какую температуру выдерживает титан

Титан

какую температуру выдерживает титан. картинка какую температуру выдерживает титан. какую температуру выдерживает титан фото. какую температуру выдерживает титан видео. какую температуру выдерживает титан смотреть картинку онлайн. смотреть картинку какую температуру выдерживает титан.

Титан широко распространен в земной коре, где его содержится около 6 %, а по распространенности он занимает четвертое место после алю-миния, железа и магния. Однако промышленный способ его извлечения был разработан лишь в 40-х годах ХХ века. Благодаря прогрессу в области самолето- и ракетостроения производство титана и его сплавов интенсивно развивалось. Это объясняется сочетанием таких ценных свойств титана, как малая плотность, высокая удельная прочность (s в/r × g), коррозионная стойкость, технологичность при обработке давлением и свариваемость, хладостойкость, немагнитность и ряд других ценных физико-механических характеристик.

Основные сведения о титане

История открытия титана

Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

Свойства титана

В периодической системе элементов Д. И. Менделеева титан расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.

Известны две аллотропические модификации титана (две разновидности титана, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

Характеристики физико-механических свойств титана (ВТ1-00)

Механические свойства титана существенно зависят от содержания примесей в металле. Различают примеси внедрения — кислород, азот, углерод, водород и примеси замещения, к которым относятся железо и кремний. Хотя примеси повышают прочность, но одновременно резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы. При введении всего лишь 0,003 % Н, 0,02 % N или 0,7 % О титан полностью теряет способность к пластическому деформированию и хрупко разрушается.

Поэтому содержание примесей, особенно газов, в титане и титановых сплавах (табл. 17.1, 17.2) строго ограничено.

Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом титан губчатый (ГОСТ 17746–79) в зависимости от химического состава и механических свойств выпускают следующих марок:
ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-ТВ (см. табл. 17.1). Цифры означают твердость по Бринеллю НВ, ТВ — твердый.

Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.

Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: s в = 375–540 МПа, s 0,2 = 295–410 МПа, d ³ 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr—Ni коррозионностойких сталей.

Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ- решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования благодаря малому сотношению с/а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов (подробнее см. гл. 13).

При повышении температуры до 250 ° С прочность титана снижается почти в 2 раза. Однако жаропрочные Ti-сплавы по удельной прочности в интервале температур 300–600 ° С не имеют себе равных; при температурах выше 600 ° С сплавы титана уступают сплавам на основе железа и никеля.

Титан имеет низкий модуль нормальной упругости (Е = 110,25 ГПа) — почти в 2 раза меньше, чем у железа и никеля, что затрудняет изготовление жестких конструкций.

Титан относится к числу химически активных металлов, однако он обладает высокой коррозионной стойкостью, так как на его поверхности образуется стойкая пассивная пленка TiO2, прочно связанная с основным металлом и исключающая его непосредственный контакт с коррозионной средой. Толщина этой пленки обычно достигает 5–6 нм.

Благодаря оксидной пленке, титан и его сплавы не корродируют в атмосфере, в пресной и морской воде, устойчивы против кавитационной коррозии и коррозии под напряжением, а также в кислотах органического происхождения.

Производство изделий из титана и его сплавов имеет ряд технологических особенностей. Из-за высокой химической активности расплавленного титана его плавку, разливку и дуговую сварку производят в вакууме или в атмосфере инертных газов.

При технологических и эксплуатационных нагревах, особенно выше 550–600 ° С, необходимо принимать меры для защиты титана от окисления и газонасыщения (альфированный слой) (см. гл. 3).

Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется. Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения. Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.

Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.

Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746–79)

МаркаTi, не менееНе более
FeSiNiCClNO
ТГ-9099,740,050,010,040,020,080,020,0490
ТГ-10099,720,060,010,040,030,080,020,04100
ТГ-11099,670,090,020,040,030,080,020,05110
ТГ-12099,640,110,020,040,030,080,020,06120
ТГ-13099,560,130,030,040,030,100,030,08130
ТГ-15099,450,20,030,040,030,120,030,10150
ТГ-Тв99,751,90,100,150,10

Марки и химический состав (%) деформируемых титановых сплавов (ГОСТ 19807–91)

Обозначения
марок
TiAlVMoSnZrMnCrSiFeOHNC
ВТ1-00Основа0,080,150,100,0080,040,05
ВТ1-0То же0,100,250,200,0100,040,07
ВТ1-2То же0,151,50,300,0100,150,10
ОТ4-0То же0,4–1,40,300,5–1,30,120,300,150,0120,050,10
ОТ4-1То же1,5–2,50,300,7–2,00,120,300,150,0120,050,10
ОТ4То же3,5–5,00,300,8–2,00,120,300,150,0120,050,10
ВТ5То же4,5–6,21,20,80,300,120,300,200,0150,050,10
ВТ5-1То же4,3–6,01,02,0 –3,00,300,120,300,150,0150,050,10
ВТ6То же5,3–6,83,5–5,30,300,100,600,200,0150,050,10
ВТ6сТо же5,3–6,53,5–4,50,300,150,250,150,0150,040,10
ВТ3-1То же5,5–7,02,0–3,00,500,8–2,00,15–0,400,2–0,70,150,0150,050,10
ВТ8То же5,8–7,02,8–3,80,500,20–0,400,300,150,0150,050,10
ВТ9То же5,8–7,02,8–3,81,0–2,00,20–0,350,250,150,0150,050,10
ВТ14То же3,5–6,30,9–1,92,5–3,80,300,150,250,150,0150,050,10
ВТ20То же5,5–7,00,8–2,50,5–2,01,5–2,50,150,250,150,0150,050,10
ВТ22То же4,4–5,74,0–5,54,0–5,50,300,5–1,50,150,5–1,50,180,0150,050,10
ПТ-7МТо же1,8–2,52,0–3,00,120,250,150,0060,040,10
ПТ-3ВТо же3,5–5,01,2–2,50,300,120,250,150,0060,040,10
АТ3То же2,0–3,50,2–0,50,20–0,400,2–0,50,150,0080,050,10

Примечание. Сумма прочих примесей во всех сплавах составляет 0,30 %, в сплаве ВТ1-00 — 0,10 %.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *