что такое тахометр на судне
Тахометры вольтметрового типа
Основные сведения
Тахометры
Тахометр – устройство для измерения скорости вращения вала. В состав тахометра входят датчик и приемник скорости, а также линия электропередачи, соединяющая датчик и приемник.
В зависимости от принципа действия, различают два вида тахометров:
Электрические тахометры предназначены для измерения частоты вращения греб-
ных валов, главных двигателей, турбонагнетателей, дизель-генераторов, вспомогательных механизмов и др.
В состав установки тахометров независимо от принципа работы входят датчик, ука
затели частоты вращения и проводная линия связи.
В качестве датчиков скорости используют генераторы постоянного или переменно
го тока, напряжение которых пропорционально скорости вала.
В качестве приемников скорости используют вольтметры постоянного или перемен
ного тока, шкала которых градуируется непосредственно в единицах измерения скорости вала ( чаще всего, в об / мин ).
В качестве линий связи используют 2- или 3-проводные кабели ( на постоянном токе – 2-проводные, на переменном – 3-проводные, в зависимости от типа тахометра ).
На судах применяют следующие типы тахометров:
1. тахометры вольтметрового типа;
2. индукционные тахометры;
3. компенсационные тахометры.
На судах чаще других применяются тахометры вольтметрового типа и индукцион-
Тахометр вольтметрового типа – это генератор постоянного тока специального
исполнения небольшой мощности.
. Как известно из курса электротехники, э.д.с. генератора постоянного тока ( В )
где с – конструктивный коэффициент ( постоянная величина );
n – частота вращения якоря генератора, об / мин;
В тахометрах данного типа магнитный поток создается полюсами, выполненными
в виде постоянных магнитов ( т.е. на полюсах нет обмотки возбуждения ). Поэтому этот
поток есть величина постоянная.
Значит, с учетом того, что конструктивный коэффициент «с» и магнитный поток Ф – величины постоянные, э.д.с прямо пропорциональна частоте вращения якоря
ственно в единицах измерения скорости – в об / мин ( или радианах в секунду ).
Прямо пропорциональная зависимость между скоростью и э.д.с. позволяет полу-
чить равномерную шкалу на вольтметре, что облегчает снятие отсчета скорости.
Рис. 16.15. Схема включения тахометра ( а ); схема магнитного шунта ( б )
Схема включения тахометра вольтметрового показана на рис. 16.15, а.
Гребной вал через механическую передачу 2 (зубчатые колеса и цепную передачу) передает вращение якорю генератора 3. Последний связан проводами 4 с указателями 5, представляющим собой вольтметры магнитоэлектрической системы.
К одному датчику скорости – генератору подключают несколько тахометров, распо
ложенных в разных местах – в машинном отделении, на мостике и др. Длина проводов ли
нии электропередачи между генератором и тахометрами получается разной, поэтому пока-
зания вольтметров могут отличаться.
ном направлении, до получения правильного отсчета. Для получения истинного значения скорости вала используют механические тахометры.
Кроме такой индивидуальной регулировки, отдельной для каждого тахометра, воз-
можна общая регулировка показаний всех тахометров одновременно.
Для этой цели служит магнитный шунт, встроенный в корпус генератора ( рис. 16.15, б ).
Этот шунт из ферромагнитного материала располагается рядом с полюсами посто-
янных магнитов. Магнитный поток, пронизывающий якорь генератора
Ф= Ф— Ф
Ф— магнитный поток постоянных магнитов;
Ф— магнитный поток, проходящий через шунт.
Расстояние между полюсами и шунтом можно изменять при помощи регулировоч-
ного винта. При удалении шунта от полюсов воздушный зазор между шунтом и полюса-
ми увеличивается, поэтому часть магнитного потока полюсов, отбираемая шунтом, умень-
шается. Поэтому увеличивается магнитный поток, проходящий через якорь генератора, а
значит, и э.д.с. генератора.
Обычно такую регулировку применяют для компенсации старения постоянных маг
нитов, которое приводит к постепенному уменьшению магнитного потока полюсов.
Отечественной промышленностью изготовляются датчики ( генераторы ) вольтмет
симальное число тахометров, которые можно подключить к генератору, 30 – номинальное напряжение генератора при 1500 об/мин, В ).
Указатели тахометров типов М-150, М-160, М-170, М-180, М-185 и М-186 имеют
поворот стрелки на 240°. Указатели некоторых типов имеют светящуюся стрелку и шкалу,
Указатели других типов имеют внутреннее электрическое освещение и светящуюся шкалу.
Основная погрешность при измерении в пределах от 10 до 100% номинального зна
чения частоты вращения вала не превышает ±1% от номинального значения шкалы.
К положительным качествам вольтметровых тахометров относятся: быстрота изме
рения, равномерность градуировки шкалы указателя, простота и надежность действия, возможность подключения к датчику большого числа указателей (до восьми приборов) и небольшая погрешность измерений.
Недостаток этой системы: изменение постоянства магнитного потока полюсов гене
раторов вследствие ударных сотрясений, вибрации и температурных колебаний, а также наличие коллектора, за которым требуется значительный уход.
Судовые тахометры Мерадат
Сегодня ассортимент продукции предприятия включает более 1000 наименований, в числе которых приборы, выпускаемые под марками «Термодат», «Мерадат», «Гигротерм», а также тиристорные и симисторные силовые блоки для управления нагрузкой в электрических цепях, термопары ХА(К), ХК(L), термометры сопротивления Pt100, и другое оборудование.
На рынке судостроения «Системы контроля» – не новичок. С момента своего образования в 1991 году компания начала активно сотрудничать с крупными судоходными компаниям и с основными двигателестроительными компаниями, такими как ООО «Дальдизель-Дальний Восток», ОАО «Волжский дизель имени Маминых», ООО «Уральский дизель-моторный завод», ОАО «РУМО» и др.
Измеренная частота отображается на высококонтрастных светодиодных 14-мм индикаторах. Направления вращения отображается в виде светодиодной диаграммы, которая разделена на две части: правая (зеленая) часть соответствует движению «вперед», а левая (красная) – движению «назад». Также для удобства наблюдения за показаниями в разных условиях освещенности, например днем или ночью, в приборе можно изменять уровень подсветки индикаторов.
Для дистанционного контроля к тахометру может быть подключено до восьми дополнительных блоков индикации с удалением до 1000 м от основного блока. Основной блок монтируется непосредственно в машинном отделении вблизи объекта измерения. Дополнительные блоки могут быть размещены в постах управления, рулевой рубке, ходовой рубке, служебных помещениях, помещениях аварийных генераторов и других судовых помещениях.
Приборы могут быть снабжены интерфейсом RS485 и протоколами для организации связи между электронными устройствами Modbus ASCII и Modbus RTU, а также протоколами NMEA-2000 и NMEA-0183.
Следует подчеркнуть, что все приборы, которые производит компания, выпускаются в металлических корпусах, что обеспечивает высокую защиту от помех и дополнительную прочность. Надежность приборов также объясняется качеством электронных компонентов. Достаточно назвать марки фирм-производителей комплектующих приборов, они говорят сами за себя: Atmel, Philips, Samsung, Honeywell, Texas Instruments, Bourns, Murata. О высоком качестве приборов можно судить и по статистике. За последние пять лет количество судовых тахометров, которые пришли на ремонт в «Системы контроля» с различных предприятий, составило менее 0,5% от общего числа проданных.
Весь модельный ряд создавался в тесном взаимодействии с заказчиками, поэтому приборы надежны, удобны в настройке и в использовании. Отлаженная система поставки комплектующих и собственные производственные площади позволяют выполнить любой заказ в короткие сроки, а широкая дилерская сеть и региональные склады, охватывающие всю Россию, Казахстан и Белоруссию, обеспечивает быструю доставку потребителю.
Приборы изготавливаются в соответствии с требованиями Российского морского регистра судоходства и Российского Речного Регистра.
БЛОГ ЭЛЕКТРОМЕХАНИКА
Блог судового электромеханика. Электроника, электромеханика и автоматика на судне. Обучение и практика. В помощь студентам и специалистам
30.10.2011
Приборы для измерения частоты вращения
В зависимости от места установки тахометра и способа применения тахометры подразделяют на стационарные, дистанционные и ручные. По принципу действия, различают механические (центробежные), магнитные, магнитно-индукционные, электрические и электронные тахометры.
Принцип действия механических тахометров основан на использовании центробежных сил, пропорциональных квадрату угловой скорости, действующих на центробежные расходящиеся грузы (наклонное кольцо), находящиеся на валу и вращающиеся вместе с ним вокруг оси, (рис. 1, а). Чувствительным элементом является кольцо 1 на оси 2, проходящей через приводной валик 3. Кольцо нагружено спиральной пружиной 4 и связано тягой 5 с подвижной муфтой 6. При вращении валика кольцо стремится занять положение, перпендикулярное к оси вращения. Муфта через промежуточное кольцо 9 и зубчатую рейку 7 входит в зацепление с шестерней 10, на оси которой закреплена стрелка 8, движущаяся вдоль шкалы прибора (градуирована в об/мин.). Тахометр закреплен неподвижно, а вал 3 приводится во вращение через передачу от вала двигателя.
При установившемся режиме центробежная сила, действующая на вращающееся кольцо 1, уравновешивается силой действия спиральной пружины, и стрелка тахометра неподвижна. При изменении частоты вращения вала равновесие сил нарушается, вызывая разворот кольца относительно оси 2 на угол α и соответствующий разворот стрелки 8 прибора. Механические центробежные измерительные приборы обладают нелинейной статической характеристикой, поэтому их шкала неравномерная.
Периодический контроль частоты вращения и проверку стационарных тахометров производят механическим центробежным ручным тахометром (рис. 1, б), прижимая наконечник 1 к торцу вращающегося вала. В корпус 2 встроен редуктор с переключающим устройством, позволяющий менять передаточное отношение от наконечника 1 к чувствительному элементу для измерения в пяти диапазонах частоты вращения от 25 до 10000 об/мин. Переключают редуктор и устанавливают указатель 3 путем перемещения вдоль оси наконечника приводного вала при нажатой кнопке 4. В зависимости от установленного диапазона частоты вращения показания прибора определяют по одной из двух шкал.
Магнитоиндукционный тахометр имеет равномерную шкалу. В тахометре (рис. 2.) вращение от приводного вала 1 через конические шестерни и вал 2 передается ротору с постоянными магнитами 3, между которыми на оси 10 находится алюминиевый диск 4.
Пропорционально частоте вращения приводного вала 1 изменяются действующие силы, разворот диска 4, оси 10 и жестко связанной с ней стрелки 7 вдоль шкалы 8.
В прибор вмонтирован магнитоиндукционный успокоитель, состоящий из алюминиевого диска 9, закрепленного на валу 10, и неподвижной системы с постоянными магнитами 6. При движении в диске 9 индуцируется ток и создается магнитное поле, взаимодействующее с полем постоянных магнитов. А так как сила взаимодействия этих полей направлена в сторону, противоположную движению диска, то происходит торможение колебаний стрелки прибора.
Дистанционные магнитоиндукционные тахометры
Дистанционное измерение частоты вращения основано на принципе электрической дистанционной передачи вращения вала двигателя валу магнитно-индукционного измерительного узла измерителя и преобразования частоты вращения вала в угловые перемещения стрелки измерителя.
Тахометр работает следующим образом (рис. 3): в обмотке статора 11 датчика при вращении ротора 15 возбуждается трехфазовый ток с частотой, пропорциональной частоте вращения вала двигателя. Ток по трем проводам приводится к обмотке статора 12 синхронного серводвигателя.
Для суммирования числа оборотов вала двигателя или механизма применяют специальные счетчики оборотов. Упрощенная принципиальная схема дистанционного электромеханического счетчика представлена на рис. 5.
Широко распространены магнитоуправляемые контакты (герконы). Прибор представляет собой две тонкие пермалоевые пластины с небольшим зазором между концами, впаянные в стеклянную колбу, из которой выкачан воздух (в некоторых приборах колбу заполняют инертным газом). При появлении вблизи геркона магнитного поля постоянного или электрического магнита происходит взаимное притягивание (прогиб) пластин и замыкание контактов. Постоянный магнит крепится на вращающемся валу 11 вместо штифта 10.
При каждом обороте вала независимо от направления его вращения катушка 1, получив питание, втягивает якорь 2 и смещает храповик 3 на один зуб колеса 5. При обесточивании катушки храповик под действием пружины 4 смещается в первоначальное положение, разворачивает колесо 5, вал 9 и барабан 7 на 1/10 оборота, что приводит к изменению показаний счетчика на одну единицу. Через один оборот барабана 7 соседний барабан 6 разворачивается на 1/10 оборота, отсчитав 10 оборотов вала 11, и т. д.
Контрольно-измерительные приборы
Приборы для измерения давления и разрежения.
Жидкостные манометры используются для измерения небольших давлений и разрежений. Простейший жидкостный манометр (рис. 157) состоит из U-образной стеклянной трубки 1, закрепленной на корпусе 2 со шкалой 3. Трубка залита ртутью или подкрашенной водой. Один конец трубки сообщается с измеряемой средой, другой — с атмосферой. Разность уровней h показывает давление в миллиметрах ртутного или водяного столба.
Напоромеры и тягонапоромеры применяются для измерения давлений и разрежений до 100—1200 мм вод. ст. На рис. 158, а показан мембранный тягонапоромер и схема его измерительного механизма. Давление измеряемой среды подводится внутрь мембранной коробки 2, размещенной вместе с передаточным механизмом 1 в корпусе 3. Движение мембраны передается сектору 6, сцепленному с зубчаткой 7, которая находится на оси стрелки 5. Отсчет производится по шкале 4.
Пружинный манометр (рис. 158, б) состоит из трубки Бурдона 5, которая через штуцер 1 сообщается с измеряемой средой. Под давлением внутри трубки ее свободный конец разгибается и через сектор 2 и зубчатку 4 поворачивает стрелку 6. Пружина 3 служит для устранения влияния на стрелку зазора в зубчатом сцеплении. Трубка Бурдона для давлений до 150 бар изготовляется из латуни, выше 150 бар — из стали. Манометры показывают избыточное давление. Нулевая отметка соответствует атмосферному давлению.
При эксплуатационном контроле работы установки применяют технические манометры с классом точности 1,5 и 2,5. Класс точности показывает допустимую погрешность в процентах от предельного значения шкалы прибора. Контрольные манометры имеют класс точности 0,5 и 1,0 и применяются для периодического контроля работы штатных технических Манометров.
Дифференциальные манометры (рис. 159, а) используются для измерения разности или перепада давлений. В корпусе расположены две трубки Бурдона с отдельным подводом давления к каждой. Трубки имеют независимые передаточные механизмы секторного типа. Механизм меньшего давления (—) имеет трубчатую ось и указатель в виде диска 1, а большего давления (+) — внутреннюю ось и стрелочный указатель 2. Отсчет давления ведется по общей шкале 3, а разности давлений — по шкале на диске 1.
Вакуумметры применяются для измерения глубокого разрежения и градуируются в мм рт. ст. Устройство вакуумметра аналогично устройству манометра. Прибор показывает разность давлений между измеряемой средой и атмосферой. Для получения абсолютного давления необходимо знать барометрическое (атмосферное) давление, из которого вычитается давление, показываемое мановакуумметром.
Электронно-механические манометры позволяют контролировать давление (разрежение) измеряемой среды на практически любом расстоянии от объекта. Они находят применение в системах дистанционного контроля. Манометр состоит из датчика (рис. 159, б), электронного усилителя и показывающего прибора. Питание осуществляется переменным током напряжением 127 или 220 В.
Во внутреннюю полость трубки Бурдона 2 через штуцер 7 и держатель 1 подается давление, под действием которого свободный конец трубки перемещается. Через присоединенную к нему скобу 4 и регулировочный винт 3 перемещение передается сердечнику 5 дифференциального трансформатора 6.
При изменении давления сердечник изменяет свое положение, что приводит к появлению небаланса напряжений на входе в усилитель. Усиленное напряжение небаланса поступает на показывающий прибор и перемещает указательную стрелку до тех пор, пока электрическая обратная связь не приведет небаланс к нулю.
Приборы для измерения температуры.
Жидкостные термометры, ртутные и спиртовые, получили широкое распространение при измерении температуры. На рис. 160 показан ртутный термометр и схема его установки на трубопроводе. Хвостовая часть термометра должна быть полностью погружена в оправу 1. Для улучшения теплопередачи между измеряемой средой и термометром в оправу заливается масло 2 или, для высоких температур, засыпается мелкая красномедная стружка. Затем накладывается изоляция 3.
В системах сигнализации и защиты применяются контактные термометры, в которых ртутный столбик при достижении заданного значения температуры замыкает электрическую цепь.
С помощью ртутных термометров можно измерять температуру от —30 до +750° С.
Биметаллические термометры работают на принципе деформации биметаллической винтовой пружины пропорционально изменению окружающей температуры. Схема термометра приведена на рис. 161, а. Один конец биметаллической пружины 1 жестко прикреплен к корпусу, а другой — к оси 2, на которой закреплена стрелка 3. При изменении температуры пружина деформируется и поворачивает в соответствующем направлении стрелку. Отсчет показаний производится по шкале 4.
Биметаллическими термометрами обычно измеряют температуру от —30 до +120° С.
Манометрический термометр (рис. 161, б) состоит из термобаллона 1, капилляра 2 и манометра 3 со шкалой, градуированной в единицах температуры. Термобаллон может заполняться жидкостью (ртуть, метиловый спирт и др.) или инертным газом (азот и др.). При увеличении температуры давление жидкости или газа разгибает трубку Бурдона в манометре, которая связана со стрелкой прибора.
Манометрические термометры применяются для измерения температур от —130 до +550° С.
Термоэлектрический термометр (пирометр) состоит (рис. 162, а) из термопары 1, проводников 2, компенсационного сопротивления 3 и милливольтметра 4. В корпусе термопары находятся два стержня из разнородных металлов или сплавов, концы которых спаяны между собой. Работа термометра основана на возникновении термоэлектродвижущей силы (термоэ. д. с.) в термопаре при нагреве ее рабочего конца (горячий спай). Измерение термоэ. д. с. производится милливольтметром 4, шкала которого отградуирована в °С. Сопротивление 3 подбирается при тарировании прибора.
Термоэлектрические термометры обычно объединяют в комплект с общим показывающим прибором, расположенным на щите поста управления дизелем.
Диапазон температур, измеряемых термоэлектрическими термометрами, составляет от —50 до +1300° С и выше.
Электрический термометр сопротивления работает на принципе изменения электрического сопротивления проводника при изменении температуры. На рис. 162, б показана схема такого термометра. Датчик 1 и милливольтметр 3 включены в цепь источника питания 2. Датчик представляет собой катушку, на которую намотана медная или платиновая проволока, или полупроводниковый резистор (термистор). При изменении температуры датчика изменяется его электрическое сопротивление, что приводит к отклонению стрелки показывающего прибора 5, градуированного в °С. Чаще термометр сопротивления включают в уравновешенный электрический мост, одним из плеч которого является термосопротивление.
Электрические термометры сопротивления применяются в системах дистанционного контроля.
Термометрами сопротивления измеряют температуру в диапазоне от —120 до +600° С.
Приборы для измерения частоты вращения.
Тахометр показывает частоту вращения вала. Счетчик оборотов измеряет количество оборотов, совершенное валом с момента установки прибора или его включения.
По конструктивному исполнению тахометры делятся на стационарные и переносные, а по принципу действия — на механические, магнитоиндукционные и вольтметровые.
Механический, тахометр. Принцип его действия (рис. 163, а) основан на явлении центробежных сил. На валике 1 имеется поперечная ось 3, на которой свободно крепится кольцевой груз 4, эластично соединенный при помощи спиральной пружины 2 с поперечной осью. С помощью тяги 5 груз соединен с муфтой 6, свободно сидящей на валике 1. Муфта через зубчатую рейку 7 и шестерню 8 связана со стрелкой 9. При вращении валика 1 кольцевой груз стремится занять положение, перпендикулярное оси вращения, перемещая при этом стрелку по шкале. Положение кольцевого груза относительно оси вращения устанавливается такое, которое отвечает равновесию центробежных сил, действующих на кольцо, и усилию пружины 2.
Переносные тахометры (рис. 163, б) используют во время испытаний и для контроля за работой стационарных тахометров. Прибор снабжен комплектом наконечников и удлинителей, чтобы его можно было соединить с валами разной формы. С помощью переключающего устройства тахометр можно использовать для измерения от 25 до 10 000 об/мин. Следует иметь в виду, что если измеряемая частота вращения превышает установленную переключающим устройством, то тахометр может выйти из строя.
Механические тахометры не показывают направление вращения вала.
Эти тахометры обычно используют в дистанционном исполнении. Тахогенератор, приводимый во вращение от вала, частота которого измеряется, вырабатывает ток соответствующей частоты. Питаемый этим током синхронный двигатель, расположенный в показывающем приборе, вращает постоянный магнит. Таким образом частота вращения магнита всегда соответствует измеряемой частоте вращения.
Магнитоиндукционные тахометры устанавливаются на нереверсивных двигателях.
Вольтметровый тахометр (рис. 164) предназначен как для измерения частоты вращения, так и для указания направления вращения вала. В связи с этим вольтметровые тахометры широко применяются на главных двигателях.
Якорь тахогенератора 4 приводится во вращение от гребного вала 6 с помощью втулочно-роликовой цепи 5. Напряжение вырабатываемого тахогенератором постоянного тока пропорционально частоте вращения вала. Через переходную коробку 3 напряжение поступает на показывающий прибор 1, представляющий собой магнитоэлектрический вольтметр, градуированный в об/мин. По кабелю 2 подается питание на освещение шкалы прибора.
Обычно от одного тахогенератора работают три показывающих прибора, которые устанавливаются в машинном отделении, на мостике и в каюте старшего механика.
Счетчик оборотов служит для подсчета количества оборотов, наработанных со времени постройки, ремонта, моточистки и т. п. Он может иметь качающийся или вращающийся привод. На рис. 165, а показан суммирующий счетчик оборотов с вращающимся приводом. Счетный механизм 3 роликового типа размещен в остове 2, который закрыт никелированным кожухом 4 с боковыми окнами для отсчета оборотов и торцовым окном для ключа возвратного устройства, надеваемого на ось 5. С остовом счетчика соединен корпус приводного узла 1. Роликовый счетный механизм состоит из цифровых барабанчиков. Каждый барабанчик поворачивается на 1/10 оборота после поворота предшествующего барабанчика на один оборот.
Тахоскоп (см. рис. 165, б) состоит из суммирующего счетчика оборотов 1 и секундомера 2, закрепленных в общем корпусе. Приводной валик 3 получает вращение при прижатии насаженного на него наконечника к центровому конусу на торце вала. Секундомер и счетчик включаются одной кнопкой. Другая кнопка возвращает стрелки обоих приборов на нуль. Частное от деления показания счетчика на показания секундомера (в мин) дает среднюю частоту вращения в минуту за период замера.
Специальные теплотехнические приборы. Индикатор служит для снятия индикаторной диаграммы, после обработки которой определяется среднее индикаторное давление pt и подсчитывается индикаторная мощность цилиндра дизеля. Сумма индикаторных мощностей всех цилиндров дает индикаторную мощность двигателя.
На рис. 166 показана схема индикатора с цилиндрической пружиной, установленного на цилиндре дизеля. Корпус индикатора устанавливают и закрепляют на индикаторном кране. На корпусе расположен барабан с возвратной пружиной внутри и пишущий механизм. Барабан 8 через гибкий шнур 9 присоединяется к индикаторному приводу 10, правое плечо которого с помощью тяги соединено с поршнем двигателя. Барабан воспроизводит движение поршня и, следовательно, в определенном масштабе, величину объема цилиндра при каждом положении поршня двигателя.
При открытии индикаторного крана газы из цилиндра 1 двигателя поступают в цилиндр 2 индикатора и воздействуют на поршень 3. Под действием давления газов поршень перемещается вверх и через шток 5 растягивает цилиндрическую пружину 6 до момента достижения равновесного состояния. Через систему шарнирных рычагов пишущего устройства 4 движение поршенька передается на карандаш 7, который может перемещаться строго по вертикали. На барабан 8 надевается бумажный бланк, где карандашом вычерчивается диаграмма цикла.
Пиметр показывает среднее давление в цилиндре по времени рт. С его помощью осуществляется контроль за равномерностью распределения нагрузки между цилиндрами двигателя. Однако определить мощность с помощью пиметра нельзя, так как он не показывает pi
На рис. 167, а изображена схема пиметра инерционного типа. Он устанавливается на индикаторном кране и закрепляется гайкой 1. Под давлением газов поршенек 2, находящийся в цилиндре 3, перемещается вверх и через рычажный механизм 4 и сектор 5 поворачивает ось 6. Перемещению поршенька противодействует пружина 5, а повороту оси 6 — закрепленная на ней масса, выполненная в виде диска. Несмотря на колебания давления, стрелка 7, сидящая на общей с массой оси 6, устанавливается в определенном положении, соответствующем упругости пружины 8. Отсчет показаний прибора производится по шкале 9.
Максиметр предназначен для определения максимального давления в цилиндре рz. При выключении топливного насоса прибор показывает давление конца сжатия рс.
Манометрический максиметр (рис. 167, б) состоит из корпуса 2, соединенного с манометром 7. С помощью гайки 1 прибор закрепляют на индикаторном кране. Газы из цилиндра двигателя проходят через сетчатый фильтр 3, невозвратный клапан 4, дроссельную шайбу 5 и поступают в манометр. После нескольких колебаний стрелка манометра устанавливается в положении, соответствующем давлению в цилиндре. Клапан 6 служит для выпуска газов из максиметра после его отключения от цилиндра.
Торсиометр служит для определения эффективной мощности двигателя и устанавливается на валопроводе. Принцип работы прибора основан на скручивании вала при передаче им мощности.
Индуктивный торсиометр (рис. 167, в) состоит из закрепленных на валу 3 железного якоря 1 и, на некотором расстоянии от него двух катушек 2. Каждая катушка имеет две обмотки. В первичную обмотку катушек подается переменный ток. При скручивании вала изменяются зазоры между якорем и катушками, в результате чего напряжение во вторичных обмотках становится неодинаковым. Изменение напряжения в обмотках пропорционально скручиванию вала и, следовательно, величине крутящего момента, передаваемого валом. После установки торсиометра производится его тарировка и составляются таблицы, по которым определяется эффективная мощность двигателя — в зависимости от напряжения электрического тока вторичных обмоток.