помимо этого, в зависимости от уровня сходимости признаков можно выделить слабый и усиленный законы больших чисел. О слабом речь идет, когда сходимость существует по вероятности, а об усиленном – когда сходимость существует практически во всем.

Если интерпретировать несколько иначе, то следует сказать так: всегда можно найти такое конечное число испытаний, где с любой запрограммированной наперед вероятностью меньше единицы относительная частота появления какого-то события будет крайне мало отличаться от его вероятности.

Таким образом, общую суть закона больших чисел можно выразить так: результатом комплексного действия большого количества одинаковых и независимых случайных факторов будет такой результат, который не зависит от случая. А если говорить еще более простым языком, то в законе больших чисел количественные закономерности массовых явлений будут явно проявляться только при большом их числе (поэтому и называется закон законом больших чисел).

Отсюда можно сделать вывод, что сущность закона состоит в том, что в числах, которые получаются при массовом наблюдении, имеются некоторые правильности, обнаружить которые в небольшом количестве фактов невозможно.

Сущность закона больших чисел и его примеры

Закон больших чисел выражает наиболее общие закономерности случайного и необходимого. Когда случайные отклонения «гасят» друг друга, средние показатели, определенные для одной и той же структуры, приобретают форму типичных. Они отражают действия существенных и постоянных фактов в конкретных условиях времени и места.

Определенные посредством закона больших чисел закономерности сильны только тогда, когда представляют массовые тенденции, и они не могут быть законами для отдельных случаев. Так, вступает в силу принцип математической статистики, говорящий, что комплексное действие ряда случайных факторов способно стать причиной неслучайного результата. И наиболее яркий пример действия данного принципа – это сближение частоты наступления случайного события и его вероятности, когда возрастает количество испытаний.

Давайте вспомним обычное бросание монетки. Теоретически орел и решка могут выпасть с одной и той же вероятностью. Это означает, что если, к примеру, бросить монетку 10 раз, 5 из них должна выпасть решка и 5 – орел. Но каждый знает, что так не происходит практически никогда, ведь соотношение частоты выпадения орла и решки может быть и 4 к 6, и 9 к 1, и 2 к 8 и т.д. Однако с увеличением количества подбрасываний монетки, например, до 100, вероятность того, что выпадет орел или решка, достигает 50%. Если же теоретически проводить бесконечное количество подобных опытов, вероятность выпадения монетки обеими сторонами всегда будет стремиться к 50%.

На то, как именно упадет монетка, влияет огромное число случайных факторов. Это и положение монетки на ладони, и сила, с которой совершается бросок, и высота падения, и его скорость и т.д. Но если опытов много, вне зависимости от того, как воздействуют факторы, всегда можно утверждать, что практическая вероятность близка к вероятности теоретической.

А вот еще один пример, который поможет понять сущность закона больших чисел: предположим, что нам нужно оценить уровень заработка людей в каком-то регионе. Если мы будем рассматривать 10 наблюдений, где 9 человек получают 20 тыс. рублей, а 1 человек – 500 тыс. рублей, среднее арифметическое составит 68 тыс. рублей, что, естественно, маловероятно. Но если мы возьмем в расчет 100 наблюдений, где 99 человек получают 20 тыс. рублей, а 1 человек – 500 тыс. рублей, то при расчете среднего арифметического получим 24,8 тыс. рублей, что уже ближе к реальному положению дел. Увеличивая число наблюдений, мы будем заставлять среднее значение стремиться к истинному показателю.

Именно по этой причине для применения закона больших чисел в первую очередь необходимо набрать статистический материал, чтобы получать правдивые результаты, изучая большое число наблюдений. Потому-то и удобно использовать этот закон, опять же, в статистике или социальной экономике.

Подведем итоги

Значение того, что закон больших чисел работает, сложно переоценить для любой области научного знания, и особенно для научных разработок в области теории статистики и методов статистического познания. Действие закона также обладает большим значением и для самих изучаемых объектов с их массовыми закономерностями. На законе больших чисел и принципе математической статистике основываются практически все методы статистического наблюдения.

Но, даже не беря во внимание науку и статистику как таковые, можно смело сделать вывод, что закон больших чисел – это не просто явление из области теории вероятностей, но феномен, с которым мы сталкиваемся практически каждый день в своей жизни.

Надеемся, теперь сущность закона больших чисел стала вам более понятна, и вы сможете легко и просто объяснить его кому-то другому. А если тема математики и теории вероятностей вам интересна в принципе, то рекомендуем почитать о числах Фибоначчи и парадоксе Монти Холла. Также познакомьтесь с приближенными вычислениями в жизненных ситуациях и самыми популярными числами. И, конечно же, обратите внимание на наш курс по когнитивистике, ведь, пройдя его, вы не только овладеете новыми техниками мышления, но и улучшите свои когнитивные способности в целом, в том числе и математические.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *