что такое теорема в математике
ТЕОРЕМА
— математическое утверждение, истинность к-рого установлена путем доказательства. Понятие Т. развивалось и уточнялось вместе с понятием математич. доказательства. При использовании аксиоматического метода Т. рассматриваемой теории определяются как высказывания, выводимые чисто ло-гич. путем из нек-рых заранее выбранных и фиксированных высказываний, называемых аксиомами. Поскольку аксиомы предполагаются истинными, то истинными должны быть и Т. Дальнейшее уточнение понятий доказательства и Т. связано с предпринятым в математич. логике исследованием понятия логического следствия, в результате чего для широкого класса математич. теорий процесс логич. вывода удалось свести к преобразованию формул, т. е. математич. утверждений, записанных на подходящем формализованном языке, по точно сформулированным правилам ( вывода правилам), относящимся лишь к форме (а не к содержанию) предложений. В возникающих таким образом формальных теориях доказательством наз. конечная последовательность формул, каждая из к-рых либо является аксиомой, либо получается из нек-рых предыдущих формул этой последовательности по одному из правил вывода. Т. наз. формула, являющаяся последней формулой в нек-ром доказательстве.
Такое уточнение понятия Т. позволило получить, пользуясь строгими математич. методами, ряд важных результатов о математич. теориях. В частности, было установлено, что аксиоматич. теории, представляющие многие существенные разделы математики (напр., арифметику), неполны, т. е. существуют предложения, истинность или ложность к-рых нельзя установить чисто логич. путем на основе аксиом. Эти теории, как правило, неразрешимы, т. е. не существует единого метода (алгоритма), позволяющего установить, является ли Т. произвольное данное высказывание.
Смотреть что такое «ТЕОРЕМА» в других словарях:
Теорема Лёба — Теорема Лёба теорема в математической логике о взаимосвязи между доказуемостью утверждения и самим утверждением. Установлена математиком Мартином Хуго Лёбом в 1955 году. Теорема Лёба гласит, что во всякой теории, включающей аксиоматику… … Википедия
ТЕОРЕМА — (от греч. theoreo – рассматриваю) научное положение. Философский энциклопедический словарь. 2010. ТЕОРЕМА (греч. ϑεώρημα, от ϑεωρέω – рассматриваю, исследу … Философская энциклопедия
ТЕОРЕМА — (греч. theorema, от theorein рассматривать). Предложение, долженствующее быть подтвержденным; истина, требующая доказательства, преимущественно в математике. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТЕОРЕМА… … Словарь иностранных слов русского языка
ТЕОРЕМА — Пифагора. Жарг. шк. Шутл. Учительница математики. ВМН 2003, 131. Теорема Пофигатора. Жарг. шк. Шутл. Теорема Пифагора. ВМН 2003, 108. Теорема Фаллоса. Жарг. студ. (матем.). Шутл. Теорема Фалеса. (Запись 2003 г.). Теорема хана банаха. Жарг. студ.… … Большой словарь русских поговорок
теорема — См … Словарь синонимов
ТЕОРЕМА — (греч. theorema от theoreo рассматриваю), в математике предложение (утверждение), устанавливаемое при помощи доказательства (в противоположность аксиоме). Теорема обычно состоит из условия и заключения. Напр., в теореме: если в треугольнике один… … Большой Энциклопедический словарь
ТЕОРЕМА — ТЕОРЕМА, утверждение или предложение, которое доказывается логическими рассуждениями, основанными на фактах и АКСИОМАХ. см. также ВЕЛИКАЯ ТЕОРЕМА ФЕРМА … Научно-технический энциклопедический словарь
ТЕОРЕМА — ТЕОРЕМА, теоремы, жен. (от греч. theorema, букв. зрелище) (научн.). Положение, справедливость которого устанавливается путем доказательств, основанных на аксиомах или на других, уже доказанных положениях (мат.). Доказать теорему. Пифагорова… … Толковый словарь Ушакова
ТЕОРЕМА — «ТЕОРЕМА» (Теогеmа) Италия, 1968, 100 мин. Философская драма. Возможно, одна из самых противоречивых картин в истории мирового кино. Она вызвала взаимоисключающие трактовки, нападки на режиссера слева и справа, расколола представителей Ватикана… … Энциклопедия кино
Теорема Бёма — Якопини положение структурного программирования, согласно которому любой исполняемый алгоритм может быть преобразован к структурированному виду, то есть такому виду, когда ход его выполнения определяется только при помощи трёх структур… … Википедия
Теорема
Из Википедии — свободной энциклопедии
Многие математические теоремы являются условными утверждениями. В этом случае доказательство выводит заключение из условий, называемых гипотезами или предпосылками. В свете интерпретации доказательства как оправдания истины, заключение часто рассматривается как необходимое следствие гипотез, а именно, что заключение верно в случае, если гипотезы верны, без каких-либо дополнительных предположений. Тем не менее, условия могут интерпретироваться по-разному в некоторых дедуктивных системах, в зависимости от значений, присвоенных правилам вывода и символа условия.
Хотя теоремы могут быть написаны в полностью символической форме, например, с помощью исчисления высказываний, они часто выражаются на естественном языке (английском, русском, французском и др.). То же верно и для доказательств, которые часто выражаются в виде логически организованной и четко сформулированной цепи неформальных аргументов, предназначенных для того, чтобы убедить читателей в истинности формулировки теоремы, из каковой цепи в принципе можно построить формальное символическое доказательство. Такие аргументы, как правило, легче проверить, чем чисто символические, и, на самом деле, многие математики отдают предпочтение доказательству, которое не только демонстрирует справедливость теоремы, но и каким-то образом объясняет, почему она, очевидно, верна. В некоторых случаях одной картины достаточно для доказательства теоремы.
Поскольку теоремы лежат в основе математики, они также играют центральную роль в её эстетике. Теоремы часто описываются как «тривиальные», «сложные», «глубокие» или даже «красивые». Эти субъективные суждения варьируются не только от человека к человеку, но и со временем: например, когда доказательство упрощено или лучше понято, теорема, которая когда-то была трудной, может стать тривиальной. С другой стороны, глубокая теорема может быть сформулирована просто, но её доказательство может включать в себя удивительные и тонкие связи между различными областями математики. Особенно известным примером такой теоремы является Великая теорема Ферма.
Значение слова «теорема»
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
В математических текстах теоремами обычно называют только те доказанные утверждения, которые находят широкое применение в решении математических задач. При этом требуемые доказательства обычно кем-либо найдены (исключение составляют в основном работы по логике, в которых изучается само понятие доказательства, а потому в некоторых случаях теоремами называют даже неопределённые утверждения). Менее важные утверждения-теоремы обычно называют леммами, предложениями, следствиями, условиями и прочими подобными терминами. Утверждения, о которых неизвестно, являются ли они теоремами, обычно называют гипотезами.
Наиболее знаменитыми являются: теорема Пифагора, теорема Ферма.
ТЕОРЕ’МА, ы, ж. [от греч. theōrēma, букв. зрелище] (науч.). Положение, справедливость к-рого устанавливается путем доказательств, основанных на аксиомах или на других, уже доказанных положениях (мат.). Доказать теорему. Пифагорова т. || Положение, к-рое может быть выведено из основных положений логики (филос.).
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
теоре́ма
1. матем. положение, утверждение, истинность которого нуждается в доказательстве и устанавливается путём доказательства ◆ Если вы не знаете, какие углы называются смежными, не знаете теоремы о сумме смежных углов, то вы это доказательство не поймёте. А. В. Погорелов, «Геометрия, учебник для 7-11 классов», 1999 г.
Фразеологизмы и устойчивые сочетания
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: модельный — это что-то нейтральное, положительное или отрицательное?
Что такое аксиома, теорема и доказательство теоремы
Понятие аксиомы
Аксиома — это правило, которое считают верным и которое не нужно доказывать. В переводе с греческого «аксиома» значит принятое положение — то есть взяли и договорились, что это истина, с которой не поспоришь.
Аксиоматический метод — это подход к получению знаний, при котором сначала разрабатывают аксиомы, а потом с их помощью формулируют новые теории.
Синоним аксиомы — постулат. Антоним — гипотеза.
Основные аксиомы евклидовой геометрии
Учить наизусть эти аксиомы не обязательно. Главное — помнить о них и держать под рукой, чтобы при доказательстве теоремы сослаться на одну из них.
А теперь давайте рассмотрим несколько аксиом из геометрии за 7 и 8 класс.
Самая известная аксиома Евклида — аксиома о параллельных прямых. Звучит она так:
Это значит, что если дана прямая и любая точка, которая не лежит на этой прямой, то через неё можно провести только одну единственную прямую, которая будет параллельна этой первой данной прямой.
У этой аксиомы два следствия:
Аксиома Архимеда заключается в том, что, если отложить достаточное число раз меньший из двух отрезков, то можно покрыть больший из них. Звучит так:
Если на прямой есть меньший отрезок А и больший отрезок B, то, можно сложить А достаточное количество раз, чтобы покрыть B.
На картинке можно увидеть, как это выглядит:
Из этого следует, что не существует бесконечно малых и бесконечно больших величин. В качестве математической формулы аксиому можно записать так: А + А + … + А = А * n > В, где n — это натуральное число.
Понятие теоремы
Что такое аксиома мы уже поняли, теперь узнаем определение теоремы.
Теорема — логическое следствие аксиом. Это утверждение, которое основано на аксиомах и общепринятых утверждениях, которые были доказаны ранее, и доказывается на их основе.
Состав теоремы: условие и заключение или следствие.
Среди теорем выделяют такие, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.
Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы. Пример леммы: если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.
Следствие — утверждение, которое выводится из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.
Примеры следствий из аксиомы о параллельности прямых:
Доказательство теоремы — это процесс обоснования истинности утверждения.
Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя от аксиом к теоремам.
Способы доказательства геометрических теорем
Часть аналитического способа — доказательство от противного, когда для доказательства данного предложения убеждают в невозможности предположения противоположного.
Приемы для доказательства в геометрии:
Обратная теорема — это такой перевертыш: в ней условие исходной теоремы дано заключением, а заключение — условием.
Прямая и обратная теорема взаимно-обратные. Например:
В первой теореме данное условие — это равенство сторон треугольника, а заключение — равенство противолежащих углов. А во второй всё наоборот.
Противоположная теорема — это утверждение, в котором из отрицания условия вытекает отрицание заключения.
Вот, как выглядит взаимное отношение теорем на примере:
В геометрическом изложении достаточно доказать только две теоремы, тогда остальные справедливы без доказательства.
Записывайся на онлайн обучение по математике для учеников с 1 по 11 классы!
Доказательство через синтез
Рассмотрим пример синтетического способа доказательства.
Теорема: сумма углов треугольника равна двум прямым.
Дан треугольник: ABC. Нужно доказать, что A + B + C = 2d.
Доказательство:
Проведем прямую DE, так чтобы она была параллельна AC.
Сумма углов, лежащих по одну сторону прямой, равна двум прямым, следовательно, α + B + γ = 2d.
Так как α = A, γ = C, то заменим в предыдущем равенстве углы α и γ равными им углами: A + B + C = 2d. Что и требовалось доказать.
Здесь исходным предложением в цепи доказательств выбрана теорема о сумме углов, которые лежат по одну сторону прямой. Есть связь с теоремами о равенстве углов накрест-лежащих при пересечении двух параллельных третьею косвенною. Доказываемая теорема есть необходимое следствие всех предложенных теорем и является в цепи доказательств последним заключением.
Доказательство через анализ
Рассмотрим пример аналитического способа доказательства.
Теорема: диагонали параллелограмма пересекаются пополам.
Дан параллелограмм: ABCD.
Доказательство:
Если диагонали пересекаются пополам, то треугольники AOB и DOC равны.
Равенство же треугольников AOB и DOC вытекает из того, что AB = CD, как противоположные стороны параллелограмма и ∠α = ∠γ, ∠β = ∠δ, как накрест-лежащие углы.
Таким образом мы видим, что последовательно данное предложение заменяется другим и такое замещение совершается до тех пор, пока не дойдем до уже доказанного предложения.
Теоремы без доказательств
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
Доказательств может быть несколько. Одно из них звучит так: если построить квадраты на сторонах прямоугольного треугольника, то площадь большего из них равна сумме площадей меньших квадратов. На картинке понятно, как это работает:
Теорема косинусов: квадрат одной стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. В виде формулы это выглядит так:
где a, b и c — стороны плоского треугольника,
α — угол напротив стороны а.
Следствия из теоремы косинусов:
Понятия свойств и признаков
У нас есть список аксиом и мы уже знаем, что такое теорема и как ее доказывать. Есть два типа утверждений среди теорем, которые часто встречаются при изучении новых фигур: свойства и признаки.
Свойства и признаки — понятия из обычной жизни, которые мы часто используем.
Свойство — такое утверждение, которое должно выполняться для данного типа объектов. У ноутбука есть клавиатура — это свойство есть у каждого ноутбука. А у электронной книги такого свойства нет.
Примеры геометрических свойств мы уже знаем: у квадрата все стороны равны. Это верно для любого квадрата, поэтому это — свойство.
Такое свойство можно встретить у другого четырехугольника. И клавиатура может быть на других устройствах, помимо ноутбука. Из этого следует, что свойства не обязательно должны быть уникальными.
Признак — это то, по чему мы однозначно распознаем объект.
Звезды в темном небе — признак того, что сейчас ночь. Если человек ходит с открытым зонтом — это признак того, что сейчас идет дождь. При этом ночью не обязательно должны быть видны звезды, иногда может быть облачно. Значит это не свойство ночи.
А теперь вернемся к геометрии и рассмотрим четырехугольник ABCD, в котором AB = BD = 10 см.
Является ли равенство диагоналей признаком прямоугольника? У такого четырехугольника, где AB = BD, диагонали равны, но он не является прямоугольником. Это свойство, но не его признак.
Но если в четырехугольнике противоположные стороны параллельны AB || DC и AD || BC и диагонали равны AB = BD, то это уже верный признак прямоугольника. Смотрите рисунок:
Иногда свойство и признак могут быть эквивалентны. Лужи — это верный признак дождя. У других природных явлений не бывает луж. Но если приходит дождь, то лужи на асфальте точно будут. Значит, лужи — это не только признак, но и свойство дождя.
Такие утверждения называют необходимым и достаточным признаком.
ТЕОРЕМА
— математическое утверждение, истинность к-рого установлена путем доказательства. Понятие Т. развивалось и уточнялось вместе с понятием математич. доказательства. При использовании аксиоматического метода Т. рассматриваемой теории определяются как высказывания, выводимые чисто ло-гич. путем из нек-рых заранее выбранных и фиксированных высказываний, называемых аксиомами. Поскольку аксиомы предполагаются истинными, то истинными должны быть и Т. Дальнейшее уточнение понятий доказательства и Т. связано с предпринятым в математич. логике исследованием понятия логического следствия, в результате чего для широкого класса математич. теорий процесс логич. вывода удалось свести к преобразованию формул, т. е. математич. утверждений, записанных на подходящем формализованном языке, по точно сформулированным правилам ( вывода правилам), относящимся лишь к форме (а не к содержанию) предложений. В возникающих таким образом формальных теориях доказательством наз. конечная последовательность формул, каждая из к-рых либо является аксиомой, либо получается из нек-рых предыдущих формул этой последовательности по одному из правил вывода. Т. наз. формула, являющаяся последней формулой в нек-ром доказательстве.
Такое уточнение понятия Т. позволило получить, пользуясь строгими математич. методами, ряд важных результатов о математич. теориях. В частности, было установлено, что аксиоматич. теории, представляющие многие существенные разделы математики (напр., арифметику), неполны, т. е. существуют предложения, истинность или ложность к-рых нельзя установить чисто логич. путем на основе аксиом. Эти теории, как правило, неразрешимы, т. е. не существует единого метода (алгоритма), позволяющего установить, является ли Т. произвольное данное высказывание.
Смотреть что такое ТЕОРЕМА в других словарях:
ТЕОРЕМА
(греч. theorema, от theoréo — рассматриваю, исследую) предложение некоторой дедуктивной теории (см. Дедукция), устанавливаемое при помощи Доказа. смотреть
ТЕОРЕМА
ТЕОРЕМА
теорема ж. Положение, истинность которого нуждается в доказательстве и устанавливается путем доказательства (в математике).
ТЕОРЕМА
теорема ж. мат.theorem доказать теорему — prove a theorem
ТЕОРЕМА
ТЕОРЕМА
ТЕОРЕМА
ж.theoremдоказывать теорему — prove the theorem- адиабатическая теорема- антиспиральная теорема- асимптотическая теорема- биномиальная теорема- вспомог. смотреть
ТЕОРЕМА
ТЕОРЕМА (от греч. theoreo – рассматриваю)научное положение. Философский энциклопедический словарь.2010. ТЕОРЕ́МА (греч. ϑεώρημα, от ϑεωρέω – р. смотреть
ТЕОРЕМА
law, theorem* * *теоре́ма ж.theoremдока́зывать теоре́му, напр. спо́собом от проти́вного — prove a theorem, e. g., by contradictionтеоре́ма о … — a t. смотреть
ТЕОРЕМА
ТЕОРЕМА
ТЕОРЕМА
1) proposition2) theorem– дополнительная теорема– обратная теорема– подготовительная теорема– теорема Арцела– теорема баше– теорема безу– теорема Ван Ц. смотреть