что такое телеметрия в космосе
Системы слежения за полетом ракеты
Радиоуправление
На заре ракетной техники только радиокоррекция с Земли могла обеспечить требуемую точность наведения межконтинентальной баллистической ракеты. Поэтому и в США для «Атласов» и в СССР для «Р-7» пришлось строить пункты управления дальностью. В СССР это были капитальные строения, в которых антенна пеленгатора стояла в трехэтажном павильоне:
Павильоны дополнялись мобильными пунктами измерения дальности:
На самой ракете сигнал от наземных пунктов принимался на специальные подвижные антенны и через них же отправлялся обратно:
Система радиокоррекции могла определять скорость с точностью 0,5 м/с, а дальность с ошибкой не больше 50 м. Но уже в начале 60-х инерциальные системы достигли сравнимой точности, и от наземных пунктов отказались.
Телеметрия
Лучший способ узнать, что происходит на ракете — поставить на нее датчики и в режиме реального времени отсылать информацию на землю. Аварии развиваются быстро, и часто только последние миллисекунды могут сказать о причине случившегося. Поэтому каждая ракета-носитель несет на себе систему телеметрии и антенны передачи ее на землю. На земле же стоят приемные комплексы. Золотая эра советской космонавтики прошла под знаком системы телеметрии «Трал», характерные антенны которой легко узнаваемы на первых космических аппаратах:
«Спутник-3», антенна «Трала» — загогулина, похожая на кипятильник, на первом плане
На земле же стояли сначала односпиральные антенны:
Затем появились футуристические четырехспиральные антенны:
Первоначально телеметрические данные писались на кинопленку. Это было просто, но пленки нужно было проявлять, и даже очевидные причины аварии определялись не сразу. Затем стали использовать магнитные ленты, а сейчас телеметрию пишут в цифровом формате. После аварии РН «Falcon» в твиттере Маска говорилось о проблемах извлечения последних кадров телеметрии HEX-редактором. Возможно, это говорит о том, что телеметрия «Falcon’а» писалась не совсем в реальном времени.
Забавно, что мода на четырехспиральные антенны не ограничивалась одним полушарием Земли — за океаном стояли похожие системы:
Система телеметрии спутников Telstar
А сейчас телеметрию стартующих «Союзов» принимают на комплекс МКА-9 с антенной «Ромашка»:
Траекторные измерения
Траекторные измерения позволяют определить параметры полета ракеты-носителя, а также они используются для измерения параметров орбиты спутников и пилотируемых кораблей. Как правило, системы траекторных измерений могут работать в двух режимах. В первом фиксируется сигнал ответчика на космическом аппарате, а во втором система работает как обычный радар, измеряя параметры отраженного от цели радиосигнала. В СССР на заре освоения космоса использовали систему «Бинокль»
А затем создали более совершенную систему «Кама»
Мобильный вариант
В США же со времен «Меркуриев» и практически до сего дня используется радар AN/FPS-16:
Его точность по дальности достигает 5 м, а по направлению — 0,1 миллирадиан, и это для объекта на орбите!
Системы аварийного подрыва
Оптические системы
Весьма полезны могут быть наблюдения в оптическом диапазоне. Например, можно наглядно убедиться, что боковые блоки ракет семейства «Р-7» отошли нормально:
Для сравнения современные кадры с подобной системы на космодроме Куру:
В СССР первоначально использовались кинотеодолит КТ-50 и кинотелескоп КСТ-80. Оба телескопа наводились по уже знакомой системе «Бинокль»:
Из более современных известна система «Сажень-Т»:
В США сейчас используются оптические системы нескольких фирм. Contraves-Goerz:
Обратите внимание на антенны под телескопом — они обеспечивают наведение и автосопровождение цели, а еще с их помощью можно получать телеметрию и держать голосовую связь с экипажем
Обратите внимание на установку с плоскими антеннами справа
Кроме задач NASA эти же телескопы использовались для фиксации прыжка Феликса Баумгартнера, они же снимали полеты и катастрофу SpaceShipTwo.
SpaceShipTwo в полете, фото с телескопа MARS
Кроме радиоантенн оптические системы могут дополняться лазером. В этом случае к телескопу и фотометру добавляется полезная функция лазерного дальномера:
Работает «Сажень-Т». Точность измерения расстояния до спутника — до двух сантиметров!
Системы фиксации падения отработанных ступеней
Интересным подвидом траекторных систем являются системы фиксации падения отработанных ступеней. Для России это новое направление — на Байконуре первая ступень падает в степь, и ее можно легко обнаружить. И часто бывает так, что местные жители увозят ступень на металлолом раньше, чем на место падения прибывают специалисты Роскосмоса. С новым космодромом «Восточный» так не получится — ступень будет падать в тайгу, и найти ее без знания точных координат будет очень сложно. Поэтому сейчас проходят испытания систем фиксации мест падения:
Помните плоские антенны на фотографии с MARS? Здесь хорошо виден аналогичный радар, который на «Восточном» будет применяться для слежения за сброшенным головным обтекателем.
Дополнительная информация
Очень интересный фильм о ракете Р-7
Много материала было взято с сайта КИК-СССР.
По тегу «незаметные сложности» — ракеты и спутники, стартовые сооружения и орбиты и много чего еще.
Уфимцы! На этой неделе, 25-27 сентября будет Фестиваль Науки. Не забудьте, там будет масса интересного.
lozga
Научно-популярно о космосе и астрономии
Радиоуправление
На заре ракетной техники только радиокоррекция с Земли могла обеспечить требуемую точность наведения межконтинентальной баллистической ракеты. Поэтому и в США для «Атласов» и в СССР для «Р-7» пришлось строить пункты управления дальностью. В СССР это были капитальные строения, в которых антенна пеленгатора стояла в трехэтажном павильоне:
Павильоны дополнялись мобильными пунктами измерения дальности:
На самой ракете сигнал от наземных пунктов принимался на специальные подвижные антенны и через них же отправлялся обратно:
Система радиокоррекции могла определять скорость с точностью 0,5 м/с, а дальность с ошибкой не больше 50 м. Но уже в начале 60-х инерциальные системы достигли сравнимой точности, и от наземных пунктов отказались.
Телеметрия
На земле же стояли сначала односпиральные антенны:
Затем появились футуристические четырехспиральные антенны:
Первоначально телеметрические данные писались на кинопленку. Это было просто, но пленки нужно было проявлять, и даже очевидные причины аварии определялись не сразу. Затем стали использовать магнитные ленты, а сейчас телеметрию пишут в цифровом формате. После аварии РН «Falcon» в твиттере Маска говорилось о проблемах извлечения последних кадров телеметрии HEX-редактором. Возможно, это говорит о том, что телеметрия «Falcon’а» писалась не совсем в реальном времени.
Система телеметрии спутников Telstar
А сейчас телеметрию стартующих «Союзов» принимают на комплекс МКА-9 с антенной «Ромашка»:
Траекторные измерения
Траекторные измерения позволяют определить параметры полета ракеты-носителя, а также они используются для измерения параметров орбиты спутников и пилотируемых кораблей. Как правило, системы траекторных измерений могут работать в двух режимах. В первом фиксируется сигнал ответчика на космическом аппарате, а во втором система работает как обычный радар, измеряя параметры отраженного от цели радиосигнала. В СССР на заре освоения космоса использовали систему «Бинокль»
А затем создали более совершенную систему «Кама»
Мобильный вариант
В США же со времен «Меркуриев» и практически до сего дня используется радар AN/FPS-16:
Системы аварийного подрыва
Оптические системы
Весьма полезны могут быть наблюдения в оптическом диапазоне. Например, можно наглядно убедиться, что боковые блоки ракет семейства «Р-7» отошли нормально:
Для сравнения современные кадры с подобной системы на космодроме Куру:
В СССР первоначально использовались кинотеодолит КТ-50 и кинотелескоп КСТ-80. Оба телескопа наводились по уже знакомой системе «Бинокль»:
Из более современных известна система «Сажень-Т»:
В США сейчас используются оптические системы нескольких фирм. Contraves-Goerz:
Обратите внимание на установку с плоскими антеннами справа
Кроме задач NASA эти же телескопы использовались для фиксации прыжка Феликса Баумгартнера, они же снимали полеты и катастрофу SpaceShipTwo.
SpaceShipTwo в полете, фото с телескопа MARS
Кроме радиоантенн оптические системы могут дополняться лазером. В этом случае к телескопу и фотометру добавляется полезная функция лазерного дальномера:
Системы фиксации падения отработанных ступеней
Помните плоские антенны на фотографии с MARS? Здесь хорошо виден аналогичный радар, который на «Восточном» будет применяться для слежения за сброшенным головным обтекателем.
Дополнительная информация
Очень интересный фильм о ракете Р-7
Много материала было взято с сайта КИК-СССР.
Уфимцы! На этой неделе, 25-27 сентября будет Фестиваль Науки. Не забудьте, там будет масса интересного.
Системы слежения за полетом ракеты
Радиоуправление
На заре ракетной техники только радиокоррекция с Земли могла обеспечить требуемую точность наведения межконтинентальной баллистической ракеты. Поэтому и в США для «Атласов» и в СССР для «Р-7» пришлось строить пункты управления дальностью. В СССР это были капитальные строения, в которых антенна пеленгатора стояла в трехэтажном павильоне:
Павильоны дополнялись мобильными пунктами измерения дальности:
На самой ракете сигнал от наземных пунктов принимался на специальные подвижные антенны и через них же отправлялся обратно:
Система радиокоррекции могла определять скорость с точностью 0,5 м/с, а дальность с ошибкой не больше 50 м. Но уже в начале 60-х инерциальные системы достигли сравнимой точности, и от наземных пунктов отказались.
Телеметрия
На земле же стояли сначала односпиральные антенны:
Затем появились футуристические четырехспиральные антенны:
Первоначально телеметрические данные писались на кинопленку. Это было просто, но пленки нужно было проявлять, и даже очевидные причины аварии определялись не сразу. Затем стали использовать магнитные ленты, а сейчас телеметрию пишут в цифровом формате. После аварии РН «Falcon» в твиттере Маска говорилось о проблемах извлечения последних кадров телеметрии HEX-редактором. Возможно, это говорит о том, что телеметрия «Falcon’а» писалась не совсем в реальном времени.
Система телеметрии спутников Telstar
А сейчас телеметрию стартующих «Союзов» принимают на комплекс МКА-9 с антенной «Ромашка»:
Траекторные измерения
Траекторные измерения позволяют определить параметры полета ракеты-носителя, а также они используются для измерения параметров орбиты спутников и пилотируемых кораблей. Как правило, системы траекторных измерений могут работать в двух режимах. В первом фиксируется сигнал ответчика на космическом аппарате, а во втором система работает как обычный радар, измеряя параметры отраженного от цели радиосигнала. В СССР на заре освоения космоса использовали систему «Бинокль»
А затем создали более совершенную систему «Кама»
Мобильный вариант
В США же со времен «Меркуриев» и практически до сего дня используется радар AN/FPS-16:
Системы аварийного подрыва
Оптические системы
Весьма полезны могут быть наблюдения в оптическом диапазоне. Например, можно наглядно убедиться, что боковые блоки ракет семейства «Р-7» отошли нормально:
Для сравнения современные кадры с подобной системы на космодроме Куру:
В СССР первоначально использовались кинотеодолит КТ-50 и кинотелескоп КСТ-80. Оба телескопа наводились по уже знакомой системе «Бинокль»:
Из более современных известна система «Сажень-Т»:
В США сейчас используются оптические системы нескольких фирм. Contraves-Goerz:
Обратите внимание на установку с плоскими антеннами справа
Кроме задач NASA эти же телескопы использовались для фиксации прыжка Феликса Баумгартнера, они же снимали полеты и катастрофу SpaceShipTwo.
SpaceShipTwo в полете, фото с телескопа MARS
Кроме радиоантенн оптические системы могут дополняться лазером. В этом случае к телескопу и фотометру добавляется полезная функция лазерного дальномера:
Системы фиксации падения отработанных ступеней
Помните плоские антенны на фотографии с MARS? Здесь хорошо виден аналогичный радар, который на «Восточном» будет применяться для слежения за сброшенным головным обтекателем.
Дополнительная информация
Очень интересный фильм о ракете Р-7
Много материала было взято с сайта КИК-СССР.
Уфимцы! На этой неделе, 25-27 сентября будет Фестиваль Науки. Не забудьте, там будет масса интересного.
Как устроена космическая связь
Все кто смотрит телевизор, в курсе, что без спутников невозможно увидеть большинство известных телеканалов (исключение кабельное телевидение). Да и большинство семей уже давно владеет спутниковыми тарелками, которые принимают сигналы лучше, чем антенны из прошлого века. Хотя нам кажется, что спутниковое телевидение пришло в нашу жизнь совсем недавно, оно существует уже довольно давно, и чтобы оно функционировало стабильно, а наши телевизоры показывали качественную картинку, существуют центры космической связи.
Центр космической связи «Дубна» был введен в эксплуатацию в 1980 году и приурочен к московской олимпиаде 1980г., для обеспечения трансляции игр на страны Европы и Атлантического региона. После олимпийских игр ЦКС стал использоваться как объект правительственной связи Кремля с руководством других стран.
Всего в систему космической связи входят
— 24 приемо-передающих земных станций спутниковой связи с антенными системами от 2,4 до 32 метров. 27 приёмо-передающих земных станций для обеспечения телеметрии и телеуправления космическими аппаратами ГП КС, «Еutelsat», «ABS»;
— 11 измерительных и мониторинговых наземных станций для для проведения орбитальных испытаний, предоставления доступа земных станций к космическому сегменту и мониторинга загрузки спутниковых транспондеров западной дуги ГП КС, «Еutelsat», «ABS»;
— 2 независимые опто-волоконные линии связи емкостью 20 Гбит/c (каждая) работают в режиме резервирования друг друга и обеспечивают надежную связь объекта с Техническим центром «Шаболовка» ГП КС. Они позволяют связать ЦКС «Дубна» практически с любым оператором связи Москвы;
— 4 высоковольтных фидера (2 х 10 кВ и 2 х 6 кВ) обеспечивающие резервируемое энергопитание объекта. Для надежной работы технологического оборудования в ЦКС реализована система бесперебойного электропитания общей мощностью 700 КВА. В случае форс-мажорных обстоятельств электроснабжение объекта может быть обеспечено от автономной дизельной электростанции общей мощностью 1800 КВА.
Как было выше сказано, комплекс имеет 24 станции спутниковой связи с антенными системами от 2,4 до 32 метров, которые позволяют организовывать каналы передачи через российские и зарубежные спутники связи.
ГКС также принадлежит самая крупная в России орбитальная группировка из 13 геостационарных спутников, работающих в С-, Ku-, Ка- и L- диапазонах. Зоны обслуживания космических аппаратов ГПКС, расположенных на дуге орбиты от 14° з.д. до 145° в.д., охватывают всю территорию России, страны СНГ, Европы, Ближнего Востока, Африки, Азиатско-Тихоокеанского региона, Северной и Южной Америки, Австралии.
Вещание происходит с транспондера, который находится на спутнике. На одном спутнике может находится 40-60 транспондеров. Большинство из них находятся над экватором на высоте 35 786 км. Поэтому спутниковые антенны в Северном полушарии устанавливают в южном направлении.
Зеркало, которое все неправильно называют тарелкой, собирает сигнал, приходящий со спутников, концентрирует его и отражает на приемник-передатчик, который расположен над плоскостью зеркала.
При высоте орбиты спутников 35 786 км. путь луча от Земли требует около 0,12 секунды, а ход луча земля-спутник-земля занимает примерно 0,24 секунды. При этом полная реальная задержка при использовании спутниковой связи составит почти полсекунды.
Обратите внимание на табличку.
Срок службы одного спутника составляет 15 лет. Этого времени вполне хватает на работу и обеспечение разивающихся за это время технологий спутниковой связи. Потом спутник устаревает, и на его замену приходит новый. Спутники очень дорогие, 190-230 млн. долларов стоит постройка и вывод спутника на геостационарную орбиту.
Основная задача владельца спутника: построить, запустить и сдавать в аренду потребителям его частотный диапазон.
В качестве владельца выступают крупные организации (компании с огромными финансовыми возможностями и сильной инфраструктурой). В России таких организаций всего две: (ОАО “Газпром космические системы” и ФГУП “Космическая связь”), которые заказывают постройку, финансируют производственный процесс и производят запуск самих спутников на геостационарную орбиту. Дальше обеспечивают повседневную эксплуатацию (коррекцию положения спутника на орбите, мониторинг и управление работой бортового оборудования).
Далее мы идем в здание, где находятся компьютеры, которые работают со своими космическими аппаратами, обрабатывают сигналы и сюда идёт постоянный приём телеметрии.
Я знаю, что среди вас есть специалисты по космической связи, здесь все в порядке?
Территория ГКС усеяна спутниковыми тарелками всех размеров.
Есть даже вот такой необычной формы.
Как нам рассказали, спутниковое телевидение в России очень актуально, что можно заметить, если проехаться на машине вдоль городов или деревень, на домах которых зачастую стоят ржавые тарелки «Триколора». Прокладывать кабели в отдаленные места довольно дорого и нерентабельно, а в районах вечной мерзлоты они на вес золота, тут следует учитывать, что и кабели не вечны.
В конце экскурсии попадаем в главный центр управления. Здесь находятся сервера компании и множество мониторов, по картинкам на которых специалисты отслеживают качество передачи сигналов.
Теперь и вы знаете, как устроена космическая связь, спасибо что дочитали этот пост!